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This book contains the papers presented in the 4th International Conference on
Inverse Problems in Engineering: Theory and Practice. This conference is
organized under the auspices of United Engineering Foundation and is held in a
three-year cycle. Previous versions took place in Palm Coast, Florida, in 1993; in
Le Croisic, France, in 1996; and in Port Ludlow, Washington State, in 1999. The
series of International Conferences on Inverse Problems in Engineering:
Theory and Practice finds its roots in the informal seminars organized by Prof.
James V. Beck at Michigan State University, which were initiated in 80’s.

The 4th International Conference on Inverse Problems in Engineering:
Theory and Practice was held during May 26 – 31, 2002, in the beautiful Hotel
Portobello Resort & Safari, located near the city of Rio de Janeiro. The resort pro-
vided a unique atmosphere for 99 conference participants, from 21 different coun-
tries, to present their most recent research results and for the technical discussion
of their findings. The 4th International Conference on Inverse Problems in En-
gineering: Theory and Practice was co-promoted by the Brazilian Society of
Mechanical Sciences (ABCM), the Brazilian Society of Computational and Applied
Mathematics (SBMAC), and by COPPE, which is the graduate school in engineer-
ing of the Federal University of Rio de Janeiro (UFRJ). It was co-sponsored by the
following agencies of the Brazilian Government: CNPq, from the Ministry of Sci-
ence and Technology; CAPES, from the Ministry of Education and Culture; and the
National Oil Agency (ANP), from the Ministry of Mines and Energy.

The 4th International Conference on Inverse Problems in Engineering:
Theory and Practice counted with 159 submitted abstracts, resulting on 104 ac-
cepted papers. A total of 98 papers were scheduled for presentation in the confer-
ence, distributed in 25 oral sessions and in 1 poster session. Invited keynote lectur-
ers were presented by Prof. A. Yagola (Russia), Prof. G. Chavent (France), Prof. O.
Alifanov (Russia), Prof. Y. Jarny (France) and Prof. N-Z. Sun (USA). Prof. K.
Woodbury (USA) and Prof. B. Blackwell (USA) were invited to give tutorial ses-
sions. I would like to express my gratitude to the members of the organizing and
scientific committees for playing a fundamental role towards the success of the
conference, as well as to the invited speakers for kindly accepting my invitation to
share with the participants their knowledge on important subjects on the inverse
problems field. Because of the large number of papers submitted, several other
reviewers were invited to give their contributions to the conference by evaluating
papers, in addition to the members of the organizing and scientific committees.
They include Prof. J. P. Kaipio (Finland), Prof. L. Olson (USA), Prof. A. Haji-Sheikh
(USA), Prof. J. G. Berryman (USA), Prof. R. Y. Qassim (Brazil), Prof. B. Dennis
(Japan), Prof. G. R. Liu (Taiwan), Prof. H. Telega (Poland), Prof. V. Steffen Jr.
(Brazil), Prof. F. Rochinha (Brazil) and Prof. M. D. Mikhailov (Brazil).

  It was a great honor for Brazil to host the 4th International Conference on
Inverse Problems in Engineering: Theory and Practice and, personally for
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myself, to be its chairman. The next conference shall take place in the United
Kingdom in 2005 and Prof. Daniel Lesnic has agreed to lead the organizing com-
mittee for that event.

Helcio R. B. Orlande
Rio de Janeiro, Brazil
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ABSTRACT 
The paper deals with the inverse methodology 

in mathematical modeling and experimental 
studies of heat transfer processes while designing 
and testing thermally loaded structures. Among 
the problems under consideration the main are the 
investigation of thermophysical characteristics of 
materials, the transient heat measurements and 
identification of thermal processes. The 
identification of mathematical models of physical 
processes should be performed in such a way as 
to provide a correct consideration of physical 
laws and general rules in combination with the 
inverse methods for parameter estimation, test of 
hypothesis and model validation for adequacy. In 
particular, the results of studies on the 
construction and verification of models are 
presented to describe the process of heat 
propagation in high-porous fibrous materials and 
thermal protection structures made from them. 
The investigation of heat transfer in a 
heterogeneous gas flow is citied as another useful 
application of this technique. The experimental-
and-design methods based on solving the inverse 
problems are widely used in the full-scale tests of 
different engineering systems. One such example 
given in the paper is a broad spectrum of 
thermophysical investigations that have been 
carried out in the course of flight tests of the 
reusable aerospace vehicle heat protection. 
 
INTRODUCTION 

A correct technology of scientific research and 
an engineering design assume the use of a system 
approach. A necessary aspect of the system 
approach is the modeling (simulation) of the 
physical processes and technical objects under 
study. The modeling can be experimental and 
mathematical. The role of mathematical modeling 
in different researches and developments is 

constantly growing. At the same time, the 
experiments and tests will always present a basis 
to validate the mathematical models and methods 
being used for their adequacy and verify the 
design decision correctness. Speaking here about 
the mutual relations of experimental and 
mathematical modeling we see that they become 
more ordered and substantiated from the 
viewpoint of final goal – to provide higher quality 
and efficiency of investigations and 
developments. Among the more important trends 
in achieving the above goal is an advanced 
methodology of mathematical model 
identification and physical process diagnostics 
based on inverse problem solving [1-6]. 

This methodology has received wide 
acceptance in different areas of science and 
technology. Rather high interest to solution of 
these problems is induced by practical needs of 
including of nonstationary, nonlinear and 
multifactor effects in the physical processes and 
the operational conditions of engineering systems 
under study. These effects restrict essentially the 
application of other methods and necessitate the 
development of new approaches, among which 
there are inverse methods. Their main advantage 
is that they allow experiments to be conducted in 
conditions maximally close to real ones, or 
directly during operation of real objects. Besides, 
such approach increases the informativeness, 
saves experimentation time compared with 
conventional methods. 

In the most complete form the inverse 
methodology can be in potential realized it 
various areas of design and testing of engineering 
objects [5]. A well-organized process of 
development of some engineering structure, in the 
general case, should include the constructing of 
an ordered system of interconnected mathematical 
models of this structure and its components, as 
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well as the conditions of their operation. In this 
connection we point out that methods based on 
the inverse problem solution can be successfully 
used not only for solving the particular problems 
but they can form a base for development, 
structuralizution and test for adequacy of the 
desired mathematical models, providing them 
with the proper numerical information. 

Such methodology is used for the construction 
of adequate enough mathematical models of 
physical processes as applied to thermally loaded 
structures and thermal protection materials. The 
methodology includes the following three general 
stages: 
• construction of a model structure; 
• parametric identification – parameter 

estimation of the structural models; 
• validation of the models for adequacy. 

The given process can be presented as an 
extended flow-chart shown in Fig.1 
 
EXAMPLES OF INVERSE METHODOLOGY 
APPLICATION 

One of the very broad field of inverse method 
application is the analysis of thermophysical 
properties of composite heat-protective materials 
acting in high temperature surroundings as, for 
example, when an orbiter is flying in the Earth’s 
atmosphere. Thermophysical measurements based 
on classical approach methods for many materials 
could only be made at temperatures and heating 
rate changes much lower than at those realized in 
reality. To avoid this discrepancy it is possible to 
simulate the required conditions for model 
heating on the test stands with a further 
processing of temperature measurements through 
the methods of inverse heat transfer problems 
solving. The thermophysical properties thus 
obtained correspond to the heating conditions 
brought near to natural conditions in which a 
thermal protection should operate. In a number of 
cases, the inverse methods are unique ways for 
obtaining reliable experimental data on 
thermophysical characteristics of thermal 
protection, the insulation materials having 
complex compositions and structures.  

The methodology based on solving similar 
inverse heat transfer problems poses a new field 
of thermophysics, the unsteady-state 
thermophysics of materials and media. In 
particular, it consists of a mathematical modeling 
of the heat transfer processes of advanced 
materials, working out recommendations for 
creating new materials with prescribed properties. 

One more and a very wide application of 

inverse problem methods, which is directly 
concerned with thermal investigations of an 
aerospace vehicle, is the unsteady-state heat 
measurements. The point is that in heat testing of 
such engineering systems, or in studying heat 
transfer processes on the experimental facilities in 
thermal probing of hot gas flow and in other cases 
there appears a problem of determining the 
temperatures, heat fluxes and heat transfer 
coefficients at the surfaces of the bodies (various 
structural components, thermal shields, external 
protective coatings, etc.). Since the intensity of 
heat transfer to a body usually changes with time 
because of changes in the heating (cooling) rates, 
and the non-stationariness of experimental 
installations parameters, etc. it is especially 
important to be able to determine the unsteady-
state parameters of heat transfer. 

Figure 1: Flow-chart of the identification 
process 

 

As a rule, it is impossible to actually measure 
the time-changing heat fluxes and heat transfer 
coefficients. The surface temperature of the 
objects often remains unaccessible for direct 
measurements. At the same time, there exists a 
possibility to measure temperatures at separate 
points within a body or on some surface part. 
Thus it becomes necessary to solve the 
corresponding inverse heat transfer problems, i.e. 
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to determine the desired thermal boundary 
conditions by calculation based on temperature 
measurements. 

Such problems of heat measuring are often 
encountered in the simulation of thermal 
conditions on the test gasdynamic facilities, in the 
course of flight simulation, in full-scale tests of 
flying vehicles, and so on. 
At present, similar inverse methods lie at the basis 
of a new efficient direction of heat measurements, 
the unsteady-state heat measurements. 
 
THERMAL MODELING OF REUSABLE 
HEAT PROTECTION 

Using the above mentioned procedure of 
identification the investigations have been carried 
out of fibrous ceramics and graphite materials for 
reusable thermal protection of aerospace vehicles, 
like Russian Buran and American Space Shuttle. 
The thermal properties and heat transfer 
characteristics were obtained for real high-
temperature and transient conditions of heating 
including the simulation experiments, facility and 
full-scale flight tests. These investigations used a 
system of models of the unsteady-state heat fluxes 
at the surface and in the intertile clearances of 
thermal protection as well as the estimation of 
action of different catalytic properties on the 
external heat transfer in real high temperature 
flow of a non-equilibrium gas, the check for 
adequacy of developed mathematical models of 
heat transfer both on the surface and inside of 
thermal protection structures.  

Let us dwell on the mathematical modeling 
and experimental testing of high-porous ceramic 
composits [7 - 9]. A general thermal mathematical 
model for the tiled heat protection shield 
developed in the Moscow Aviation Institute 
consists of the following components: 
- an orbiter motion  model in the  atmosphere; 
- a heat  loading model  to   determine  the 

surface  heat fluxes in either points of the 
vehicle; 

- a model of thermal protection structures; 
- a thermal model of the high-porous material 

which itself includes the material structure 
model, the models of thermal, optic-
radiative and hydrolic properties of the 
material, the conductive, convective and and 
radiative heat transfer models in the 
material; 

- a heat transfer model in the thermal 
protection structure (depending on the 

dimensional models are used); 
a heat state model of the therm

problem being solved one-,two-, or three-

- al protection 

T lets us encompass a significant 
num

The thermal model  of a high-porous 

lysis of the existing and 
adv

Figure 2: Structure model: a – general 
configuration; b – elementary volume 

structure. 
his model 

ber of problems arising at different stages of 
research and development of both the materials 
and structures. 

 

fibrous material.  
A thorough ana
anced thermal protection fibrous ceramics 

showed that they have to be classified among  
random-and-inhomogeneous media  in which the 
fibers are stochastically distributed by lengths, 
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diameters, orientatiions and physical properties. 
So, it is necessary to apply the probability theory 
methods for describing the material structures. 

A model structure is the base for  a thermal 
mo

eory in combination with the 
kno

 corresponding calculated and 
exp

del of such a material. In the  thermal model 
here  considered a regular  orthogonal anisotropic 
structure of fibers (Fig. 2, a) was proposed as a 
structure model. The analisis showed that a 
transfer from the original nonorthogonal structure 
to the orthogonal model is possible on conditions 
that a model has the thermophisical characteristics 
as well as the probability distributions of fiber 
lengths and diameters identical to those of the 
original material. Such a structure model is 
essentially an elementary volumes system  (Fig. 
2, b). Each of them is characterized by some 
random vector x. Its stochastic characteristics 
depend on the stochastic ones of fibers. The 
studies indicated that the mean value of any  
physical property F of a fibrouse material can be 
changed by the mean value of the same property 
but  determined for the elementary volume. Thus, 
it is possible to calculate any physical property of 
a fibrouse material phovided that we have a  
mathematical model of this property for the 
elementary volume. 

Based  on this th
wn theories and models (for example, the 

theory Mi for calculation of optic-radiative 
charactrerictics of the fibrous media or the 
Prosolov’s model of the gas thermal conductivity 
in a  material) the analytic formulas were obtained 
for calculation of all required properties of a 
fibrous material, such as the apparent density, 
thermal conductivity at a given direction, 
volumetric heat capacity, spectral and integral 
optic-radiative coefficients. The developed model 
has been tested for adequacy through utilization 
of the experimental data on the basis of solving 
coefficient IHCPs and optimum experimental 
design. It was made not only for TZMK ceramics 
but also for Rigid, Fibrous Ceramic (RFC) 
composite materials based on the  Lockheed HTP 
technology and flown on US Shuttle Orbiters. 
High Thermal Performance (HTP) technology 
uses various combinations of silica and alumina 
fibers. 

The
erimental values of the effective thermal 

conductivity for HTP materials (the silica and 
alumina fiber fractions by mass are 78% and 22% 
respectively, the mean diameter and variance for 
silica fibers are 4.3 mkm and 1.69 mkm, for 
alumina fibres are 3.68 mkm and 2.56 mkm 

respectively, structure anisotropy factor A is 
about 2) are presented in Fig. 3 for different 
pressures of ambient air. The similar data for 
TZMK materials are given in Fig. 4 for three  
values of a anisotropy factor A which is defined 
as an averaged ratio between the number of fibers 
situated along the longitudinal axis and the 
number of fibers oriented normally to the surface. 
The results of such comparative estimations 
allowed us to make the conclusion that the 
method developed may be used successfully to 
predict the structure and composition effect of 
multicomponent, random-and-inhomogeneous, 

0
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Figure 3: Calculated (solid lines) and 
experimental (symbols) values of the 

effective thermal conductivity, W/mK, 
of RFC materials (a – HTP-12-22 
material, the density is 193 kg/m3; 

b - HTP-6-22 and HTP-16-22 
materials, the density are 96 and 256 
kg/m3, respectively): 1,2,3 – p = 76.0, 
8.4, 0.5 mm Hg, respectively; 4,5 – the 

data for HTP-6-22 and HTP-16-22, 
respectively, at p = 760 mm Hg 
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fibrous materials on their heat insulation 
properties. 
 

The models of heat transfer processes 
in fibrous ceramic layer. A computational 
analysis of the combined (conductive-convective-
radiative) heat transfer is usually a very difficult 
problem. That is why, the effective thermal 
conductivity method has gained acceptance in the 
engineering practice. The so called “effective 
thermal conductivity” combines conventionally 
all effects of complex heat transfer. The values of 
this characteristic are related directly to its 
determination procedure and in a number of cases 
when the natural working conditions differ 
essentially from the experimental determination 
conditions of this magnitude such a method may 
give rise to big errors in estimating the heat state 
of a system studied. In this connection other and 
more accurate mathematical models are utilized at 

developing the thermal protection. The 
preliminary analysis indicated that the conduction 
and radiation contribute mainly in the heat 
transfer studied. So, most attention has been 
concentrated on the problem of investigating the 
conduction-and-radiation heat transfer. 

The characteristic sizes of thermal protection 
components are many times the sizes of the 
material structure nonhomogeneities. This allows 
the high-porous fibrous materials to be considered 
as homogeneous media. Then the conduction-and-
radiation heat transfer in these materials can be 
governed by the energy conservation and 
radiation transfer equations. 

However, a direct solution of the radiation 
transfer equation in a sufficiently general 
statement is fraught with enormously bulky 
computations and this is not acceptable for 
practical implementations associated with 
repeated calculations of transient heat transfer 

Figure 4: Temperature dependences of the effective thermal conductivity, W/mK, of TZMK 
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processes. Amongst the approximate 
mathematical models of radiative transfer, a 
diffusion approximation, as our studies showed, is 
of prime interest for computational investigations 
of thermal regimes both of the present-day and 
future aerospace vehicles. For a diffusive 
radiati odel the radiance distribution in any 
point Μ  is equiprobable for all directions 
coming . Then the monochromat  
radiance ( )l,ΜΙν  corresp

on m

from it ic
onding to frequency ν  

is represented by formula 
 
   ( ) ( ) ( ,cos,

i
i IIMAAIMI ∑

=

+= ),  
1

iiννο

  where I  is a unit-equal vecto
nt M

r of 
ra irection at poidiation propagation d ; 

iI  is the basis

ons for 
e considered problem are the following: 

( ) 

 vector; 

, =ii 3,2,0A  are some coefficients. 
 The governing differential equati
th
 

( ) ( )( ) MgradUMbMF ννν
13 −−=

[ 2

   
 ( ) ( ) ( ) ( )],4 MUMInMMdivF p ννννν πα −=   

( )  monochromatic radiation
 
where MFν  is the  
flux of frequency ν ; ( ) ( )∫ =Ω

Ω=
π νν 4

, dIMIMU  

is the monochromatic radiance moment of zero 
order; 

ννα n,  are the monochromatic absorption and 
ref

educed coefficient of monochromatic 
scattering

(M
tegral radiation flux is determined 

from formula 

.ν  

 To 

ry to solve the energy 

raction coefficients, respectively; 

νb  is the r
; 

pν )I  is the Planck’s function. 
 The in

   ( )
0

ν dMFqr ∫
∞

=

find the temperature field 
( )tzyxT ,,,  in a partially transparent scattering 

material it is necessa
conservation equation 
w

Here λ,C  are volumetric heat capacity and 
thermal conductivity, respectively. 

The diffusion approximation gives a good 
accuracy of the results and it is used extensively 
in investigating .the reusable ceramic thermal 
protection. As an example, in Fig. 5 a comparison 
is presented between the temperatures calculated 
by means of this mathematical model and the 
experimental ones measured during a flight test. 
 
 

 
Figure 5: Temperature dependences on time at 

different points away from the heated external 
surface, respectively; 1, 2, 3 – the experimental 

(symbols) and calculated (solid lines) data 
obtained at =4.5, 11.9, 21.5 mm, respectively 

ix

x

 
Software. The MAI has developed an 

operational medium EXPRESS intended for 
carrying out studies of heat transfer in thermal 
shields. This operational medium consists of: 
-  tile research modules meant for solving 
different applied problems (prediction of 
composite materials properties, analysis of heat 
transfer processes in different thermal protection 
structures including both indestructible and 
ablative, in porous cooling structures, etc., 
thermophysical parameter estimation, diagnostics 
of heat loading conditions, and so on; 
-  the data bases on thermophysical properties of 
gases, homogeneous and composite   materials, 
on structures of composite materials, on heat 
loadings acting in flight or in tests,   on thermal 
protection structure parameters; 
-  the interface which makes it possible to operate 
efficiently the data bases and research   modules, 
to prepare the input data, to analyze quickly the 
results. 

ith one or other initial and boundary conditions. 
  

( ) .rdivqgradTdivTC −=
∂
∂ λ

τ
 

 

In essence, the software EXPRESS 
development implies a swing to a new, more 
effective computer methodology of 
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thermophysical and thermoengineering problem 
analysis. 

 
INVESTIGATION OF HEAT TRANSFER IN 
HETEROGENEOUS GAS FLOWS 

 Among problems concerning the 
development of reliable and efficient thermal 
protection for different types of re-entry vehicles, 
orbiters, solid propellant engines, etc. is the 
problem of investigation of heat and forced 
interaction between dusted gas flows and 
structural elements. It is well known that the 
presence of solid or liquid particles in gas flow 
can significantly increase the heat transfer rate 
and also may result in erosion of the body 
material. A characteristic example of such a 
heterogeneous medium for a re-entry vehicle is a 
cloud where the cloud particles can exist in the 
liquid (rain) or solid (hail, snow) phase. 

To investigate the multifactor process of heat 
transfer while interacting of a heterogeneous 
supersonic gas flow with a solid body we have 
used a number of methods but the main was a 
method based on solving inverse heat conduction 
problems. This approach enables to make the 
investigations more systematically and obtain 
new results, in particular, at erosing the material 
under study. 

It is very important that the inverse method 
allows one to define not only the general 
influence of the solid particle sizes and 
concentration on heat transfer but also to study 
the contribution of different factors of heat 
transfer (such as the external convective heat flux, 
the heat flux resulting from additional turbulence 
caused by solid particles, the additional heat flux 
resulting from an increase in the surface 
roughness and the heat flux generated due to 
particle kinetic energy accommodation) to the 
total balance of energy at the body surface. The 
corresponding results are presented, for example, 
in [10 - 11].  
 
A FLIGHT TESTS OF REUSABLE 
THERMAL PROTECTION 

The unsteady-state inverse methods both in 
thermophysics and in heat measurements 
considerably helped us in research and 
development of the orbiter reusable thermal 
protection system, in particular, in the parameter 
estimation and diagnostics of heat transfer in 
thermal protection / insulation materials and 
structures in the course of flight tests by Bor-4 
automatic vehicles. 

Dwell on the flight test application of these 
methods connected with the study of thermal 
modes of the tiled heat protection. In this case, 
heat diagnostics in flight tests were carried out in 
the following way: 
• estimation of heat fluxes on the surface of 

the tiled thermal shield; 
• quality analysis of the effects of physical-

chemical reactions on the thermal shield 
surface with different catalytic properties; 

• evaluation of the heat state of the thermal 
shield surface in the tile gaps; 

• estimation of the inner heat state of the tile 
ceramic material under in-flight heating 
conditions; 

• measurement of the surface pressure. 
For these purposes, special measuring devices 

were developed in MAI and mounted in modified 
thermal protection tiles (Fig. 6). Outwardly, these 
tiles did not differ in any way from the standard 
ones. At the same time, they performed some 
measuring capabilities in addition to thermal 
shielding functions. In all of these experimental 
investigations the methods based on solving 
inverse heat transfer problems enable us to obtain 
the unique and reliable results which corroborate 
the validity of design treatments. 

In this complex of investigations the unique 
data were obtained which have been of much 
interest both from the standpoint of scientific 
results and experimental development of the 
reusable thermal protection in the real conditions  

Figure 6: Modified tiles for studying the thermal 
modes during flight tests of “Bor-4” re-entry 

vehicle 
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of  re-entry into the atmosphere. In particular, the 
surface heat fluxes and temperatures histories 
were determined using as the input data, the 
temperatures measured inside the tiles. As an 
example the results of data processing 
corresponding the measurements in one of the 
tiles during one of the test flights are shown in 
Fig.7.  

 
 
 

CONCLUSION 
It may be said that the methodology based on 

inverse problems solution makes possible not 
only to successfully solve each specific problem, 
for example, in the list of the above – mentioned 
problems but also helps to set up a judicious 
combination of mathematical and experimental 
simulation and full-scale flight testing. 

The inverse problems under consideration are 
ill-posed and in order to solve them we have used 
the methods based on different regularization 
procedures [3, 4, 12, 13]. In most cases, the 
iterative regularization method [3, 4] has given 
the best results, in particular, from the standpoint 
of the accuracy of determining desired 
characteristics. This method is advantageously 
distinguished by the simplicity and universality of 
algorithmic constructions in the solution of both 
the linear and nonlinear, one-dimensional and 
multi-dimensional inverse problems, including 
the inverse problems for different mathematical 
models, in particular, those described by the 
ordinary and partial differential equations, and by 
the integral and integro-differential equations. 
The method enables to take into account a priori 
information, both qualitative and quantitative, in 
solving the ill-posed problems. The iterative 
regularization method is validated rigorously. Its 
efficiency has been stregthened many times when 
solving the diversified ill-posed inverse problems 
arising in practice. The mathematical and applied 
theory of this method continues to evolve rapidly 
and the fields of its application are extended 
steadily [6, 14 -17]. 
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ABSTRACT 

Combined experimental and mathematical 
studies to determine thermophysical properties of 
materials are presented  and applied to the 
characterization of metallic alloys, thermoplastic, 
thermoset polymers, composite and phase-change 
materials. The methodology is based on the 
solution of different inverse heat transfer 
problems. This approach is well adapted to 
characterize materials under experimental 
conditions which reproduce as close as possible 
some processing conditions which are difficult or 
even impossible to investigate with conventional 
techniques. Experimental results illustrate this 
approach. They focus on the characterization of 
materials during physical or chemical 
transformations which are temperature dependent.  

 
INTRODUCTION 

The use of advanced and new materials has 
been growing rapidly in a wide variety of fields 
(aerospace, aeronautic, automotive, tooling and 
sporting goods to name a few). In these high 
technology applications, it is important that the 
thermal properties of such materials be known for 
design purposes. Knowledge of the thermal 
properties is needed to model and to control heat 
transfer during the manufacturing processes as 
well as to predict thermal stresses developed when 
the materials are subjected to non-isothermal 
environments. The control of thermal phenomena 
can be a crucial aspect for the improvement in 
productivity and quality of components. Such 
control requires the ability to simultaneously 
predict both the temperature and the rate of the 
internal heat sources generated by chemical or 
physical transformations (if any) within the 
material. Moreover the thermal loads applied on 
the materials, for example in aerospace structures 
and vehicles, can induce large temperature 

gradients, which in turn result in the development 
of thermal stresses and thus possible structural 
failure. To prevent this, thermal stress analysis is 
essential in the design of  such structures, which 
obviously necessitates an accurate knowledge of 
the thermal properties over large ranges of 
temperature. 

A very large amount of works combining   
experimental and mathematical activities has been 
devoted to the determination of two relevant 
properties for  modeling the heat conducting 
process,  the density-specific heat and the thermal 
conductivity. To develop more accurate 
mathematical modeling, and to improve the 
experimental results, the trend is to combine the 
design of experiments and the solution of heat 
conduction inverse problems. This combination 
was defined as a  “new research paradigm”, J.V. 
Beck [1]. More degrees of freedom can then be 
accounted for modeling variable properties and 
anisotropic media. Moreover, optimal design of 
experiments allows to minimize the confidence 
region of the estimates. Further references can be 
found in [2-9]. 

In this paper some recent developments 
performed at Polytech’Nantes, which combine 
both experimental and computational techniques 
to determine thermophysical properties of 
materials, are presented  and applied to the 
characterization of metallic alloys, thermoplastic, 
thermoset polymers, composites and phase-change 
materials. Most of  the experimental apparatus and 
protocols, as well as the computational data 
processing procedures are specific, but they have 
been developed under a unique methodology 
based on the resolution of inverse heat transfer 
problems. The presentation will focus on the 
interests of this approach. One of them consists in 
the possibility to characterize materials under 
experimental conditions which reproduce as close 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

as possible some material processing conditions, 
when conventional testing techniques do not offer 
practical solutions. 

For varying thermal properties, the resolution 
of the inverse problems aims to the determination 
of unknown functions, then regularization 
techniques have to be used to account for the 
numerical unstabilities which occur while solving 
the ill-conditionned problems and to compute 
stable solutions. It is well known that the accuracy 
of the estimated properties is directly related to the 
sensitivity of the measurements with respect to the 
unknown variable. When the unknown is 
considered as a function, the concept of sensitivity 
coefficient has to be extended. A lagrangian 
approach is preferred  to compute the gradient of 
the least squares criterion to be minimized, and the 
standard conjugate gradient algorithm can be used 
for the minimization. 

In the present paper we will report some 
developed methods and results of characterization 
for different materials. Varied approaches are 
considered depending on the modeling equations 
used to determine the unknown properties of the 
material. The experimental set up are briefly 
described.  

 
 
SEMI-INFINITE MEDIUM  - ESTIMATION OF  
CONSTANT THERMAL PROPERTIES 
 
Isotropic medium 

Consider the heat conduction process within an 
isotropic semi-infinite medium, with constant 
thermal properties, initially at zero temperature. 
For times 0>t , the material is heated by a line 
source at a constant rate q.  In the normal plane 
Oxy to the line source direction, the resulting 
temperature rise )(tT at the distance  r to the line 
source, is solution of the linear modeling heat 
conduction equation, and   is given by 
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a,λ are respectively the thermal conductivity 
and the thermal diffusivity of the material. 
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Fig. 1 Temperature rise )(tT resulting of a constant 
heat flux within a semi-infinite heat conducting medium 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Isothermal line within an isotropic semi-infinite 
medium  heated by a  line source  

 
The parameter vector t),( τθβ =  characterizes the 
thermal properties of the medium.  A simple 
method to determine β  consists in mimizing the 
least square criterion 

2)()( YTS −= ββ  

 

(2) 

where )(βT  is the solution of  eqs. (1) computed 

with the parameter β , Y(t) is the temperature 
measured in the medium 
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 δ is an  uncorrelated zero mean gaussian error  
with a constant variance 2σ , and ft  the duration 

of the experiment. 
The  minimization can be performed according 

to the basic iterative Gauss-Newton algorithm 
 

[ ] [ ])()(1)()(1 kktkktkk TYXXX −+=
−+ ββ  

 

 
(4) 

The notation [ ]tktkt TX )()( (ββ∇=  is used for the 

sensitivity matrix.  
When the modelling eqs. (1)-(2) are exact, the 

last iteration k* of the iterative process, is taken 
depending on the level σ  of the measurement 
noise, in order to satisfy the final condition 

2*)( σβ ≤S . Then the  approximate variance-
covariance of the parameter estimates is  
 

[ ] 21*)(*)(*)cov( σβ
−

≈ kkt XX  
 

 
(5) 

From eqs. (1), it is easy to check that the 
magnitude of the sensitivity coefficients are 
monotonously increasing with time, and that the 
error estimates decreases by increasing the 
duration of the experiment ft . 

 In practice, the assumption of semi-infinite 
heat conducting medium is valid only for times 

maxtt < . Consider for example the experimental 
apparatus fig. 3. It involves four flat plates of 
thermoplastic material arranged in a stack. An 
electrical heating wire is placed in the middle 

)5.( mmO=φ and thermocouples )08.( mmO=φ  at 
the interfaces between the plates.  At the outside 
surfaces, aluminium blocks are used to provide 
isothermal boundary conditions.  Heating at a 
constant heat flux produces circular isothermal 
lines. Then the modeling equations (1) are still 
valid while the temperature rise at the interfaces 
with the Al-blocks remains less than σε 2max = , 
and the maximal duration of the experiment 

maxt is  
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where maxr , the shortest distance between the heat 
source and the Al-blocks, depends on the thickness 
of the plates. 

To improve the experiment design, the 
location(s) r of the sensor(s) and the heating power 
q can be optimized, but as usual for non linear 
estimation problems, the solution depends on the 
unknown parameters to be determined. Knowing 
the estimates *)*,(* τθβ = ,  the thermal parameters  

),( aλ are obtained from eqs. (1c). The error 
analysis leads to  
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(7b) 

The heating power q has to be chosen a) to 
avoid a too high temperature rise in the sample 
which would be incompatible with the assumption 
of constant properties, and  b) to maximize the 
signal-noise ratio. The sensor location r is chosen 
to account for the thermocouple location error r∆ .  
When the distance r increases, both the relative 
error rr /∆  and the signal-noise ratio decreases,  
then an optimal value optr  can be predicted [10]  

 
 
 
 
 
 
 
 
 

 
Fig.3 Experimental set up (not scaled) for measuring 
the thermal conductivity and the thermal diffusivity . (1) 
Aluminium blocks, (2) sample plates, (3) heating wire, 
(4) thermocouples 

 
Orthotropic medium 

Heat transfer within composite materials made 
up of thermoset matrix and reinforcing fibers 
(glass, carbon…) are usually modeled by 
considering these materials as orthotropic media. 
Conventional testing techniques (calorimeter, 
guarded hot plates, flash method,…) can be used 
to determine separately pCρ  the specific heat and 

zzyyxx λλλ ,, the three components of the thermal 

conductivity tensor  But different experiments are 
required and substantial time must be devoted to 
characterize the material.   
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The method described above for isotropic 
medium is available for the simultaneous 
determination of three parameters when the 
orthotropic directions of the material are known. 
The heating wire is placed  like in the previous 
experiment in the middle of a stack, the wire 
direction Oz is assumed to be one  of the 
orthotropic directions. Thermocouples are placed 
parallel to the wire at the interfaces between the 
plates. 

In the normal plane Oxy to the direction Oz of 
the line source, the resulting temperature rise )(tT  

at the distance  2 2
s sr x y= +  of the line source, 

is solution of the linear orthotropic modeling heat 
conduction equation, and is given by 
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with the parameters ),,( yx ττθ  defined by 
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For composite materials, the transverse 
component value of the thermal diffusivity is 
usually less than the plane component value  
( xy aa < ), then a constant heat flux in the 

heating wire produces elliptic isothermal lines and 
the maximal duration of the experiment, eq. (6), 
becomes 
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(9) 

At least two sensors are required for the 
simultaneous determination of the three constant 
parameters yyxx λλ , and pCρ . With two sensors 

placed at the location coordinates )0,( sx  and 

),0( sy , the set of three parameters is identifiable 

only if   22
sxxsyy yx λλ ≠  [10].  

In practice it is easy to place more than two 
thermocouples, some of them are not used to 

estimate the parameters but to validate the 
assumption that the orthotropic directions  are 
correctly known. 

 
 
 
 
 
 
 
 
 
 
 
Fig 4 Isothermal line within an orthotropic semi-

infinite medium  heated by a  line source 
 

Experimental results (1) 
Five thermocouples were placed within a stack 

of four squared plates of a composite material 
(≈3.5x64x64mm3) at the locations (xs,ys) given in 
table 1. The temperature rises shown in figure 5 
were obtained with a heating flux q = 11.35W/m. 

 
 1 2 3 4 5 

xs 0.0 3.80 7.67 11.73 31.84 

 ys 6.86 6.86  0.0  0.0  0.0 
Table 1 :sensor locations within the stack (mm) 
 

 
Fig.5 Temperature measurements resulting of a 
constant heat flux within an orthotropic medium,  used 

to identify three parameters yyxx λλ , and pCρ  

The estimates values of the thermal parameters  
are 1111 66.0,18.3 −−−− == KWmKWm yyxx λλ and 

136483.1 −−+= KJmeCpρ . The maximal duration 

for this experiment, eq.(9), is st 45max = . To 
account for the heat conduction process within the 
specimen for times maxtt > , the assumption of a 
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semi-infinite medium is not valid. An inverse heat 
conduction algorithm  [10] was developed  for 
estimating the three constant parameters 

yyxx λλ , and pCρ in the finite orthotropic case and 

was applied to the total duration of the experiment 
( st f 180= ). It  gave the same parameter estimates, 

but the computational time was much more longer. 
The numerical solution of the linear orthotropic 
heat equation  has to be computed at each 
iteration. 

Of course when simple thermal 
characterization methods like the heating wire 
method (HWM) are practicable, they have to be 
preferred. For estimating constant thermal 
parameters of composite materials, the HWM is 
efficient (3 parameters are estimated with one 
short experiment), experimentally it is easy to 
implement and the inverse heat conduction 
algorithm with the semi-infinite medium 
assumption, is among  the simplest. 
 
TEMPERATURE VARYING THERMAL 
PROPERTIES  
 
Modeling equations 

Modeling the heat conduction process over 
large temperature ranges leads to consider that 
thermal properties are not constant because some 
physical or chemical transformations have to be 
taken into account within the material over the 
investigated  temperature range. In practice to 
determine the thermal properties in such 
conditions, two different approaches have been 
developed, depending on the ability of  the non 
linear heat conduction model to model the heat 
transfer process during the transformation.  

For example, to characterize the thermal 
properties of amorphous thermoplastics during  
solidification, it is sufficient to consider that the 
density-specific heat )(TC pρ  and the thermal 

conductivity )(Tλ  (isotropic case) are temperature 
varying, then the inverse heat conduction analysis 
can be based on the non linear equation  
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But to model the heat conducting process 
during the solidification of semi-crystalline 
thermoplastic materials, or the cooling process of 
some metallic alloys, or the curing of thermoset 
resins, eq.(10) is not sufficient. A coupling 

between the heat transfer and the kinetic of the 
exothermal transformation(s) has to be taken into 
account in the modeling equations.  For thermal 
characterization purpose, the following coupled set 
of equations has been considered with success 
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where H∆  is the total energy (per unit of mass) 
which is liberated during the transformation(s). 
The scalar field α  is introduced to describe the 
degree of  transformation within the material. For 
a complete transformation, α varies from 0  to 1. 

The thermal characterization of such materials 
becomes much more complex, three varying 
parameters ),( TC p αρ , ),( Tαλ  and ),( TF α  have 

to be estimated. The main difficulty consists 
probably in the determination of the thermal 
conductivity ),( Tαλ , whose values are required 
for accurate modeling of the heat conducting 
process within thick parts of material. Of course 
characterization strategies which aim to eliminate 
the coupling between α  and T, have to be 
preferred. Experimentally  two of them  are 
advisable. 

 First by selecting the temperature ranges 
where  the transformation does not occur, it is      
possible to identify separetely the thermal 
properties ),( TC p αρ  and ),( Tαλ . Without 

transformation, 0),( ≈TF α , that is before it 

starts ( 0=α ), and after it is completed ( 1=α ), 
the  modeling eqs. (10 ) are valid.  

Secondly when the  thermal analysis of the 
material can be performed on “thin” enough parts, 
the gradient of temperature 0≈∇T is neglected 
in the part, and the modeling eqs.(11) integrated 
over the volume of the part reduce to the simple 
forms 
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where  Φ  is the total heat flux entering at the 
outer surface of the part, m  is the mass of the part. 
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Estimation of )(TC p  and )(Tλ  
The isotropic case 
     The experimental determination of the 
temperature varying parameter )(TC p  is usually 

carried out with “thin” samples of material by 
using a scanning calorimeter (DSC). The 
apparatus measures directly the heat flux Φ ,  (eq. 
(12a) with 0=α ), for a preset  heating (or 
cooling) rate. 
       To determine the thermal conductivity )(Tλ , 
the heat conduction  process is analyzed within 
“thick” parts of material. Standard inverse analysis 
is based on the one-dimensional heat equation 
(10). Different experimental set up have been 
used. For low conductivity materials, a variant of 
the set up  shown on fig. 3, which works as a 
“scanning thermal conductimeter” is well adapted. 
No heating wire is needed in the middle of the 
stack, but both the outside surfaces of the sample 
are submitted to a temperature varying (heating or 
cooling) condition. Temperature histories are 
recorded at the interfaces of the  stack. 

The variations of the parameter over the 
temperature range [ ]maxmin ,TT are approximated 
by  the sum 

∑
=

=
pi

ii TT
,..,1

)()( ωλλ  (13) 

where the set of basis functions { }pii ,,1, =ω is 
a prior given. It is convenient in practice to grid 
the temperature interval into (p-1)  subintervals  
[ ]max2min1 .. TT p =<<<= θθθ , and to take 

continuous piecewise linear functions such as 
pjiijji ,;;1,,)( == δθω . Then the p-

components vector [ ]p
ii 1== λβ is estimated from 

the additional temperatures Y(t) measured within 
the sample during the experiment, by minimizing 
the output least square criterion, like in eq.(3).  

The iterative Gauss-Newton algorithm, eq. (4), 
has to be adapted to account for the numerical ill-
conditionness of the matrix [ ])()( kkt XX  
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where the diagonal terms of the matrices U(k)  are 
chosen to ensure the stability and to improve the 
rate of convergence of the iterative process [11]. 

The numerical solutions of the modeling 
equation (10) and the p sensitivity equations are 
approximated by using standard finite differences. 
The vector size p is a useful degree of freedom, 
but it has to be chosen with care.  

 
Experimental results (2). An experimental 

set up, figure 6a, was used to identify )(Tλ  of a 
thermoset material after polymerization. It 
involves a stack of two  cured thermoset plates (1) 
pressed between two heating/cooling blocks (2)  

  
 
 
 
 
 

 
 
Fig6a- Experimental set up used to identify )(Tλ for a  
thermoset  material. (1) heating/cooling blocks, (2) 
specimen plate thickness=5mm. 
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Fig.6b Temperature measurements during the cooling of 
a thermoset material used to identify )(Tλ   
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Fig.6c Estimated values of the thermal conductivity 
)(Tλ  of a thermoset  material  
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The three temperature measurements shown in 
figure 6b were recorded during the cooling of the 
stack from CT °=160  down to the ambient 
temperature in one experiment.The parameter 
values of )(Tλ  , figure 6c, are estimated knowing 
the temperature varying specific heat determined 
with a DSC apparatus 
 )(4)50(75.060.2)( 13 −−+−++= KJmeTeTC p

 

In this simple experiment, no heat flux is 
measured, the simultaneous identification of 

)(Tλ  and )(TC p is not possible. By placing  a 

thin electrical heater in the middle of the stack, 
and measuring the heat flux, the 1-D inverse heat 
conduction algorithm  is available for  both 
parameters [14].  
 

Experimental results (3). The same 1-D 
inverse approach was used to determine the 
thermal conductivity of thermoplastic materials 
under molding conditions [11-12]. A specific 
experimental set up, figure 7a,  was designed. It 
involves two molding cavities filled with a molten 
polymer under high pressure (250-300°C, up to 8 
107 Pa), and two air coolers which drive the 
solidification of the polymer to the ambient 
temperature in less  than five minutes. The 
knowledge of )(TC p , and the temperature 

histories Y(t) recorded at the surface of the coolers, 
and in the thin central metallic plate located 
between the cavities are sufficient  to estimate the 
unknown parameter )(Tλ . 

High pressure are required to maintain filled up 
the molding cavities during solidification, and to 
compensate the tendency of the polymer to 
contract during solidification. However under the 
solidification temperature, the pressure drops and 
an air gap (few microns) modifies the thermal 
contact at the surface of the cavities. This 
phenomenon is taken into account in the modeling 
equations by estimating simultaneously  the 
variations of the thermal contact resistance at the 
boundary of the molding cavities.  

This approach is not valid for the thermal 
characterization of semi-crystalline polymers. The 
modeling eqs. (10) are not sufficient,  a kinetic 
model has to be introduced as in eqs. (11) to 
describe accurately the heat transfer process 
during solidification and to account for the 
variation of the temperature solidification with 
respect to the  cooling rate. However outside the 
phase change temperature interval, the procedure 
is still correct. 

Heat transfer

direction

heat exchanger

sample

central plate

temperature

measurement

LL
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Fig 7a Experimental set up used to identify )(Tλ of a 
molten thermoplastic material. Cavity width L=3mm 

 
 

 
 
Fig.7b Temperature measurements during the cooling of 
a thermoplastic  material(ABS)  used to identify )(Tλ  
 

 
 
Fig.7c Estimated values of the thermal conductivity 

)(Tλ  of a thermoplsatic  material (ABS) 
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Experimental results (4). Thermal 

characterization of metallic alloys was achieved 
according the same inverse approach [13]. The 
specific experimental set up, figure 8,  involves a 
cylindrical )20080,60,45( mmorHmm ==φ  sample 
(1) placed between  two electrical heaters (3) 
located at the bases of the cylinder. The sample 
length H is chosen depending on  the  thermal 
conductivity of the alloy. The heaters  are used to  
create a thermal gradient in the axis direction. The  
lateral sample surface is insulated (4) in order to 
neglect the radial heat losses. The sample is 
instrumented with thermocouples (2) )50( mµφ =  
and it is placed in a temperature controlled oven 
(up to 1200°C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8 Experimental set up used to identify )(Tλ of a 
metallic alloy. Sample length H=80, 60 or200mm 

 
Estimation of )(TC p  and )(Tλ  
The orthotropic case  

The inverse approach presented in the first 
section to estimate simultaneously three constant 
parameters was extended to the case of 
temperature varying parameters and orthotropic 
materials [15]. It is based on the same principle of 
the heating wire set up, fig. 3, and the 
approximation of the unknown functions already 
considered in eq. (13) was still adopted 
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The total size  of the unknown vector β  to be 
estimated is then 321 pppp ++= , hence the 
computation of the sensitivity matrix 

[ ]tktkt TX )()( (ββ∇=  based on the derivation of 

the 2-D non linear orthotropic heat conduction 
equation (10) with respect to each component 

pjj ,..,1, =β ,  becomes time prohibitive. The 

conjugate gradient algorithm combined with the 
adjoint method is then an advantageous alternative 
to minimize the output least square criterion, eq. 
(3). This approach avoids the computation of the 

sensitivity matrix  [ ]tktT )((ββ∇ . It consists in  

introducing the adjoint variable Ψ solution of the 
linear 2-D equation 
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where en is the deviation between the computed 
and the measured temperatures at the location of 
the sensor n.  

The components of the gradient βS∇ of the 

least square criterion is then computed according 
to the following equations 
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Experimental results (5).  The procedure 

was applied to the thermal characterization of a 
composite material made up of epoxy resin and 
carbon fibers (fiber volumetric ratio = 0.47) in the 
temperature interval (10°C , 120°C). During the 
experiment, the heat flux generated by the heating 
wire was time varying in the range 0-250 W/m. 
The resulting temperature histories of 9 sensors  
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within the stack of four plates, figure 9a, were 
used for the simultaneous estimation  of the p = 6  
unknown components of the parameter vector β . 

 
Fig 9a- Experimental set up used to identify the varying 

thermal parameters yyxx λλ , and pCρ  of a composite 

material 
 

 
Fig.9b- Estimated values of the parameters 

yyxx λλ , and pCρ  of a composite material 

 
The estimated parameters, fig. 9a, compared 

with the parameter values measured with 
conventional techniques (DSC, Guarded hot 
plates) are in good agreement. Only one 
experiment is sufficient However the inverse 
algorithm is more heavy to implement than the 
version developed for constant parameters. 

Estimation of the kinetic 
parameter ),( TF α  

To determine the kinetic parameter values 
),( TF α introduced in eqs. (11-12), the simplest 

experimental approach would consist in 
submitting a “thin” part of the material in a 
calorimeter to constant isothermal conditions Tiso, 
and to analyze the resulting signal heat flux )(tΦ . 
Then eqs.(12) directly give 
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By repeating the experiment for different 
temperature values Tiso,, a table of the kinetic 
parameter values ),( TF α would result. In 
practice, isothermal experiments are difficult, even 
impossible, to control accurately. This is true for 
“high“ temperatures and for “fast” kinetics. A 
scanning approach of the temperature interval is 
more advisable.  

Preliminary measurements of the specific heat 
),( TCp α  are required outside the transformation 

domain, that is for 0=α  and for 1=α . This is 
possible by selecting appropriate temperature 
intervals. Then a mixture law is used to 
extrapolate the parameter values in the 
temperature range  of the transformation 

 
),1(),0()1(),( TCTCTC ppp =+=−= ααααα  

 

 
(19) 

Non isothermal experiments are carried out  
with “thin” parts of material, by scanning the 
temperature interval at different constant heating 
(or cooling) rate. With the measured heat flux 
signal )(tΦ , the kinetic parameter ),( TF α  can 
be reconstructed from Eqs. (12).  However, much 
care is required in the analysis of  )(tΦ because 
only the temperature of the pan is controlled in the 
calorimeter. For high scanning rates, the imperfect 
thermal contact between the sample and the pan 
induces important temperature bias.  This can be 
easily shown by recording the temperature within 
the sample, using micro-thermocouple.  

Some variants of the method are possible 
depending on the transformation under study. Two 
examples are briefly presented. 
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 Kinetic of curing. The curing of thick parts 
of composite materials is challenging because of 
the low thermal conductivity of the composite and 
the high heat of reaction during the cross-linking 
polymerization. This combination can lead to  
large thermal gradients, generation of residual 
stresses and polymer degradation. In order to 
improve the quality of thick parts, the processing 
temperature needs to be controlled so that the 
thermal gradients remain small. 

The cure rate of thermoset materials is usually 
described according to the empirical autocatalytic 
model used by Kamal and Sourour [14]. In 
practice the chemical process of transformation 
cannot be reduced to cross-linking, it involves 
some inhibition period  which depends on the 
thermal history of the material. To account for this 
induction time, the following curing kinetic model 
equations were adopted and applied with success 
to different resins and rubbers 
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The unknown functions )(αg , )(Ttind
, )(Tk , to 

be determined  are taken in the following forms 
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where the reference temperature 
refT  is chosen in 

the temperature range of transformation, 
)(Ttind

, )(Tk  are in the form of Arhenius laws. 

The function )(αg  is approximated as in eq. (13).  
Typical values of the cure rate  determined for  an 
epoxy resin [17-18] are shown on  fig. 10a, the 
parameters of the curing model are 

1007.0,6.17,423 −=== skAKT refref
. 

The modeling equations (20)-(21) can be used 
to predict the cure of a “thin” part of resin. The 
influence of the heating cycle is illustrated on fig. 
10b. The  temperature of the part is rised from 

KT 3000 = up to KT 420max =  at different heating 

rates ( sC /1.0 ° ,.., sC /5.0 ° ), and hold at maxT . 
The kinetic model together with the heat 

conduction eqs.(11), was validated by curing 
“thick” parts (thickness = 15mm) of composite 
material made up of epoxy resin and glass fibers. 
But to compare measured and computed 
temperatures, the thermal conductivity ),( Tαλ  
has to be known. See the  next section. 

 
Fig. 10a Isovalues (s-1) of the curing kinetic parameter 

),( TF α  determined for an epoxy resin 

 
 

 
Fig. 10b Influence of the heating cycle on the cure of a 
“thin” part of epoxy resin.  

 
Other approaches were explored to estimate 

the kinetic parameters of curing processes. One 
was based on genetic algorithms [19]. Others used 
the solution of an inverse heat transfer problems in 
thick parts of rubber (isotropic case) [20], or 
composite material (orthotropic case) [21]. 

 
Kinetic of solidification. Modeling the heat 

conducting process within “thick” parts of semi-
crystalline thermoplastic materials, during 
solidification is also challenging. Because of the 
low thermal conductivity of the material, high 
cooling rates  induce high thermal gradient in the 
part which in turn generate cristallinity gradient 
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and affect the mechanical properties of the 
material. In practice, in the injection molding 
conditions of such material, the cooling rate is 
greater than 15K/s, so in order to improve the 
quality of the part, it is important to well predict 
the coupling phenomena between cristallization 
and heat conduction during solidification. 

The cristallization rate can be described 
according to the non isothermal kinetic model of 
Nakamura [24] 
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Typical values of the crystallization rate for   
polypropylene are shown on  fig. 11a.  

 

 
Fig. 11a Isovalues (s-1) of the crystallization kinetic 
parameter ),( TF α  determined for a propylene 

 
 

 
Fig. 11b Influence of the cooling conditions on the 
crystallization of a “thin” part of polypropylene. 

The modeling equations (22) can be used to 
predict the crystallization of a “thin” part of 
polymer. The influence of the cooling conditions 
is illustrated on fig. 11b. The  temperature of the 
part goes from CT °= 1600

 down to CT °= 25min
 at 

different cooling rates ,and is hold down at minT . 
In fact with the calorimeter it is impossible to 

control sufficiently  high cooling rates ( sK /5> ). 
So the inverse approach described above for “thin” 
parts is not practicable for investigating the 
cooling conditions of the injection molding 
process. An experimental set up has been designed 
[25] in order to analyze the heat transfer process 
during the solidification of “thick” parts  of such 
materials. The analysis is based on the kinetic 
model, eqs.(22), coupled to the heat conduction 
eqs.(11). Thermal conductivity ),( Tαλ  has to be 
known. 

 
Estimation of the thermal 
conductivity ),( Tαλ  
 
 Modeling the  heat conduction process within 
“thick” parts of materials characterized by low 
thermal conductivity, while occurs some chemical 
or physical transformation with kinetic highly 
sensitive to the temperature, and which generates 
internal heat sources, is not an easy task. The two 
previous examples (curing and solidification 
processes) explain why it is  challenging and 
illustrate the different steps of our approach for the 
thermal characterization. The last step consists in 
checking the ability of the model, eqs. (11),  to 
predict heat flow within “thick” parts. Then the 
parameter values of ),( Tαλ are required. In 
practice, “on-line” experimental measurements of 
the temperature within the part are available 
during the transformation, and can be compared to 
the predicted values. This is not the case for the 
variable α  , hence the complete validation 
remains difficult. However experiments have been 
done for the curing and the solidification processes 
described above. Experimental set up are based on 
the same principle than on figure 6. In both cases, 
the following linear approximation was adopted to 
model the variations of the parameter ),( Tαλ   

 
),1(),0()1(),( TTT =+=−= ααλαλααλ  

 

 
(23) 

During the curing process of  “thick” parts  of 
composite material at CT °= 140 , an overheating 
is observed in the middle of the part, fig.12. It is 
well predicted by the solution of the modeling 
equations.  
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. 

 
Fig. 12 Curing of thick parts of composite material 
(epoxy resin/ glass fibers) - Temperatures measured and 
computed in the middle of the part. 
 

Moreover to complete the validation of the 
kinetic model for “thick” parts, a strategy based on 
“partial curing”  was developed with success [22-
23]. It consists in the determination of optimal 
heating conditions to apply at the boundary of the 
part in order to hold a spatially uniform degree of 
cure at a preset value. The heating cycles are 
determined by solving an inverse optimal control 
problem. 

 
During the solidification process of “thick” 

parts of  semi-crystalline polymer, it is observed 
that high cooling rates at the boundary of the part 
shift down the solidification temperature. This 
observation is predicted by the modeling eqs. (22). 
But more experimental investigation is needed to 
confirm the adequacy of the model for high 
cooling rates. An inverse approach is under study 
to estimate the kinetic function )(Tk , eq. (22b), 
from temperature measurements recorded during 
solidification. The influence of the thermal contact 
resistance between the part and the mold has also 
to be taken into account at the boundary 
conditions. 
 
 
CONCLUSION 

The interests in using methods based on the 
resolution of inverse heat transfer problems for the 
thermal characterization of materials were 
illustrated.  This approach usually involves several 
main steps: a) Choice of the  mathematical model 
of the heat transfer  process , b) Development of 
the inverse problems (IP) algorithms and  
validation by numerical experiments, c) Design of 
experiments and experimental data gathering, d) 
use of the  IP algorithms and analysis of the 
results, to verify finally the adequacy of the 
process description. The presented results were 

developed according to a fruitful  combination of  
all these steps. More often, conventional testing 
techniques offer limited practical solutions to 
characterize thermal properties under conditions 
close to processing conditions. It was shown how 
the use of specific experimental set up together 
with adapted inverse algorithms enables us to 
overcome these limits. Most of the examples were 
related to the thermal characterization of polymers 
because the control of heat transfer in the 
manufacturing processes of these materials (like 
curing or injection molding) is challenging for the 
improvement in productivity and quality of 
polymer components. 

 
 

REFERENCES 
 

1.- J.V. Beck (1990) Inverse problems in Heat 
Transfer. Proc. of SFT Conf., Nantes, 1, 47-76-
ISBN No2950447104  
2.- E.A. Artyukhin, A.S. Okhapin, (1984), 
Parametric analysis of the accuracy of solution of 
a non linear inverse problem of recovering the 
thermal conductivity of a composite material. J. 
Eng. Phys., 45, n°5, 1281-1286. 
3.- Y.Jarny, D Delaunay and J Bransier, (1986), 8th 
Proc. Int. Heat Transfer Conf., San Francisco, 4, 
1811-1816 
4.- R. Taktak, J.V.Beck, E.P. Scott (1993), 
Optimal experiment design for estimating thermal 
properties of composite materials. Int. J. Heat 
Mass Transfer, 36,n°12, 2977-2986 
5.- K.Dowding, J.V.Beck, B.Blackwell, (1996), 
Estimation of directional-dependent thermal 
properties in a carbon-carbon Composite, Int.J. 
Heat Mass Transfer, 39, 3157-3164 
6.- D.Lesnic, L. Elliott and D.B. Ingham , (1996)– 
Identification of the thermal conductivity and heat 
capacity in unsteady nonlinear heat conduction 
problems using the boundary element method. J. 
of Comp. Physics, 126, 410-420 
7.- M.M. Mejias,H.R.B. Orlande, M.N.Ozisik 
(1999) – A comparison of different parameter 
estimation techniques for the identification of 
thermal conductivity components of orthotropic 
solids. 3rd Proc. of  ICIPE, Port-Ludlow WA, 325-
332  
8.- G. Carvalho, A.J. Silva Neto-(1999) An inverse 
analysis for polymers thermal properties 
estimation. 3rd Proc. of ICIPE, Port-Ludlow WA, 
495-500 
9.- C. Aviles-Ramos, A. Haji-Shikh, (2001), 
Estimation of thermophysical properties of 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

composites using multi-parameter estimation and 
zetoth-order regularization, Inverse Problems in 
Eng.,9, 507-536 
10.- Y Jarny, P Guillemet (2001)Estimation 
simultanée de la conductivité thermique et de la 
chaleur spécifique de matériaux orthotropes   
Proc. of  the  SFT Conf., Nantes, 609-614, Elsevier 
11.- T. Jurkowski, D. Delaunay, Y.Jarny (1997)– 
Estimation of thermal conductivity of 
thermoplastics under molding conditions- Int. J. 
Heat Mass Transfer, 40, n°17,4169-4181 
12.- A Sommier, T Jurkowski, D Delaunay, Y 
Jarny, (1998). Characterization of thermophysical 
properties of thermoplastic materials. High 
Pressure-High Temperature, 30, 159-164 
13.-T Jurkowski, S Heas, A Sarda, Y Jarny, (1998) 
Solidification d’un alliage d’aluminium- 
Détermination des propriétés thermophysiques au 
cours du changement d’état” Proc. of the SFT 
Conf. , Marseille, 320-325, Elsevier. 
14.- B. Garnier, D. Delaunay, J.V. Beck, (1992)- 
Estimation of thermal properties of composite 
materials without instrumentation inside the 
samples, Int. J. of Thermophysics, 13, n°6, 1097-
1111 
15.- R. Aboukachfe, J.L. Bailleul, Y. Jarny, (2000) 
– The simultaneous determination of thermal 
conductivity and heat capacity within an 
orthotropic medium by using conjugate gradient 
algorithm.  Proc. of the 16th IMACS World 
Congress, Lausanne 
16.- M.R. Kamal, S Sourour, (1973) – Kinetics 
and thermal characterization of thermoset cure- 
Poymer  Eng. Sc., 13, 59-64 
17.- J.L. Bailleul, D. Delaunay and  Y.Jarny, 
(1996) Determination of temperature variable 
properties of composite materials – Methodology 
and experimental results.  J. of Reinforced Plastics 
and Composites, 15, 479-495 

 
18.- J.L. Bailleul, G. Guyonvarch, B. Garnier, D. 
Delaunay and  Y.Jarny , (1996) Identification des 
propriétés thermiques de composites fibres de 
verre/resins thermodurcissables. Rev. Gen. Therm., 
35, 65-77 
19.- S Garcia, B. Garnier, Y Jarny, (1999) - 
Simultaneous estimation of kinetic parameters 
using genetic algorithms- 3rd Proc. ICIPE, Port-
Ludlow WA, 309-316 
20- J.S. LeBrizaut, D Delaunay, B. Garnier, Y. 
Jarny , (1993)– Implementation of an inverse 
method for identification of reiculation kinetics 
from temperature measurements on a thick sample. 
Int. J. Heat Mass Transfer, 36, n°16, 4039-4047 
21.- R. Aboukachfe, Y. Jarny , (1999).– 
Résolution numérique d’un problème d’estimation 
de source thermodépendante dans un domaine 
bidimensionnel. Proc. of the SFT Conf., Arcachon, 
3-8, Elsevier 
22.- J.L. Bailleul, D. Delaunay, Y.Jarny  , T. 
Jurkowski , (2001)– Thermal conductivity of 
undirectional reinforced composite materials- 
Experimental measurement as  function of state of 
cure. J. of Reinforced Plastics and Composites, 
20,n°1,52-64 
23.- J.L. Bailleul, D. Delaunay, Y.Jarny, (1998). –
Optimal thermal processing of composite 
materials- An inverse algorithm and its 
experimental validation. Proc. 11th IHTC, 5, n°5, 
87-92, Kyongju, Korea 
24.- K. Nakamura (1972), Relationship between 
crystallization, temperature, crystallinity and 
cooling conditions,  J. Applied Polym. Sc. 16, 
1077-1091 
25.- G Poutot, P Le Bot, D Delaunay, Y Jarny 
(2001), Analyse des phénomènes thermiques lors 
de la cristallisation d’un thermoplastique. Proc. of 
the SFT Conf., Nantes, 615-620, Elsevier 
 

 
 

 
 
 
 
 





4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

PARAMETER STRUCTURE IDENTIFIABILITY AND EXPERIMENTAL 
DESIGN IN GROUNDWATER MODELING 

 
 

Ne-Zheng Sun 
Department of Civil & Environmental 

Engineering, University of California at Los 
Angeles, Los Angeles, CA 90095 

nezheng@ucla.edu 
 

Frank T.-C. Tsai 
Department of Civil & Environmental 

Engineering, University of California at Los 
Angeles, Los Angeles, CA 90095 

             ftsai@seas.ucla.edu 
 

William W.-G. Yeh 
Department of Civil & Environmental 

Engineering, University of California at Los 
Angeles, Los Angeles, CA 90095 

williamy@seas.ucla.edu 
 

 

 
ABSTRACT 

The paper presents a new methodology for 
identifying a distributed parameter with complex 
and unknown structure, such as the hydraulic 
conductivity of a heterogeneous aquifer. The 
basic idea of the methodology is to find a simplest 
structure from all equivalent structures with 
respect to the given model applications. A series 
of new concepts, such as the identifiability of 
parameter structure, the reliability of model 
application and the sufficiency of observation 
data are rigorously defined. Some quantitative 
relationships between them are derived. Based on 
these theoretical results, the paper presents an 
algorithm that can judge the sufficiency and 
robustness of an experimental design before it is 
actually conducted in the field. A numerical 
example is given that shows how a robust 
experimental design is found by a heuristic 
procedure.  

 
NOMENCLATURE 
AE Structure error measured in the 

prediction space. 
D An experimental design 
RE Minimum fitting residual. 
SE Structure error. 

Eg  Objectives of prediction alternative E. 

Du  Designed measurements without 
observation error.  

Du~  Designed measurements with 
observation error. 

η  The norm of observation error.  
ε  Accuracy requirement of application. 
è The unknown parameter. 

µ  Weighting coefficient.  
Θ  Admissible region of the unknown 

parameter. 
( ),θθS  A parameterization representation (PR). 
 
INTRODUCTION 

The identification of hydraulic conductivity of 
a heterogeneous aquifer is a very challenging 
problem. During the past four decades, this 
problem was studied by many hydrogeologists 
and petroleum engineers (Jacquard and Jain 1965, 
Neuman 1973, Chavent et al, 1975, Yeh and 
Yoon, 1981, Kitanidis and Vomvoris 1983, Sun 
and Yeh 1985, Carrera and Neuman 1986, 
Woodbury and Smith 1988, Sun 1994, 
MaLaughlin and Townley 1996, among others). 
From the point of view of mathematics, hydraulic 
conductivity is the coefficient of the second-order 
terms of a parabolic or an elliptic PDE. The 
coefficient identification problem of these types 
of equations has been studied extensively in 
mathematics and many engineering fields (Beck 
et al. 1985, Chavent et al. 1995, Engl et al. 1996, 
Isakov 1998, Grimstad and Mannseth 2000, 
among others).  

A major difficulty of identifying the hydraulic 
conductivity of an aquifer is the determination of 
its structure. This difficulty is caused by the 
complexity and high variability in the structure of 
natural formations. In most of previous studies, it 
is assumed that the structure of the unknown 
parameter is known a priori and only the values 
associated with the structure need to be identified. 
The parameter identification problem is thus 
transferred into an optimization problem of best 
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fitting the existing observed data. Unfortunately, 
the so identified parameter is often unreliable 
when it is used for prediction or management 
purposes even though the fitting residual is small. 
Table 1 shows how the error in model prediction 
(or model application) is impacted by the error in 
parameter structure and the error in parameter 
values associated with the structure. In Case 1, 
both structure and value errors are small, and 
accurate result in model prediction can be 
expected (small + small = small). This case is 
ideal but difficult to achieve in practice because 
of the limitations in prior information and 
observation data. Case 2 is often seen when the 
unknown parameter is over-parameterized 
(attempting to estimate a complex parameter 
structure with limited data). In this case, the result 
of model prediction may become very unreliable 
(small + large = large). Case 3 is seen when the 
parameter structure is roughly estimated but the 
parameter values are conditioned by the directly 
measurements at some locations. In this case, the 
result of model prediction is again unreliable 
(large + small = large). When both structure and 
value errors are large, two cases are possible. 
Besides Case 4 (large + large = large), we may 
have Case 5 (large + large = small), in which, the 
two types of errors cancel each other.  

 
Table 1.  The combinations of errors 

Case Error in 
structure 

Error in 
values 

Error in 
prediction 

1 Small Small Small 
2 Small Large Large 
3 Large Small Large 
4 Large Large Large 
5 Large Large Small 

 
 It seems that only Case 5 is feasible and 
practical in the field of groundwater modeling. In 
this case, the identified parameter structure and 
values are not their true physical counterparts and 
thus can only be called as the “representative 
structure” and “representative values.” The 
methodology described in the paper attempts to 
lead us to this case by identifying the best 
“representative structure” and its associated best 
“representative values.”  

The classical theory of inverse problems aims 
at finding conditions and methods to make the 
inverse solution to be unique and stable. When 
the parameter structure is not exactly known, 
however, to require the uniqueness of the inverse 

solution becomes meaningless because different 
parameter values may be identified when different 
structures are used to represent the unknown 
distributed parameter.  In this paper, we introduce 
a generalized inverse problem that circumvents 
the uniqueness of the identified parameter in both 
its structure and its values, instead, it requires 
finding the simplest “representative structure” to 
assure the reliability when the model is used for 
prediction or management purposes. With the 
concept of “structure identifiability” defined in 
this paper, a complex parameter structure can be 
identified in a reduced level of complexity 
provided that the observation data can overcome 
the impacts of both observation and structure 
errors.  For a given structure, the worst- case 
parameter (WCP) is such a parameter that is the 
most difficult one to be identified than all other 
parameters in the admissible region.  One can 
prove that if the WCP is identifiable then all other 
parameters with the same structure or simplified 
structures must be identifiable too.   

To successfully solve an inverse problem, we 
must have sufficient information, including the 
prior information and the information extracted 
from observed data. When the existing data are 
insufficient, we must conduct experiments to 
collect more data.  A successful experimental 
design should ensure that sufficient information 
would be provided when the designed experiment 
is actually conducted in the field.  The optimal 
design seeks either to maximize the information 
provided by the experiment or to minimize the 
cost for conducting the experiment. Several 
criteria of optimal experimental design have been 
used in the field of groundwater modeling and 
other fields of engineering (Qureshi et al. 1980, 
Rafajlowicz 1986, Sun 1994, Wouwer et al. 2000, 
Ucinski 2000, among others). Most of these 
criteria were borrowed from the theory of linear 
systems. When they are used for nonlinear 
systems, the optimal design will depend on the 
unknown parameters and a sequential experiment-
design process is needed. For groundwater 
modeling, however, to conduct such a process is 
often impractical. When the structure of the 
unknown distributed parameter is also unknown, 
the optimal design problem becomes extremely 
difficult because a more complex structure needs 
more information to identify. If we cannot judge 
the sufficiency of a design, the optimal design 
problem becomes meaningless. In this paper, the 
optimal design is chosen only from such designs 
that are sufficient for identifying the simplest 
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“representative structure” and the WCP. We can 
prove that if a design is sufficient for identifying 
the WCP, it must be sufficient for identifying all 
other parameters in the admissible region.  In 
other words, it is a robust design.  

In the following sections, a systematic 
methodology is introduced that allows us to find a 
reliable model for prediction or management 
purposes when parameter structures of the model 
are complicated and unknown. Quantitative 
relationships between the reliability of model 
prediction, the identifiability of parameter 
structure, and the sufficiency of data are 
established.  Algorithms for finding the WCP, 
solving the GIP and designing the best 
experiment for parameter structure identification 
are given. A numerical example shows how this 
methodology is used for identifying the hydraulic 
conductivity of a heterogeneous aquifer. 

  
A GENERALIZED INVERSE PROBLEM 

It is impossible to identify a distributed 
parameter )(xθ  with limited data when the 
dimension (or the degree of freedom) of the 
unknown parameter is very high or infinite. 
Parameterization is a way to approximate a 
distributed parameter by a function with lower 
degree of freedom. The general form of 
parameterization can be represented by  

 

∑
=

≈
m

j
jj

1

),( )( vxx φθθ              (1) 

 
where the integer m is called the dimension of 
parameterization, { }jθ  (j=1,2, …,m) is a set of  

coefficients, { ),( vxjφ } is a set of basis functions 
with a set of shape parameters v (vector). We will 
use the combined notation ),( θθS  to denote a 
parameterization representation (PR) of a 
distributed parameter )(xθ , where S represents a 
parameter structure determined by m basis 
functions, and θθ T

m ) ., . . , ,( 21 θθθ= is a vector 
representing the parameter values associated with 
the structure. The same distributed parameter may 
have different PRs when it is approximated by 
different structures. 

In Sun and Sun (2002), three types of inverse 
problems are identified: the classical inverse 
problem (CIP), the extended inverse problem 
(EIP), and the generalized inverse problem (GIP). 
In CIP, it is assumed that structure S is given and 

only the parameter values θθ need to be identified. 
With certain assumptions on the probability 
distribution of observation error, the estimated 

values θθ̂  of the unknown parameter is obtained 
by solving the following optimization problem: 

 

{ }0);(min argˆ θθθθλλθθθθ
θθ

−+−
D

obsMobs xuu== (2)                                            

 
In (2), 

D
⋅  and 

P
⋅  are norms defined in the 

observation and parameter spaces, respectively, 
obsu is the observed system state at a set of 

observation locations and times obsx , Mu is a set 
of corresponding model outputs, λ is a 
regularization coefficient, and 0θθ  the initial guess 
of the unknown parameter based on prior 
information. If there exists no such kind of prior 
information, but we know the range of the 
unknown parameter: θθ < θθ < θθ , where θθ and θθ  
are the lower and upper bounds of the unknown 
parameter vector, we can take λ=0 in (2) and add 
constraint Θ∈θθ  to the optimization problem, 

where ),( θθ=Θ is a m-dimensional box and 
called the admissible region of θθ.  Usually, it is 
difficult to find the global solution of problem (2) 
because of its non-convex nature. When a 
gradient-based approach is used, only a local 
minimum can be found.  In fact, the most difficult 
problem of solving CIP is how to determine the 
complexity of parameter structure.  When m is too 
small (under-parameterized), the fitting residual  
  

  
PD

obsMobsR 0
ˆ);ˆ( θθθθλλθθ −+−= xuu             (3)                                            

 
may have a large value. On the other hand, when 
m is too large (over-parameterized), the model 
prediction becomes unreliable. Moreover, even 
we can find an appropriate m, the identified 
parameter may be still very different from the real 
one if the structure pattern of the unknown 
parameter is not correctly assumed.  
      In EIP, structure S and parameter values θθ are 
identified simultaneously by solving the 
following optimization problem 

 

+−
D

obsMobs

S
SS ),,({min arg)ˆ,ˆ(

),(
xuu θθθθ

θθ
==        

                     λ }),(),( 00 θθθθ SS −  (4)
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The second term on the right-hand side can be 
deleted when the lower-upper bound constraint 

)(SΘ∈θθ  is used instead.  Equation (4) is a 
combinatorial optimization problem and is very 
difficult to solve because the dimension of the 
shape vector v in (1) may be high.  Sun and Sun 
(2002) presented a tree regression procedure to 
solve EIP that can find a nearly optimal solution 
with less computation effort.  Tsai et al. (2002) 
used the genetic algorithm (GA) in combination 
with a local search to solve the EIP, in which the 
unknown parameter is represented by the natural 
neighbor parameterization. By sequentially 
increasing the number of basis points and 
optimizing their locations, the fitting residuals can 
be effectively decreased and the over- 
parameterization problem can be avoided. 

Note that the parameter structure obtained by 
solving the EIP is only based on existing 
observations without considering the reliability of 
model applications. After the EIP is solved, we 
cannot answer whether or not the complexity of 
the identified parameter structure is appropriate, 
and whether or not the observation data are 
sufficient.   

The GIP aims at finding an appropriate 
parameter structure to satisfy the accuracy 
requirement of model applications. Let Eg be a 
set of predictions or management decisions, the 
reliability requirement may be stated as 
 

        <−
E

t
EE S )(),( θθθθ gg  ε                         (5) 

 
where 

E
  ⋅  is a norm defined in the objective 

(prediction or management) space, tθθ is the true 
parameter, which , of course,  is unknown.  
Condition (5) can be satisfied by different PRs 
with different parameter structures and different 
parameter values.  The GIP requires finding the 
simplest parameter structure and its associated 
parameter values from all PRs that satisfy the 
accuracy requirement (5). 

The so defined GIP has the following 
advantages. First, the reliability of model 
application is incorporated into the identification 
procedure. Second, the uniqueness requirement of 
the inverse solution is avoided and replaced by a 
weak requirement (5). This condition may be 
satisfied by such parameters that are not close to 
the true parameter in the parameter space. Third, 
the data requirement is minimized because the 

GIP attempts to find the simplest parameter 
structure. Once the complexity of parameter 
structure is determined, the sufficiency of existing 
data can be judged.   

The stepwise regression method presented by 
Sun et al. (1998) can be used to solve the GIP, in 
which a max-min problem must be solved in each 
iteration step.  With the theorem developed in the 
next section, however, we can find a more 
effective method to solve the GIP.  
 
STRUCTURE ERROR AND STRUCTURE 
REDUCTION 

Letting ),( AAS θθ and ),( BBS θθ be two different 
PRs of a distributed parameter )(xθθ , the distance 
between them can be measured in parameter, 
observation and prediction (or management) 
spaces, respectively, by 
 

=),;,( BBAAP SSd θθθθ
PBA θθθθ −      

=),;,( BBBAD SSd θθθθ
DBBDAAD SS ),(),( θθθθ uu −        

=),;,( BBBAE SSd θθθθ
EBBEAAE SS ),(),( θθθθ gg −   

 
where BA θθθθ  and  are spans of BA θθθθ  and  to the 
parameter space P, Du  is the model outputs 
corresponding to an observation design D, Eg  is 
a vector of model applications corresponding to a 
set of objectives E,   ⋅  means a norm defined in 
a space as denoted by its subscript.  

In Sun et al. (1998), the distance d between 
two PRs ),( AAS θθ and ),( BBS θθ  is defined by  
   
     ),;,( BBAA SSd θθθθ = PDE ddd λµ ++               (6) 
 
were µ and λ  are weighting coefficients.  In this 
paper, we take λ=0, i.e, we do not consider the 
difference between the two PR’s in the parameter 
space. Let ),( AAS θθ  be a PR and BS  be a 
structure different from AS .  A PR ),( ABBS θθ is 
called a projection of ),( AAS θθ onto the structure 
SB, when  
     
      ABθθ = arg ),;,( min A BBA SSd

B

θθθθ
θθ

 

               s.t.  )( BB SΘ∈θθ                                    (7) 
 
To find ABθθ  from (7) is equivalent to solving a 
classical inverse problem, i.e. using a fixed 
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parameter structure BS  but changing the 
parameter values Bθθ  to best fit both the model 
output ),( AAD S θθu  and model application 

),( AAE S θθg .  
  
Definition 1.  The structure error ),( BA SSSE of 
using parameter structure BS  to replace 
parameter structure AS  is defined by the 
following max-min problem: 
                               

 ),S ;,( min max),( BBAABA SdSSSE
A

θθθθ
θθθθ B

=   

      s.t.  )( AA SΘ∈θθ  and  )( BB SΘ∈θθ                 (8) 
                                                   
Generally, ),( ),( ABBA SSSESSSE ≠ .  When BS  is 
a simplification of AS , we have 0),( =AB SSSE . 
If ),( and ),( ABBA SSSESSSE  are both less than a 
given error bound, the two structures are said to 
be equivalent. When BS  is a simplification of AS , 
to judge their equivalence we only need to 
calculate ),( BA SSSE .  If we take λ=0 and µ=0 in 
(6), the equivalence of two parameter structures 
means that we can use one structure to replace 
another one for specified model applications.  The 
max-min problem (8) is very difficult to solve.  

Definition 2.  A PR (SA, Aθθ
~

) is called the worst-
case parameter (WCP) for simplifying a structure 
SA to a structure SB, when it satisfies 
 
        ), ;

~
,( min),( BBAABA SSdSSSE θθθθ

θθB

= ,  

                  s.t. )( BB SΘ∈θθ                                  (9) 
 
If we know the WCP, the structure error can be 
obtained by solving the min problem (9) rather 
than the max-min problem (8).   
 
Theorem 1. When a k-zone structure AS  is 
simplified into a one-zone structure BS , the WCP 
must be located at such vertices of the admissible 
region AΘ  where the differences between the k 
parameter values reach either their upper bounds 
or their lower bounds.    
 
The proof of Theorem 1 and its more general 
form can be found in Sun (2002).  For the case of 
k = 2, we have 2),( cLSSSE BA = , where c is a 

coefficient and L is the maximum difference 
between the parameter values of the two zones in 
the admissible region. For example, if the ranges 
of the parameter values associated with the two 
zones are 2010 1, ≤≤ Aθ  and 308 2, ≤≤ Aθ , 
respectively, then we have 201030 =−=L . For 
the case of 2>k , the WCP may depend on the 
flow conditions (boundary conditions and/or 
since/source terms). Although Theorem 1 cannot 
give us a unique solution of the WCP, it limits the 
search of the WCP to a small set.  From physics, 
WCP is the most unlikely one to be simplified to 
a homogeneous one, and thus, it can often be 
guessed from the available prior information of 
the physical problem under study.   
 
SOLUTION OF GIP 

To solve the GIP by the stepwise regression 
method presented by Sun et al. (1998), we 
construct the following structure sequence 
                        

⋅⋅⋅⊂⊂⊂⋅⋅⋅⊂⊂⊂ +1321 mm SSSSS       (10) 
 
where 1S  is a homogeneous structure, 2S  is a 
structure with two zones, and so forth. 
Generally, 1+mS  is obtained from mS  by dividing 
one zone of mS  into two sub-zones.  In this case, 
the shape vector is described by the location of a 
linear boundary dividing one zone of mS  into two 
zones of 1+mS  and thus the shape parameter v in  
the representation of parameterization has a low 
dimension.   For each complexity level m, we 
solve the EIP to find the optimal PR by 
minimizing the following fitting residual: 
     

     ),(min
, DmmD

obs
DSm SRE

mm

θθ
θθ

uu −=  

            s.t.    )( mm SΘ∈θθ                                 (11) 
 
where obs

Du  are the observed values of u, and 

) ;,(),( obsM
D SS xuu θθθθ =  are the corresponding 

model outputs.  At the same time, we calculate 
the maximum model application error of using 

1−mS to replace mS , which is defined by 
       

Emmmmm SSAE
m

),(),( min max 11
1-m

−−−= θθθθ
θθθθ

EE gg

   s.t.    )( 11 −− Θ∈ mm Sθθ ,   )( mm SΘ∈θθ        (12)  
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Let us consider three cases. (1) If ε>mAE  and 
η2>mRE , where ε is the given accuracy 

requirement of model applications and η is the 
norm of observation error, we increase m to m+1.  
Sm+1 is obtained by dividing such a zone of mS  
into two zones that is the most sensitive one to the 
specified model applications. The boundary 
between the two zones is determined by 
minimizing the fitting residual REm+1.   (2) If 

ε<mAE , stop and use ( mmS θθ̂,ˆ ) as the identified 
parameter. (3) If ε>mAE  but η2<mRE , new 
data need to be collected.  

Because 1+mS  is obtained from mS  by 
dividing one zone of mS  into two sub-zones, the 
WCP is very easy to determined and mAE  can be 
calculated by only solving a min problem rather 
than a max-min problem. As a result, the above 
stepwise regression procedure becomes very 
effective.  
 
STRUCTURE IDENTIFIABILITY  
 The classical identifiability requires that the 
mapping between the observation space and the 
parameter space be a one to one mapping. This 
requirement can never be satisfied when the 
observation error exits. The output least square 
identifiability (Chavent 1987) requires that the 
solution of (2) be unique and continuously depend 
on observation data. The extended identifiability 
defined in Sun and Yeh (1990) uses the reliability 
of model application to replace the requirement 
on the uniqueness of the identified parameter. In 
the statistic framework, a parameter is identifiable 
if a change in parameter is always accompanied 
by a change in the probability distribution of the 
observed data (Stark 2000). In all of the previous 
definitions on identifiability, it assumes that the 
structure of the unknown parameter is known.  In 
practice, however, this assumption is often 
unsatisfied and, instead, the structure of the 
unknown parameter must be identified together 
with its unknown values. In this section, we will 
define a new kind of identifiability that does not 
require knowing the parameter structure. In fact, 
it allows the non-uniqueness in both parameter 
structure and parameter values.      
 
Definition 3.  A parameter Aθθ  with structure AS , 
i.e., a PR ( AAS θθ, ), is said to be δ-ε identifiable at 
a simplified structure level SB (or δ-ε-SB 

identifiable) if there is an observation design D 
that   
 
      

EBBEAAE SS ),(),( θθθθ gg − < ε             (13) 

 
is satisfied for any PR ( BBS θθ, ), provided 

 

DBBDAAD SS ),(),( θθθθ uu − < δ               (14)                                           

 
The values { }),( AAD S θθu  in (14) can be 

considered as the observations under design D 
without observation error.  Condition (14) means 
that we can fit these observations to a certain 
extent by a parameter Bθθ  with a simplified 
structure SB.  Equation (13) means that when 
( BBS θθ, ) is used to replace ( AAS θθ, ) as the model 
parameter, reliable results of model application 
can be obtained. Therefore, if a distributed 
parameter is δ-ε-SB identifiable, we can identify it 
at the simplified structure level BS .  The 
following theorem gives a sufficient condition for 
the δ-ε-SB identifiability.  

 
Theorem 2.  If the projection ( ABBS θθ, ) of  
( AAS θθ, ) onto BS  is δ1-ε1 identifiable, i.e., 
 

DABBDBBD SS ),(),( θθθθ uu − < δ1 implies  

EABBEBBE SS ),(),( θθθθ gg − < ε1              (15) 

 
for any parameter Bθθ  with the structure BS  , then 
( AAS θθ, ) is δ-ε-SB identifiable, where  
 
 ,(1 ASd−= δδ ) ; BSAθθ /µ      

,(1 ASd+= εε ) ; BSAθθ                        (16)  
 

The Proof of Theorem 2 can be found in Sun 
(2002).  When observation error is involved, 
Equation (14) is replaced by   

 

DBBDAAD SS ),(),(~ θθθθ uu − < δ                (17)                                              

 
where ),(~

AAD S θθu = ),( AAD S θθu + ηη and ηη is the 
observation error (vector), In this case, we have to 
change (16) to 
 
       ,(1 ASd−= δδ ) ; BSAθθ /µ - η      

 ,(1 ASd+= εε ) ; BSAθθ                              (18)  
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In the above equation, η is the upper bound of 

D
ηη .  

 
Definition 4.  A parameter structure AS  is said to 
be δ-ε-SB identifiable, if all PRs ( AS , Aθθ ) within 
the admissible region AΘ  are δ-ε-SB identifiable.   
 
Theorem 3.  If all PRs ( BBS θθ, ) are δ1-ε1 
identifiable (Sun, 1994), i.e.,  
 

  
DBBDBBD SS ),(),( 2,1, θθθθ uu − <δ1  implies   

  
EBBEBBE SS ),(),( 2,1, θθθθ gg − < ε1               (19) 

 
for any two PRs ( 1,, BBS θθ ) and ( 2,, BBS θθ ) within 

BΘ , then structure AS  is δ-ε-SB identifiable, 
where 
 
       µδδ /),(1 BA SSSE−= - η   and      

  ),(1 BA SSSE+= εε                                  (20) 
 

This theorem can be proved similarly as 
Theorem 2 (Sun, 2002). Equation (20) clearly 
shows that to make a distributed parameter to be 
identifiable, the information provided by 
observation data must be able to overcome the 
effects of both structure error and observation 
error.  The effect of structure error is 
deterministic rather than random, and, in most 
cases, it dominates the effect of observation error.  
If the structure error between the true and 
simplified structures is too large, no observation 
design can make the unknown parameter to be 
identifiable at the simplified structure level.     
 
ROBUST EXPERIEMENTAL DESIGN 

When the structure of a distributed parameter 
is unknown, the problem of experimental design 
for parameter identification becomes extremely 
difficult because a more complicated parameter 
structure needs more data to identify.  If we 
cannot judge the sufficiency of a design, both the 
concepts of optimal design and robust design 
become meaningless. In this section, we will 
define the sufficiency of a design when the 
parameter structure is unknown and then present 
an effective approach for finding a robust design.  
A design D for identifying a distributed parameter 
system consists of a set of decisions on where, 

when and how the system is excited, and where 
and when the states of the system are observed 
(Sun, 1994).  
 
Definition 5. A design D is said to be sufficient 
for identifying a PR ( AS , Aθθ ), if the PR is 

BS−− 00 δε  identifiable, i.e., 
 

DBBDAAD SS ),(),(~ θθθθ uu − < 0δ   implies    

EBBEAAE SS ),(),( θθθθ gg − < 0ε              (21) 

 
for any PR ( BBS θθ, ) in )( BSΘ .  Here, 0δ  must 
be at least larger than η2 , and 0ε  should not 
exceed the given accuracy requirement ε of model 
application.  From this definition, when a 
sufficient design is actually conducted and the 
data are collected, we can assure that an 
equivalent parameter for model application can be 
identified from the data. 
  
Theorem 4.  If a design D satisfies the following 
condition at a complexity level BS : 
 

DBBDBBD SS ),(),( 2,1, θθθθ uu − < 

[ ]ηµ +/),(2 BA SSSE      implies  
 

EBBEBBE SS ),(),( 2,1, θθθθ gg − <  

ε - ),( BA SSSE                                      (22)   
 
where AS  is the structure of the unknown 
parameter, then the design should be sufficient for 
identifying a parameter at level BS  to satisfy the 
following accuracy requirement of model 
application:  
  

           <− ),()ˆ,( t
AAEBBE SS θθθθ gg  ε           (23) 

 
where t

Aθθ  is the true parameter but unknown and 

Bθθ̂  is obtained by solving a CIP with the fixed 
structure BS , i.e., 

 

DBBD
obs
DB S

B

),(minargˆ
B

θθθθ
θθ

uu −=
Θ∈

   

 
The proof of Theorem 4 can be found in Sun 

(2002). Theorem 4 tells us that the inverse 
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solution obtained by solving the CIP can be 
reliable for model application if the observation 
data can provide sufficient information to 
overcome the effects of both structure and 
observation errors.  The following theorem 
provides a basis of finding a sufficient and robust 
design.  
 
Theorem 5.  Under the conditions of Theorem 3, 
if a design D is sufficient for identifying the WCP 

)
~

,( AAS θθ of an admissible region AΘ , then it 
should be sufficient for identifying all parameters 
with structure AS  or with a structure that is a 
simplification of AS  in the admissible region.     
 

This theorem is a deduction of Theorem 3. 
When the structure error in (20) is decreased, δ 
will be increased and ε will be decreased. This 
means that the data obtained from the same 
design are sufficient for satisfying the 
requirement of identifiability with 0δδ > and 

0εε < . 
 
ALGORITHMS FOR SUFFICIENT AND 
ROBUST DESIGN  

Experimental design depends heavily on how 
much prior information that is available. Different 
physical parameters in different fields may have 
different prior information. For example, if the 
unknown parameter is the hydraulic conductivity 
of an aquifer, prior information may be obtained 
from well logs, well tests, local pumping tests, 
tracer tests, and various geophysical 
measurements. If we can use more prior 
information, less information is needed from the 
designed experiment. A good design approach 
should demonstrate how prior information could 
be effectively and quantitatively incorporated into 
the design procedure.  The design method 
presented in this paper requires that after 
transformation, analysis and judgment, all prior 
information can be integrated into the following 
form: The definition region can be divided into L 
zones { }Lii ,...2,1| =Ω and the values of the 
unknown parameter are relatively homogeneous 
within each zone. Moreover, the upper and lower 
bounds of the unknown parameter )(xθθ at these 
zones can be estimated, i.e., we have two sets of 
numbers: )}({ iΩθ and )}({ iΩθ , such that 

)()()( iii Ω≤Ω∈≤Ω θθθ x for all Li ,...,2,1= .    

With this information, we can use the following 
algorithm to find a candidate of the WCP:   
 
Step 1.  If the parameter value associated with 

zone )( iΩ has not been assigned, then let it be 

its upper bound )( iΩθ . 
Step 2. Consider all neighboring zones )( jΩ  of 

)( iΩ . If the parameter value associated with 
zone )( jΩ  has not been assigned, then assign 

)( jΩθ  to )( jΩ  when )( iΩθ  is assigned to 

)( iΩ , or assign )( jΩθ  to )( jΩ  when 

)( iΩθ  is assigned to )( iΩ .  
 
Obviously, the so determined parameter satisfies 
the condition of Theorem 1, i.e. the parameter 
values between neighboring zones have the 
maximum difference. To start the algorithm with 
different i, we can move from one candidate to 
another candidate of the WCP. Note that the WCP 
is dependent on sink/source terms and boundary 
conditions. Usually, we start from such zones 
where sink/source or inflow/outflow are involved.  

Based on the concepts and theorems 
developed above, we present the following 
algorithm for judge the sufficiency and robustness 
of a design D:  
 
Step 1. Compile all available prior information. 
Step 2. Set a most possibly complex structure AS  

and guess its WCP Aθθ
~

. 
Step 3. Run the simulation model to generate a set 

of “observation data” )
~

,( AAD S θθu  according 
to the designed excitation strengths, 
observation locations and times. 

Step 4. Run the model for given model 
applications to generate a set of “prediction 
data” )

~
,( AAE S θθg . 

Step 5. Form the structure series (10) as in the 
solution of the GIP.  From Sm-1 to Sm, the 
most sensitive zone to the given model 
applications is selected to divide into two 
sub-zones, and the boundary between the two 
zones is determined by minimizing the fitting 
residual  
                           

 ),()
~

,(min
, DmmDAAD

S
m SSRE

mm

θθθθ
θθ

uu −=     

          s.t.   )( mm SΘ∈θθ                             (24)  
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Then, calculate the model application error 

E
mmAAm SSAE )ˆ,()

~
,( θθθθ EE gg −= , where   

)ˆ,( mmS θθ  is  the solution of (24).   
Step 6. If mAE > ε and η2>mRE , increase m by 

1 and repeat the above procedure to find 

1+mS .   
Step 7. When m increases, the value of mAE  

decreases to zero and the value of 
mRE decreases to until less than 2η.  Thus, 

finally we must have the following cases: (1) 
mAE <ε but η2≥mRE , (2) mAE <ε for all 

η2<mRE , and (3) mAE ≥  ε but η2<mRE .  
According to Definition 5, if we only have 
the cases (1) and (2) during the optimization 
procedure, we can conclude that the design is 
sufficient. Otherwise, when Case (3) appears, 
the design is insufficient.  

 
Since the so obtained design is sufficient for 

the WCP, according to Theorem 5, it should be a 
robust design.  
 
THE OPTIMAL DESIGN 

The principle of optimal design is either to 
minimize the experimental cost while the 
information provided by the experiment is 
sufficient, or to maximize the information with a 
certain budget.  After we know how to judge the 
sufficiency of a design, we can define the optimal 
design problem as follows. 
 
Definition 6.  Let )(Df  be the cost of an 

experiment design D. The optimal design *D  is 
the solution of the following optimization 
problem:  
 
     )( min* DfD

D
= ,  s.t.  D ∈ { }D             (25)  

 
where { }D contains such designs that must be 
feasible and sufficient.   

Problem (25) is a mixed integer-programming 
problem with very complex constraints, and thus 
it is very difficult to solve. In practice we often 
search a sub-optimal solution with less 
computation effort instead of solving (25).  The 
following is a proposed heuristic procedure that 
might be useful for many environmental and 
geophysical systems.  

 
Step 1. Collect all existing records on excitation 

locations and strengths, observation locations 
and frequencies.  

Step 2. Use the procedure given above to test if 
the existing data are sufficient and robust.  If 
the answer is “no”, then go to the next step.  

Step 3. Perform sensitivity analysis for existing 
observations. We calculate the sensitivities of 

Eg  to the parameters for all m zones of mS . 
The zone with the maximum sensitivity is 
selected to divide into two sub-zones. Now 
we calculate the sensitivity of each 
observation uD i, to the parameter of each 

zone. Locations where the observations only 
make contributions to the identification of 
those parameters that are not sensitive to 
model applications can be deleted from the 
further observation design.   

Step 4. Perform sensitivity analysis for planned 
observations. Either increase the strength of 
excitation or increase the number of 
observation locations and frequencies 
depending on which one is more effective 
and feasible. New observation locations 
should be so selected that they make the 
maximum contribution to the identification of 
the most sensitive parameters to the model 
applications.  This can be done by the adjoint 
state method (Sun, 1994).  

Step 5. After new observations are planned in the 
last step, test the sufficiency of the new 
design and calculate its cost. Repeat Step 4 
and Step 5 several times, a nearly cost-
effective and feasible design may be found.  

 
 
NUMERICAL EXAMPLE 

In this section, the identification of hydraulic 
conductivity of an aquifer is used as an example 
to explain the presented methodology.  Figure 1 
shows a two-dimensional confined aquifer.  It is 
assumed that the head is fixed to be 100 m at the 
boundary sections AB and CD and there is no 
flow through other boundary sections. The initial 
head is 100 m everywhere. The purpose of this 
study is to predict the steady state head values in 
three pumping wells: ,1W  2W  and 3W  when their 
pumping rates are 2000, 10000 and 4000 
( daym /3 ), respectively.  The prior information 
available for the hydraulic conductivity includes: 
(1) It consists of 24 homogeneous zones, and (2) 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

the upper and lower bounds of each zone can be 
estimated. Their ranges vary from 5 to 50 

1−mday .   
    

A

B

C

D

W2

W3

W1

O2

O1

 
  
               Figure 1.  The flow field 
 

One candidate of the WCP is shown in Figure 2, 
which is obtained by the procedure described in 
the last section with consideration of the flow 
conditions.  With this WCP, the values of steady 
state head in the three pumping wells are 

mW 60.781 = , mW 81.662 =  and mW 02.743 = , 
respectively. These values, of course, will change 
significantly when the distribution of hydraulic 
conductivity changes.   
    

 
 
      Figure 2.  The worst-case parameter 
 
Now we want to design a pumping test to 

identify the hydraulic conductivity so that the 
accuracy requirement of model prediction, 

m 0.1=ε , can be reached, i.e., the norm of the 
differences between the model predicted heads 
and the real heads in the three wells must be less 
than 1 meter.  Note that to compare with the large 
drawdown in these wells (more than 20m), this 
accuracy requirement is very high.  The upper 
bound of observation error is assumed to be 

m 1.0=η .  
Using the adjoint state method for sensitivity 

analysis, we can find that the local hydraulic 
conductivity around Well 2 plays the most 
important role for the short-term pumping test.  
For the long-term steady state, on the other hand, 
the values of hydraulic conductivity along the 

inflow boundaries AB and CD play the most 
important role. Using the sensitivity equation 
method, we can find that 1O  and 2O  in Figure 1 
are the best observation locations for identifying 
these values. The sensitivity analysis methods 
based on the forward or reverse modes of auto-
differentiation are important tools for the 
presented design process.  

The first pumping test design D1 consists of 
(1) pumping 1,000 13 −daym  from 2W , (2) three 
observation locations at ,1W  2W  and 3W , (3) five 
observation times at t = 0.01, 0.05, 0.1, 0.5 and 
1.0 (day).  Following the steps described in the 
last section, we find 09.01 =RE m, which is less 

than 2.02 =η m, when 29.271,1 =K 1−mday , but 

mAE 1.41 = , which is larger than the accuracy 
requirement m 0.1=ε .  Therefore, we can 
conclude that the design D1 is insufficient.  The 
second pumping test design D2 is the same as D1 

but increasing the pumping rate in 2W  to 

2,000 daym /3 . Repeating the steps described in 
the last section, we find 15.01 =RE m < η2  when 

02.281,1 =K daym / , but mAE 60.41 = >ε .  
Therefore, the design D2 is insufficient too.  The 
design D3 is formed by adding two observation 
wells 1O  and 2O  to the design D2. Unfortunately, 
it is still insufficient.  Design D4 is formed from 
the design D3 by pumping 500 from ,1W  2000 

from 2W  and 1000 ( daym /3 ) from 3W .  With 
D4, we find 31.01 =RE > η2 , when 28.251,1 =K , 

and mAE 01.31 =  > ε.  This means that the design 
allows us to identify a two-zone structure.  Under 
the optimized two-zone structure, we find 

18.02 =RE < η2 , when 13.331,2 =K , and 

39.112,2 =K ( daym / ), but mAE 87.12 =  > ε.   
Therefore the design D4 is still insufficient.  A 
sufficient design, D5, has been found which is 
based on D4 but increasing the period of pumping 
test to 3 days.  The five observation times are t = 
0.05, 0.1, 0.5, 1.0 and 3.0 (days).  In this case, 
during the search of the best fitting two-zone 
parameter (including both pattern and values), we 
always have either ( ε<2AE  and η22 <RE ) or 
( ε>2AE  and η22 >RE ).  The best fitting 
parameter values are 99.171,2 =K m/day and 

61.342,2 =K m/day, for which 18.02 =RE and 
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52.02 =AE . When the Zone 1 of the two-zone 
structure is further divided into two zones, we 
always have ε<2AE  and η22 <RE  during the 
procedure of pattern optimization. The best three-
zone pattern is shown in Figure 3 and the best 
fitting parameter values are 27.201,3 =K m/day, 

27.332,3 =K m/day, and 02.73,3 =K m/day.  With 
this parameter, the steady state heads in the three 
wells predicted by the model are =)( 1Wh 77.82m, 

=)( 2Wh 67.24m, and =)( 3Wh 74.17m. The 
identified parameter is thus equivalent to the 
WCP. Note that the boundaries of the three zones 
in Figure 3 do not represent any real physical 
boundaries of discontinuity. What we found is 
that the real hydraulic conductivity distribution 
can be replaced by such a three-zone structure for 
model prediction. 
 

 
 

Figure 3. An equivalent structure to the WCP   
 
To verify the robustness of the design D5, two 

randomly generated hydraulic conductivity 
distributions are tested. Their values in each zone 
are randomly specified within the range of the 
given upper and lower bounds. First, we run the 
simulation model to obtain the heads at the 
specified times and locations according to the 
design D5, then a set of observation errors with 
norm η = 0.1m is added to them to obtain a set of 
“observation data”.  For the first test case, we 
found that the condition η2<RE  is satisfied 
when the number of zones is increased to 3 during 
the solution of GIP.  For the second test case, the 
condition η2<RE  is satisfied when the number 
of zones is increased just to 2.  According to our 
theory, the reliability requirement of prediction 

m 0.1=ε  must be satisfied by these equivalent 
parameters.  From Table 2 we can find that the 
heads in all three wells can be predicted with very 
high accuracy indeed.  Note that these results can 
be expected at the design stage based on the new 
methodology.  

Table 2. Results of the two test cases 
 Case 1 Case 2 

Head Real Model 
predicted 

Real Model 
predicted 

W1 79.84 79.67 80.43 80.57 
W2 70.48 70.51 72.13 72.05 
W3 75.05 75.04 75.89 76.18 

 
CONCLUSIONS  

In this paper, we have introduced a new 
methodology for identifying a distributed 
parameter when its dimension is high and its 
structure is unknown, such as the hydraulic 
conductivity in groundwater modeling. The basic 
idea is to solve a weak inverse problem, the GIP, 
to find an equivalent parameter that can give 
almost the same results for model application as 
what the true parameter does.  The weak solution 
has the minimum complexity in structure and thus 
it needs minimum data to identify.  

We have found that the error of structure 
reduction can be calculated effectively by solving 
a CIP if we know the worst-case parameter 
(WCP).  We have proved that the WCP is always 
located at one vertex of the admissible region of 
the unknown parameter. A set of sufficient 
conditions for structure identifiability is presented 
that requires the information provided by the 
observation data be able to overcome the impacts 
of both structure and observation errors.  We have 
proved that if an experimental design is sufficient 
for identifying the WCP then it must be sufficient 
for identifying all other parameters in the 
admissible region, and thus, it is a robust design. 
Based on these new concepts and theorems, we 
have presented algorithms for determining the 
WCP from prior information, for judging the 
sufficiency of a design, and finally for finding a 
cost-effective, sufficient and robust design.  

A numerical example is given, in which the 
unknown hydraulic conductivity with complex 
structure is replaced by a very simple but 
equivalent structure for the given model 
application.  In this example, we have shown how 
the WCP can be found from prior information and 
flow conditions and how a sufficient and robust 
design can be found through a heuristic process.    
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ABSTRACT
Consider linear ill-posed problems with a pri-

ori information about their unknown solutions. We
discuss what one should know about the given data
to construct a regularizing algorithm. It is shown
how properties of regularizing algorithms depend
on known properties of the solutions. The uni-
form and a posteriori errors of an approximate so-
lution, rates of convergence for regularizing algo-
rithms are considered for problems on sourcewise
represented and compact sets of exact solutions.
For various a priori restrictions to the exact solu-
tion several numerical methods are offered to con-
struct regularizing algorithms. These methods are
applied to inverse problems in astrophysics, elec-
tronic microscopy and vibrational spectroscopy.

INTRODUCTION
The majority of all problems investigated in a

modern science are inverse problems. When a re-
searcher has enough information about properties
of an unknown solution of a problem, then he or
she almost always may £nd a solution that are sta-
ble in relation to perturbations of input data. It
is well known that a century ago many scientists
thought that only such stable problems are in na-
ture and all other problems are only model mathe-
matical ones. Therefore, to study these “real” prob-
lems J. Hadamard offered a notion of a well-posed
problem in [1].

Let us consider a linear inverse problem written
in the form of the operator equation

Az̄ = ū z̄ ∈ Z, ū ∈ U (1)

where Z, U are normed spaces. The problem (1) is
called well-posed on the class of its “admissible”
data if for any pair {A, ū} from the set of “admis-
sible” data the solution of (1):

1. exists,

2. is unique,

3. continuously depends on errors in A and ū
(is stable).

Stability means that if instead of {A, ū} we are
given “admissible” {Ah, uδ} such that ‖Ah−A‖ 6

h, ‖uδ − ū‖ 6 δ, the approximate solution con-
verges to the exact one as h, δ → 0. The num-
bers h and δ are error estimates for the approx-
imate data {Ah, uδ} of the problem (1) with the
exact data {A, ū}. Denote η = (h, δ). If at least
one of the mentioned requirements is not met, then
the problem (1) is called ill-posed. Remark that
the most important requirement is the third one,
since the others may often be made just. For ex-
ample, the £rst requirement is ful£lled if instead of
the solution of (1) we introduce some generalized
solution. If one makes additional restrictions for
the considered problem, then the problem (1) often
becomes a problem with a unique solution. Re-
gretfully, stability of the problem (1) depends on
properties of the given spaces Z and U , which can
not be changed by other spaces in practice.

As a generalized solution, it is often taken the
so-called normal pseudosolution (a solution in the
sense of the least-squares method with a minimum
norm or sometimes with a minimum distance from
a given £xed element). This solution z̃ exists and
is unique for any exact data of the problem (1) if
A ∈ L(Z,U), ū ∈ R(A) ⊕ R⊥(A), z̃ = A+ū.
Here R(A) and R⊥(A) denote the ranges of the
operator A and its orthogonal complement in U ,
and A+ stands for the operator pseudoinverse to
A. See, e.g., [2] for details. In the paper we £nd z̄
as a normal pseudosolution, i.e. z̄ = z̃.

As opposed to well-posed problems ill-posed
ones are in some sense underdetermined problems.
This means that a researcher has not enough infor-
mation to solve an ill-posed problem. Therefore,
he or she should assume that the solution has addi-
tional properties. Some assumptions make the con-
sidered problem well-posed as it will be shown for
the compact sets. Unfortunately, for many prob-
lems these assumptions often help to construct only
so-called regularizing algorithms.
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In spite of the existence and uniqueness of a
normal pseudosolution z̃ for any admissible data,
the problem of its £nding, as well as the problem
(1) itself, may be unstable with respect to perturba-
tions of A and ū. Thus, it is important to answer
the question, what means to “solve” such an un-
stable problem. Tikhonov answered this question
in his famous de£nition of a regularizing algorithm
[3, 4]. To solve an ill-posed problem means to pro-
duce a map (regularizing algorithm) R(Ah, uδ, η)
such that

1. brings an element zη = R(Ah, uδ, η) into
correspondence with any data {Ah, uδ, η},
Ah ∈ L(Z,U), uδ ∈ U , of the problem (1);

2. has the convergence property zη → z̄ =
A+ū as η → 0, ū ∈ R(A)⊕R⊥(A).

A mathematical problem is (Tikhonov) regular-
izable if there exists a regularizing algorithm. It is
evident that a well-posed problem is regularizable.
Unfortunately, regularizing algorithms do not exist
for all mathematical problems. Therefore, we may
divide all inverse problems into three groups:

1. well-posed problems,

2. ill-posed regularizable problems,

3. ill-posed nonregularizable problems.

More than 40 years ago the question arose
whether it is possible to construct a regularizing
algorithm that would not depend exactly on the es-
timates of errors h and δ. Regretfully, such an ap-
proach can solve only well-posed problems.

Theorem 1 [5]: Let R(Ah, uδ) be a map of the
set L(Z,U) ⊗ U into Z. If R(Ah, uδ) is a regu-
larizing algorithm (not depending explicitly on η),
then the map P (A, ū) = A+ū is continuous on its
domain L(Z,U)⊗ (R(A)⊕R⊥(A)).

Proof The second condition in the de£nition
of regularizing algorithm implies in the equal-
ity R(A, ū) = A+ū = P (A, ū) valid for each
(A, ū) ∈ L(Z,U) ⊗ (R(A) ⊕ R⊥(A)) and
the convergence P (Ah, uδ) = R(Ah, uδ) →
A+ū = P (A, ū) when h, δ → 0 valid for any
(A, ū) ∈ L(Z,U)⊗ (R(A)⊕R⊥(A)), (Ah, uδ) ∈
L(Z,U) ⊗ (R(A) ⊕ R⊥(A)). Therefore, the map
P (A, u) is continuous on L(Z,U) ⊗ (R(A) ⊕
R⊥(A)) ⊂ L(Z,U)⊗ U . The theorem is proved.

It is clear from Theorem 1 that a regularizing
algorithm not using h and δ explicitly can only ex-
ist for problems (1) well-posed on the set of the

data L(Z,U)⊗ (R(A)⊕R⊥(A)) ⊂ L(Z,U)⊗U .
The theorem generalized the assertion proved by
Bakushinskii in [6].

Let us discuss the very principal question: is it
possible to estimate an error of an approximate so-
lution of an ill-posed problem? Regretfully, the an-
swer is negative. The main and very important re-
sult was obtained by Bakushinskii (see, [7] or [8]).
For simplicity we assume h = 0, i.e., Ah = A.
Let R(uδ, δ) be a regularizing algorithm that de-
pends on δ, uδ only. Denote by 4(R, δ, z̄) =
sup{‖R(uδ, δ) − z̄‖ : ∀uδ ∈ U, ‖Az̄ − uδ‖ 6 δ}
the error of a solution of the ill-posed problem (1)
at the point z̄ using the algorithm R. If the prob-
lem (1) is regularizable by a continuous map R and
there is an error estimate, which is uniform on D,

sup{4(R, δ, z̄) : z̄ ∈ D} 6 ε(δ)→ 0

then the restriction of A−1 to AD ⊂ U is continu-
ous on AD.

Usually the accuracy of the approximate solu-
tion zδ = R(uδ, δ) of the problem (1) could be
estimated as

‖zδ − z̄‖ 6 Kϕ(δ) (2)

where K does not depend on δ and the function
ϕ(δ) de£nes the convergence rate of zδ to z̄.

Note that pointwise and uniform error esti-
mates (2) should be distinguished. For pointwise
estimates the exact solution z̄ is £xed, the constant
K and the function ϕ(δ) depend on z̄. For the case
of uniform estimates the inequality (2) is just for
some set M of exact solutions z̄. Then K and ϕ(δ)
depend on properties of the set M . Since the exact
solution z̄ is unknown, pointwise error estimates
have no signi£cant sense.

We consider the results obtained by Vinokurov
in [9]. Let A be a linear continuous injective oper-
ator acting in Banach space Z and the inverse op-
erator A−1 is unbounded on its domain D(A−1).
Suppose that ϕ(δ) is an arbitrary positive function
such that ϕ(δ)→ 0 as δ → 0, and R is an arbitrary
method to solve the problem. Then the following
equality holds for elements z̄ except maybe for a
£rst category set in Z:

lim
δ→0

sup

{

4(R, δ, z̄)

ϕ(δ)

}

=∞

This means that a uniform error estimate can only
exist on a £rst category subset in Z.
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In uniform estimates the rate of accuracy of an
approximate solution ϕ(δ) does not depend on an
exact solution. Therefore uniform accuracy esti-
mates are widely spread in the theory of ill-posed
problems. However, uniform accuracy estimates
do not exist on any set M .

A compact set is a typical example of the £rst
category set in a normed space Z. For this set spe-
cial regularizing algorithms may be used [8, 2] and
a uniform error estimation may be constructed.

Clearly, a uniform error estimate exists only for
well-posed problems. For general ill-posed prob-
lems we can’t £nd an error of an approximate so-
lution zη and estimate the convergence rate of zη
to the exact solution z̄. Fortunately, for some ill-
posed problems it is possible to £nd a so-called
a posteriori error estimation. Following [10], for
the case, when there is an exact injective operator
A with closed graph and Z is a σ-compact space,
we introduce a function κ(uδ, δ) such that ∀z̄ ∈ Z
∃δ(z̄) > 0, ∀δ ∈ (0, δ(z̄)], ∀uδ ∈ U ‖uδ− ū‖ 6 δ:
‖z̄ − R(uδ, δ)‖ 6 κ(uδ, δ). The function κ(uδ, δ)
is a posteriori error estimation for the problem (1),
if κ(uδ, δ)→ 0 as δ → 0.

THE GENERALIZED DISCREPANCY
METHOD

Tikhonov in his papers [3, 4] not only clearly
de£ne the meaning of solving an ill-posed problem
(1), but also give a practical regularizing algorithm
to solve (1).

We follow [8]. Let Z, U be Hilbert spaces,
D ⊂ Z be a closed convex set of a priori con-
straints such that 0 ∈ D, A, Ah be linear operators.
Given a set of the data {Ah, uδ, η} we introduce
the Tikhonov’s functional:

Mα[z] = ‖Ahz − uδ‖
2 + α‖z‖2 (3)

where α > 0 is a regularization parameter.
Consider the following extreme problem:

inf{Mα[z] : z ∈ D} (4)

For any α > 0, uδ ∈ U and bounded linear opera-
tor Ah the problem (4) is solvable and has a unique
solution zαη ∈ D.

The idea to construct a regularizing algorithm
using the extreme problem (4) for Mα[z] consists
of constructing of a function α = α(η) such that
z
α(η)
η → z̄ as η → 0. We may £nd a regulariza-

tion parameter a priori or a posteriori. In [8] it is
shown that if A is a injective operator, z̄ ∈ D and

α(η) → 0, (h + δ)2/α(η) → 0 as η → 0, then
z
α(η)
η → z̄ as η → 0, i.e., there is the a priori

choice of α.
De£ne the incompatibility measure of (1) with

the approximate data on D as

µη(uδ, Ah) = inf{‖Ahz − uδ‖ : z ∈ D}

Assume that the incompatibility measure can be
computed with an error κ > 0, i.e., instead of
µη(uδ, Ah) there is µκη(uδ, Ah) such that

µη(uδ, Ah) 6 µκη(uδ, Ah) 6 µη(uδ, Ah) + κ

Let us introduce the so-called generalized dis-
crepancy:

ρκη(α) = ‖Ahz
α
η − uδ‖

2 −
(

δ + h‖zαη ‖
)2

−
(

µκη(uδ, Ah)
)2

The generalized discrepancy ρκη(α) is continuous
and monotonically non-decreasing for α > 0.

Now we state the generalized discrepancy prin-
ciple to choose the regularization parameter:

1. If the condition ‖uδ‖2 > δ2+
(

µκη(uδ, Ah)
)2

is not ful£lled, then we take zη = 0 as an ap-
proximate solution of (1);

2. If the condition ‖uδ‖2 > δ2+
(

µκη(uδ, Ah)
)2

is ful£lled, then the generalized discrepancy
has a positive zero α∗ and zη = zα

∗

η .

If A is a injective operator, then limη→0 zη = z̄.
Otherwise, limη→0 zη = z∗, where z∗ is the nor-
mal solution of (1), i.e., ‖z∗‖ = inf{z ∈ D : Az =
ū}.

It is known that we can put µκη(uδ, Ah) = 0
even if uδ /∈ AhD. However, we should change
the generalized discrepancy principle as follows.

1. If ‖uδ‖ > δ is not ful£lled, then zη = 0;

2. If ‖uδ‖ > δ is ful£lled, then:

(a) if there is an α∗ > 0, which is a zero of
the function ρη(α), then zη = zα

∗

η ;

(b) if ρη(α) > 0 for all α > 0, then
zη = limα→0 z

α
η .

For the case, when A, Ah are bounded linear
operators, D is a closed convex set containing the
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point 0, z̄ ∈ D, it is proved in [8] that the gener-
alized discrepancy principle are equivalent to the
generalized discrepancy method: £nd

inf
{

‖z‖ : z ∈ D, ‖Ahz − uδ‖
2

6 (δ + h‖z‖)2 +
(

µκη(uδ, Ah)
)2
}

You may £nd the generalized principles of dis-
crepancy, quasisolutions and smoothing functional
for linear incompatible and non-linear general ill-
posed problems in [8, 2].

For simplicity suppose Ah = A. Consider the
sets represented in the form Mr = {z : z =
Bv, v ∈ V, ‖v‖ 6 r}, where V is an auxiliary
Hilbert space, B : V → Z is a linear, injective
and compact operator, r is a £xed parameter. For a
method R of solving (1) we de£ne

4(R, δ, r) = sup{‖R(uδ, δ)− z̄‖ :

z̄ ∈Mr, ‖uδ − ū‖ 6 δ} (5)

Then, for a class R of all possible methods R for
solving (1) the optimal accuracy is

4opt(δ, r) = inf{4(R, δ, r) : R ∈ R}

A method R is said to be optimal in order on
sets Mr if the following inequality holds for its ac-
curacy (5):

4(R, δ, r)

4opt(δ, r)
6 k = const

as δ → 0 and k does not depend on δ, r.
The generalized principles of discrepancy, qua-

sisolutions and smoothing functional are optimal in
order on sets Mr with k = 2 [2].

Let us apply the generalized discrepancy prin-
ciple to solve a model example of an inverse prob-
lem for the heat conduction equation






wt = a2wxx x× t ∈ (0, l)× (0, T )
w(0, t) = 0
w(l, t) = 0

(6)

There is a function uδ(ξ) ≡ w(ξ, T ) ∈ L2[0, l], we
want to £nd z(x) ≡ w(x, 0) ∈ W 2

1 [0, l] such that
z(x)→ z̄(x) as η → 0. We may write that

‖u(ξ)‖2 =

l
∫

0

|u(ξ)|2dξ,

‖z(x)‖2 =

l
∫

0

(

|u(x)|2 +

∣

∣

∣

∣

∂u(x)

∂x

∣

∣

∣

∣

2
)

dx

The problem may be written in the form of integral
equation

u(ξ) =

l
∫

0

G(ξ, x, T )z(x)dx

where G(ξ, x, t) is the Green function:

G(ξ, x, t) =
2

l

+∞
∑

n=1

sin

(

πnξ

l

)

sin
(πnx

l

)

× exp

(

−
(πna

l

)2

t

)

The problem is solved for the parameters a =
1.0, T = 0.1, l = 1.0, the function uδ(ξ) is taken
such that δ = 0.05 · ‖ū‖. In Figure 1 there are the
exact function z̄(x) and the found solution zη(x).

0 1

z(x)

x

Figure 1. The exact solution z̄(x) (——) and the
approximate solution zη(x) (−−−−) for the

generalized discrepancy method.

NUMERICAL METHODS
Consider a Tikhonov’s functional Mα[z] writ-

ten as (3), which is a strongly convex functional in
a Hilbert space. We recall that a necessary and suf-
£cient condition for zαη to be a minimum point of
Mα[z] on a set D of a priori constraints is that

(

(Mα[zαη ])
′, z − zαη

)

> 0 ∀z ∈ D

If zαη is an interior point of D, then this condition
takes the form (Mα[zαη ])

′ = 0, or

A∗
hAhz

α
η + αzαη = A∗

huδ (7)
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Thus, in this case we may solve the Euler equation
(7) instead of minimizing Mα[z].

To solve ill-posed problems it is usually nec-
essary to approximate the initial, often in£nite di-
mensional, problem by a £nite dimensional one,
for which numerical algorithms and computer pro-
grams have been devised.

Consider the Fredholm integral equation of the
£rst kind

Az =

∫ b

a

K(x, s)z(s) ds = u(x) c 6 x 6 d

We take U = L2[c, d], Z = W 2
1 [a, b]. Assume that

K(x, s) is a real-valued function de£ned and con-
tinuous on Π = [a, b]× [c, d]. Suppose that instead
of K(x, s) we know a function Kh(x, s) such that
‖Kh −K‖L2(Π) 6 h. Then ‖Ah − A‖W 2

1
→L2 6

h, where Ah is the integral operator with kernel
Kh(x, s).

Let us choose grids {sj}m1 ⊂ [a, b], {xi}m1 ⊂
[c, d]. The £nite dimensional operator is a linear
operator with matrix Â = {aij}. The simplest ver-
sion of the approximation is given by the formulas

aij =

{

Kh(xi, sj), j = 2, n− 1
Kh(xi, sj)/2, j = 1, n

for i = 1,m.
For simplicity we use uniform grids with steps

hs and hx. We put z(sj) = zj , uδ(xi) = ui,
ẑ = (z1, . . . , zn), û = (u1, . . . , um). Using the
rectangle formula to approximate the integrals, we
obtain

M̂α[ẑ] =

m
∑

i=1





n
∑

j=1

aijzjhs − ui





2

hx

+ α
n
∑

j=1

z2
jhs + α

n
∑

j=2

(zj − zj−1)
2

hs

Set bjk = hx
∑n

i=1 aikaij , fj = hx
∑m

i=1 aijui.
Thus, we arrive at the problem of solving the sys-
tem of equations

B̂αẑ = B̂ẑ + αĈẑ = f̂ (8)

where B̂ = {bjk}, f̂ = (f1, . . . , fn) and Ĉ you
may £nd in [8].

We can use various numerical methods to solve
the system of linear equations (8). Moreover, we
should take into account that the matrix B̂α is sym-
metric and positive de£nite. Therefore it is possi-
ble to very ef£cient methods to solve (8).

The square-root method is one such method.
We may write B̂α = (T̂α)∗T̂α, where T̂α is an
upper triangular matrix. The system (8) takes the
form

(T̂α)∗T̂αẑα = f̂

Introducing the notation ŷα = T̂αẑα, we obtain
two equations

(T̂α)∗ŷα = f̂ , T̂αẑα = ŷα

Each of these equations can be elementary solved,
since each involves a triangular matrix.

Let write the equation (8) in the form of Euler
equation

(Â∗
hÂh + αĈ)ẑα = Â∗

hû

Using the square-root method, the tridiagonal ma-
trix Ĉ can be written as Ĉ = Ŝ∗Ŝ, where Ŝ is
bidiagonal. Changing to ŷα = Ŝẑα, we obtain

(Â∗
hÂh + αĈ)Ŝ−1ŷα = Â∗

hû

Multiplying the lefthand side by (Ŝ−1)∗, we obtain

(D̂∗D̂ + αÊ)ŷα = D̂∗û, D̂ = ÂhŜ
−1

where Ê is the identity matrix. The matrix D̂ may
be written as D̂ = Q̂P̂ R̂, where Q̂ is an orthogonal
(m×m)-matrix, R̂ is an orthogonal (n×n)-matrix,
and P̂ is a right bidiagonal (m× n)-matrix.

Now we make change of variables x̂α = R̂ŷα

and obtain (R̂∗P̂ ∗Q̂∗Q̂P̂ R̂+αÊ)R̂−1x̂α = D̂∗û,
or (P̂ ∗P̂+αÊ)x̂α = R̂D̂∗û = f̂ . The matrix P̂ ∗P̂
is tridiagonal, and the latter equation can be solved
by the sweep method. The operator Ŝ−1R̂−1 real-
izes the inverse transition form x̂α to ẑα.

Of course, to minimize M̂α[ẑ] one may use the
method of conjugate gradients.

In [8] you may £nd programs implementing the
considered algorithms.

SOURCEWISE REPRESENTED SETS
Consider the operator equation (1), where A :

Z → U is a linear bounded injective operator, Z
and U are normed spaces. Assume the next a pri-
ori information: the exact solution z̄ is sourcewise
represented with a linear compact operator B act-
ing from a re¤exive Banach space V into Z:

z̄ = Bv̄ z̄ ∈ Z, v̄ ∈ V (9)
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For reasons of simplicity we suppose that the oper-
ator B is injective, the operator A is known exactly
and instead of ū there is uδ such that ‖uδ− ū‖ 6 δ.

We want to construct a regularizing algorithm
to solve (1) with a priori information (9) using the
data {uδ, δ}. Set n = 1 and de£ne the set Zn:

Zn = {z ∈ Z : z = Bv, v ∈ V, ‖v‖ 6 n}

Then we minimize the discrepancy F (z) = ‖Az−
uδ‖ on the set Zn. If min{‖Az−uδ‖ : z ∈ Zn} 6

δ, then the solution is found. We denote n(δ) = n.
Otherwise, we change n to n + 1 and reiterate the
process. If n(δ) is found, then we de£ne the ap-
proximate solution zn(δ) of (1) as an arbitrary so-
lution of the inequality

‖Az − uδ‖ 6 δ z ∈ Zn(δ)

Theorem 2 [11]: The process described above
converges: n(δ) < +∞. There exists δ0 > 0
(generally speaking, depending on z̄) such that
n(δ) = n(δ0) for any 0 < δ < δ0. Approximate
solutions zn(δ) strongly converge to z̄ as δ → 0.

Proof The ball Vn = {v ∈ V : ‖v‖ 6 n} is a
bounded closed set in V . The set Zn is a compact
in Z for any n, since B is a compact operator. Due
to Weierstrass theorem the continuous functional
F (z) attains its exact lower bound on Zn.

Clearly, z̄ = Bv̄ ∈ ZN , where

N =

{

‖v̄‖ ‖v̄‖ is a positive integer
[‖v̄‖] + 1 otherwise

[·] is the integer part of a number. Therefore
n(δ) is a £nite number and there is δ0 such that
n(δ) = n(δ0) for any δ ∈ (0, δ0]. The inequal-
ity n(δ) > N for any δ > 0 is evident. Thus,
for all δ ∈ (0, δ0] the approximate solutions zn(δ)

belong to the compact set Zn(δ0), and the method
coincides with the quasisolutions method [12] for
all suf£ciently small positive δ. The convergence
zn(δ) → z̄ follows from the general theory of ill-
posed problems [8].

Remark 1: The method is a variant of the
method of extending compacts proposed in [13].

Theorem 3 [11]: For the method described
above there exists an a posteriori error estimate.
It means that a functional κ(uδ, δ) exists such that
κ(uδ, δ)→ 0 as δ → 0 and ‖zn(δ)− z̄‖ 6 κ(uδ, δ)
at least for all suf£ciently small positive δ.

Proof De£ne the function κ(uδ, δ) as

κ(uδ, δ) = max{‖zn(δ) − z‖ : z ∈ Zn(δ),

‖Az − uδ‖ 6 δ}

Since the operator A is bounded and Zn(δ) is a
compact set, then {z ∈ Zn(δ) : ‖Az − uδ‖ 6 δ}
is a compact set too. Therefore, κ(uδ, δ) < +∞.
Note that z̄ ∈ Zn(δ). Then the inequality ‖zn(δ) −
z̄‖ 6 κ(uδ, δ) is just for all δ 6 δ0. Since the
method coincides with the quasisolutions method,
then κ(uδ, δ)→ 0 as δ → 0.

Remark 2: The existence of the a posteriori
error estimation follows from [10]. If by Z̄ ⊂
Z we denote the space of sourcewise represented
with the operator B solutions of (1), then Z̄ =
⋃∞

n=1 Zn. Since Zn is a compact set, then Z̄ is
a σ-compact space.

An a posteriori error estimate is not an error
estimate in general meaning that is impossible in
principle for ill-posed problems [8, 2, 7]. But it be-
comes an upper error estimate of the approximate
solution for “small” errors δ < δ0, where δ0 de-
pends on the exact solution z̄.

Let A be a linear injective compact operator, Z
and U are Hilbert spaces. Consider the case, when
z̄ = (A∗A)p/2v̄, v̄ ∈ Z, p = const > 0.

Lemma 1: The operator (A∗A)p/2 is a com-
pact injective operator from Z to Z for any p > 0.

Proof The operator A∗A is compact and self-
adjoint. The compactness of (A∗A)p/2 follows
from the properties of eigenvalues of linear com-
pact selfadjoint operators [14]. The injectiveness
is obvious.

Consider the extending compacts method in
the case: Z and U are Hilbert spaces, V = Z,
A : Z → U is a linear compact injective operator,
B = (A∗A)p/2, p = const > 0.

Theorem 4 [11]: For this case the method of
extending compacts is an optimal in order of accu-
racy regularizing algorithm.

Proof Both Theorems 2 and 3 are valid, there-
fore the method of extending compacts is a regu-
larizing algorithm with an a posteriori error esti-
mation. For all δ ∈ (0, δ0], where δ0 is de£ned in
Theorem 1, the method coincides with the quasiso-
lutions method on the convex balanced compact set
BVn(δ0). Thus, the method is optimal in order of
accuracy [7]. From [15] it follows that the accu-
racy of the method is at least O(δp/(p+1)) for all
p > 0.

Clearly, in the method of extending compacts
instead of integer numbers n = 1, 2, . . . one may
use another increasing sequence r1, r2, . . . of posi-
tive numbers such that limn→∞ rn = +∞.
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The case, when the operators A and B are
known with errors, is considered in [11]. In the
paper we write only the results obtained there. Let
there be linear operators AhA

, BhB
and errors hA,

hB such that ‖AhA
−A‖ 6 hA, ‖BhB

−B‖ 6 hB .
Denote the vector of errors by η ≡ (δ, hA, hB).
For any integer n de£ne a compact set

Zn,hB
≡ {z ∈ Z : z = BhB

v, v ∈ V, ‖v‖ 6 n}

Set the problem: £nd a minimal positive integer
number n = n(η) such that the inequality

‖AhA
z − uδ‖ 6 δ+

(hA‖BhB
‖+ hB‖AhA

‖+ hAhB)n(η)

has a nonempty set of solutions. Then the a poste-
riori error estimation is

κ(uδ, AhA
, BhB

, η) ≡ hBn(η)

+ max
{

‖z − zn(η)‖ : z ∈ Zn(η),hB
,

‖AhA
z − uδ‖ 6 δ + (hA‖BhB

‖

+ hB‖AhA
‖+ hAhB)n(η)

}

We now apply the method of extending com-
pacts for the solution of the inverse problem for the
heat conduction equation (6). It is evident that for
any moment of time −tε < 0 there is

z(ξ) = Bv(x) =

l
∫

0

G(ξ, x, tε)v(x)dx

where v(x) = w(x,−tε). Suppose that V = Z =
U = L2[0, l].

Clearly, we have obtained the problem (1) with
a priori constraints (9). Therefore, we may solve
the problem using the method of extending com-
pacts. Let a = 1.0, l = 1.0, tε = 0.02, T = 0.1,
δ = 0.03 · ‖ū‖. As a function v̄(x)

v̄(x) =







10 0.3 < x < 0.5
−4 0.5 < x < 0.8
0 otherwise

is taken. Solving the problem we go to the
Fourier coef£cients of the function v(x) and esti-
mate their ranges. After that in any point of the
interval [0, l] we £nd the maximal and the minimal
values of a function that has Fourier coef£cients in
the found intervals. In Figure 2 there are the found
zη(x) solution and the area, which is the a posteri-
ori error estimation for zη(x). We obtain n(δ) = 5.

� ��� � ��� � ��� � ��� � ��
	

�

	

���

Figure 2. The approximate solution zη(x)
(−−−) and its a posteriori error estimation.

Other regularizing algorithms for ill-posed
problems with sourcewise represented solutions
may be found in [16].

COMPACT SETS
Suppose that there is the additional a priori in-

formation that the exact solution z̄ of (1) belongs
to a compact set M and A is a linear continuous
injective operator. It is shown in [8] that as a set of
approximate solutions of (1) it is possible to accept

Zη
M ≡ {z ∈M : ‖Ahz − uδ‖U 6 h‖z‖Z + δ}

Then zη → z̄ as η → 0 in Z for any zη ∈ Zη
M .

In practical problems there is often a priori in-
formation that the exact function of (1) is a mono-
tone or convex bounded function or a function with
a given Lipschitz constant. These functions are
given on line segments [a, b]. Then the sets may be
considered as compact sets. In [8] it is proved that
on some subsets of [a, b] any approximate func-
tion zη(x) in Lp[a, b] converges to z̄(x) uniformly.
Moreover, there is the algorithm to £nd the error of
the approximate solution for the sets [17].

Assume that z is a function z(x) on [a, b], u is a
function u(ξ) on [c, d], Z = L2[a, b], U = L2[c, d].
For many problems instead of the function uδ(ξ)
there are only its grid values. For the function
uδ(ξ) we assume that ‖uδ − ū‖C[c,d] 6 g(h),
where g(h) → 0 as h → 0. Therefore the grid
values for the function uδ(ξ) are close to the grid
values for the function ū(ξ). For the compact
sets M it is convenient to use grid values of the
function z(x), since the conditions of compactness
for M may be easily written for the grid values.
For example, these conditions for monotone non-
decreasing function are

zi+1 − zi 6 0 i = 1, n− 1,

C1 6 zi 6 C2 i = 1, n
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where zi are grid values of z(x) on a grid {xi}n1 ⊂
[a, b]. Thus to £nd an approximate solution of (1)
we go to £nite dimensional Euclidean spaces. De-
note a grid for u(ξ) by {ξj}m1 ⊂ [c, d] and grid
values by {uj}m1 . For any function z(x) ∈ M we
may introduce the piecewise linear function zn(x)
such that

zn(x) = zi +
zi+1 − zi
xi+1 − xi

(x− xi)

∀x ∈ [xi, xi+1], i ∈ 1, n− 1

(10)

By un(ξ) denote the functionAzn(x). Suppose the
operator Ah is known exactly. De£ne an approxi-
mate operator An as an operator such that ∀z ∈ Z:
Anz(x) ≡ un(ξ). Since for the considered func-
tions z(x) the inequalities C1 6 z(x) 6 C2 are
valid, then ‖zn − z‖ → 0 as n → +∞. The norm
of the operator A is bounded, so ‖Anz − Az‖ =
‖A(zn − z)‖ 6 ‖A‖ · ‖zn − z‖ → 0 as n→ +∞.
As the set of approximate solutions we take

Zη
M ≡ {z ∈M : ‖Anz − uδ‖U 6 ∆}

where ∆ = H + δ, H ≡ sup{‖Anz − Az‖ : z ∈
M}.

To distinguish variables for the in£nite dimen-
sional problem (1) from variables for the appro-
priate £nite dimensional one we use the symbol ˆ
(“hat”). Thus, to £nd the in£nite dimensional set
Zη
M we should £nd the appropriate £nite dimen-

sional set

Ẑη
M ≡ {ẑ ∈ M̂ ⊂ Zn :

‖Âẑ − ûδ‖Um 6 ∆̂} (11)

where ẑ = (z1, . . . , zn), û = (u1, . . . , um), Zn

and Um are £nite dimensional Euclidean spaces, Â
is anm×nmatrix, ∆̂ is an error of the £nite dimen-
sional problem. The sets M̂ of a priori constraints
are convex polyhedrons in the paper. Instead of the
exact grid values ūj of the function ū(ξ) there are
vectors ûδ = (u1, . . . , um) and δ̂ = (δ1, . . . , δm)
such that |uj − ūj | 6 δj , j = 1,m. For the vec-
tors ûδ and δ̂ we may construct the linear piecewise
functions ulδ(ξ) and uuδ (ξ) similarly to (10) using
the grid values uj − δj and uj + δj , j = 1,m, ac-
cordingly. As above, we assume that ∀ξ ∈ [c, d]:
ulδ(ξ) 6 ū(ξ) 6 uuδ (ξ).

Let Â, ûδ , M̂ , ∆̂ be known. To £nd a £nite di-
mensional solution of the problem (1) an approx-
imate solution ẑη ∈ Ẑη

M of (11) should be found.
We obtain a problem to minimize the discrepancy

Φ̂[ẑ] = ‖Âẑ− ûδ‖
2, which is convex and differen-

tiable, on the convex polyhedron M̂ . Clearly, the
Fréchet derivative Φ̂′[ẑ] = 2(Â∗Âẑ − Â∗ûδ). One
may £nd all the vertex of M̂ using the method to
cut convex polyhedrons [17]. Therefore it is possi-
ble to use the method of conditional gradient. Note,
for the setsM of monotone, convex functions these
vertex are found analytically in [8]. However, it is
better to use the method of projection of conjugate
gradients. The programs to solve these problems
are in [8]. After the vector ẑη has been found we
construct the function zη using the formula (10).
There are several applications of this approach in
astrophysics [18, 19] and in electronic microscopy
[20].

To £nd the error of the found solution we
should construct the set Zη

M or a set approximated
it. For this purpose we do the following. First,
we £nd the minimum and the maximum values for
each coordinate of Ẑη

M . Denote them by zli, z
u
i ,

i = 1, n. Secondly, using the found grid values we
construct functions zl(x) and zu(x) closed to Zη

M

such that ∀z ∈ Zη
M : zl(x) 6 z(x) 6 zu(x) for

each x ∈ [a, b]. Clearly, on the segment [a, b] it our
aim are the functions zl(x) = inf{z(x) : z ∈ Zη

M}
and zu(x) = sup{z(x) : z ∈ Zη

M}.
The set Ẑη

M = Ẑη ∩ M̂ , where M̂ is a convex
polyhedron and Ẑη = {ẑ : ‖Âẑ − ûδ‖ 6 ∆̂} is
an ellipsoid. Thus to £nd ẑ l, ẑu we should min-
imize linear functions on the convex bounded set
Ẑη
M . One may circumscribe a convex polyhedron

near Ẑη
M . The problem to minimize the linear func-

tion will be reduced then to a linear programming
problem, which can be solved with the usage of the
simplex-method. Since it is necessary to solve 2n
linear programming problems and the minimum of
a linear function are in its vertex, it is better to £nd
all vertexes of the polyhedron. For these purpose it
is possible to use the method to cut convex polyhe-
drons [17].

Now we consider the problem to £nd the func-
tions zu(x), zl(x) for the set Zη

M and M is a
set of non-decreasing functions. Clearly, ∀x ∈
[a, b]: zl(x) = inf{zln(x) : ẑ ∈ Ẑη

M}, z
u(x) =

sup{zun(x) : ẑ ∈ Ẑη
M}. Let the vectors ẑl =

(ẑl1, . . . , ẑ
l
n), ẑ

u = (ẑu1 , . . . , ẑ
u
n) be known exactly.

Then,

zl(x) =

{

zli x ∈ [xi, xi+1)
zln x = b

zu(x) =

{

zu1 x = a
zui+1 x ∈ (xi, xi+1]
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When we solve the problem numerically, the vec-
tors ẑl, ẑu are found approximately. Therefore
suppose that instead of ẑl, ẑu vectors ẑl∗ =
(zl∗1 , . . . , z

l∗
n ), ẑu∗ = (zu∗1 , . . . , zu∗n ) are known

such that ∀i ∈ 1, n: zl∗i 6 zli, z
u∗
i > zui . Using the

vectors ẑl∗, ẑu∗ we should construct the least vec-
tor ẑl and the most vector ẑu that satisfy to the last
inequalities. The least vector ẑl is considered as
the vector each coordinate of it is equal to the mini-
mum value of the appropriate coordinate for the set
Ẑη
M . The most vector ẑu is considered as the vec-

tor each coordinate of it is equal to the maximum
value. From the de£nition of a non-decreasing
function we obtain ∀i ∈ 1, n− 1: zi 6 zi+1 and
zui 6 zui+1, zli 6 zli+1. Therefore we set zl1 = zl∗1
and ∀i ∈ 2, n: zli = max(zli−1, z

l∗
i ). Simi-

larly, for ẑu we set zun = zu∗n and ∀i ∈ n− 1, 1:
zui = min(zui+1, z

u∗
i ). Evidently, if ∃i ∈ 1, n:

zli > zui , then Zη
M = ∅, i.e., the problem has no

solution.
Note that for the considered approach the main

data is the function uδ(ξ). Its grid values are used
only to approximate this function by the piecewise
linear one. This way is in some sense arti£cial,
since we really have only the vector ûδ of grid val-
ues. The inequality ‖uδ − ū‖ 6 δ determines a
wider set of functions in U than the inequalities
|uj− ūj | 6 δj , j = 1,m. Therefore if the problem
to construct the set Zη

M is solved by minimization
of ‖Âẑ − ûδ‖ exactly, then the found set is wider
than the “real” set of approximate solutions. To be
de£nite, for this “real” set we use symbol Z η

M .
We use the problem to minimize the consid-

ered quadratic function for the following reasons.
First, it is necessary to associate the in£nite dimen-
sional spaces Z, U with the appropriate £nite di-
mensional ones Zn, Um more closely. Secondly, if
only an approximate solution should be found and
we do not want to construct the functions zl(x) and
zu(x), then this problem is reduced to the prob-
lem to minimize a quadratic function on the convex
polyhedron, i.e., it is solved very fast. Thirdly, the
considered problem is changed very easy to £nd an
approximate solution of a real ill-posed problem,
i.e., when there is no information that the exact so-
lution z̄(x) belongs to a compact set M . Then we
should minimize a Tikhonov’s functional.

When we want to £nd not an error estimation of
an approximate solution but to construct the func-
tions zl(x) and ẑu(x), then we may use another
approach. Instead of the function uδ(ξ) we con-
sider the vector ûδ of the grid values as the given

data. The choice of the norm for the space U is not
important, since the function uδ(ξ) is not approxi-
mated by a function of the vector ûδ.

Therefore, we may obtain the following in-
equalities

−H−
j − δj 6 Aj ẑ − uj 6 H+

j + δj

j = 1,m (12)

where Aj are n vectors. The set of all the points
ẑ ∈ Zn satisfying these inequalities is denoted by
Ẑη
M . For the reasons written above the inclusion
Ẑη
M ⊂ Zη

M is valid. After the functions zl(x),
zu(x) have been constructed for the set Ẑη

M we ob-
tain the “real” setZη

M of the approximate solutions
of the problem (1). The construction of the func-
tions zl(x), zu(x) for the set Ẑη

M is the same as
for the set Ẑη

M . Since the inequalities (12) are the
equations of half-spaces in Zn, i.e., the set Ẑη

M is
a polyhedral set, then to construct the vectors ẑl,
ẑu some linear programming problems should be
solved.

There is a difference between the approaches
considered in this section. In the £rst approach to
£nd the vectors ẑ l, ẑu it is necessary to £nd an ap-
proximate solution ẑ ∈ Ẑη

M , since we approximate
the convex set Ẑη

M by a convex polyhedron when
solving the problems to minimize linear functions.
In the second approach an approximate solution is
not found, it may always be constructed after the
vectors ẑl, ẑu have been found.

Let us solve the problem (6) on the set of con-
vex upward functions z(x) such that 0 6 z(x) 6

C. Assume that a = 1.0, l = 1.0, T = 1.0,
C = 1.2, n = 20. In Figure 3 there are the exact
solution z̄(x) and the functions zl(x), zu(x) found
for the set Zη

M .

Figure 3. The exact solution z̄(x) (−−−−), the
functions zl(x), zu(x) for the sets Zη

M (——).

CONCLUSIONS
In the paper we have shown how to con-

struct regularizing algorithms and provide an er-
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ror estimation using a priori information about
the exact solution. We discuss the algorithms
for a general ill-posed problem (minimization on
Tikhonov’s smoothing functional), for a problem
with a sourcewise represented set of solutions (the
method of extending compacts) and for ill-posed
problems on compact sets. If there is more infor-
mation about the exact solution, then there is more
information about properties of approximate solu-
tions, i.e., the convergence, the a posteriori error
estimation, the uniform error estimation.

The regularizing algorithms considered in the
paper are applied in astrophysics [18, 19], elec-
tronic microscopy [20], vibrational spectroscopy
[21].

The authors thank the Russian Foundation for
Basic Research for the £nancial support (grant 02-
01-00044).
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ABSTRACT
A discussion of various methods used to

compute sensitivity information is presented. The
methods include differentiation of analytical
solutions, finite difference, complex step, software
differentiation, sensitivity equation method, and
adjoint methods. Example calculations are
presented for several of these methods. It is
emphasized that sensitivity information is
important in its own right as opposed to simply
being one of the many ingredients necessary to
perform parameter estimation and/or optimization
calculations. Strengths and weaknesses of the
various sensitivity methods are discussed.

NOMENCLATURE
A area, m2

C = ρcp, volumetric heat capacity, J/m3-K
cp specific heat, J/kg-K
h convective heat transfer coefficient, W/m2-K
k thermal conductivity, W/m-K
[K] global conduction matrix
L thickness of slab, m
np number sensitivity coefficients (parameters)
ns number of sensors

parameter vector
pi element of 

heat flux, W/m2

T temperature, K
Tp scaled sensitivity coefficient, 
t time, s

α thermal diffusivity, m2/s
ε emittance
σ Stefan-Boltzmann constant

INTRODUCTION
When analyzing the response of a thermal

system, a large number of parameters must be
specified to characterize the system. These

p{ }
p{ }

q

p∂T= ∂p⁄

parameters include material properties (density,
specific heat, thermal conductivity, emittance,
etc.), geometry, and boundary conditions (heat
flux, convective heat transfer coefficient, etc.).
During the design phase of a project, some of the
parameters may change as the design evolves. In
many instances, these parameters are not known
with a high degree of precision. Also, a designer
may be free to choose among many different
competing materials. As an example, a design
might call for 304 stainless steel; alternative
stainless steels such as 316 might work equally
well and could be used interchangeably
(depending on availability). Even if we
consistently use 304 stainless, there may be
manufacturer-to-manufacturer variability as well
as lot-to-lot variability from a single manufacturer.
Consequently, we need to play “what if” scenarios
with regard to the material properties in order to
assure ourselves that the lot-to-lot or
manufacturer-to-manufacturer variability does not
produce undesirable consequences. 

Historically, these “what if” scenarios have
been performed on an ad hoc basis; selected
parameter values would be changed and the
analysis repeated. Without the aid of a computer,
only a limited number of parameter studies could
be performed. However, today’s computers now
make it possible to perform a wide range of
parameter studies. Even with the computer, these
parameter studies still tend to be performed on an
ad hoc basis. Based on a designer’s intuition, the
most important parameters would be varied over
some range. Since intuition is only as good as
prior experiences, it is possible for even an
experienced designer or analyst to miss an
important parameter. It is also time consuming to
study parameters in an ad-hoc manner.
Consequently, a more formal procedure needs to
be developed. This is where sensitivity analysis
plays an important role. 

A desirable goal of the design process is to
produce robust designs that can reliably function
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over a wide range of operating conditions. This is
particularly true for mission critical components.
For example, the on-board flight controller for a
rocket system must be capable of functioning
when the ambient temperatures range from high
altitude space to desert launch pad. Is it possible
for the hardware to operate if the system
parameters differ from the nominal values
assumed in the analysis phase? The robustness of
a design can be investigated by means of a
sensitivity analysis.

Sensitivity analysis is defined as the study of
how variations in input parameters of a
computational model cause variations in output.
Input parameters would include material
properties, boundary/initial conditions, and
geometry; output variables might be displacement,
stress and/or temperature. A measure of this
sensitivity is termed the sensitivity coefficient and
is (mathematically) defined as the partial
derivative of the output variable with respect to
the parameter of interest. For a general discussion
of sensitivity coefficients, see Beck and Arnold
[1] and Beck, et al. [2]. Since the focus of this
work is on thermal problems, let us define the first
order sensitivity coefficient of the temperature
field with respect to the thermal conductivity k as

(1)

where it is understood that all parameters other
than thermal conductivity are held fixed during
the differentiation. The sensitivity coefficient is
also a field variable in that it depends on position
and time just like temperature. In order to
understand how one might use the sensitivity
coefficient to predict how a system responds if
you perturb the thermal conductivity, let us
expand the temperature field in a Taylor series
about the mean value of the thermal conductivity

. (2)

From this expansion, one can see how the first
order sensitivity coefficient is needed for a first
order analysis and higher order sensitivity
coefficients are required for higher order analysis.
This work will focus on first order sensitivity
analysis as the computational load scales
approximately linearly with the number of
parameters. For a second order analysis, the
computational load scales as the square of the
number of parameters; this may become

thermal conductivity sensitivity coefficient 

k∂
∂ T x t k;,( )=

T x t  k;,( ) T x t  k;,( ) k∂
∂T

k

+= k k–( )

1
2--- k2

2

∂
∂ T

k

k k–( )
2

. . . + +

prohibitive for problems with hundreds of
parameters. If the system response and first order
sensitivity coefficients are known for the nominal
parameter values, Eq. (2) (with higher order terms
neglected) can be used to compute the response at
a neighboring point in parameter space. If higher
order sensitivity coefficients are required, an
initial approach might be to compute second order
sensitivity coefficients only for those selected
parameters that have large first order sensitivity
coefficients.

In some cases, only the sign of the sensitivity
coefficient is important. If for example, the length
of a system is increased, does the critical
temperature go up or down?

In many instances, the sensitivity coefficient is
often required as an intermediate step in the
solution of parameter estimation, function
estimation, uncertainty propagation, and
optimization problems. The emphasis of this work
is on calculating sensitivity coefficients because
they have importance themselves as opposed to
just numbers that are fed into a parameter
estimation or optimization process. 

SUMMARY OF METHODS FOR COMPUT-
ING SENSITIVITY COEFFICIENTS

Sensitivity coefficients can be calculated by
many methods. These methods include the
following:
• differentiation of analytical solutions
• finite difference
• complex step
• software differentiation (e.g. ADIFOR/

ADIC)
• sensitivity equation method
• adjoint methods

Each of these methods has it place. In many
instances, multiple methods will be used on the
same problem to verify that the primary method
produces the desired results. Example calculations
will be presented for most of these methods.

DIFFERENTIATION OF ANALYTICAL 
SOLUTIONS

Differentiation of analytical solutions is
probably the simplest method. It involves
differentiating an analytical solution with respect
to the parameter(s) of interest. If the analytical
expressions are very complex, then symbolic
algebra programs such as Mathematica®, Maple®,
Macsyma®, etc. will prove invaluable. Obviously,
this approach is limited to problems in which
analytical solutions are available; this severely
limits the problems which can be addressed by
this method. Recent work by McMasters, et al. [3]
using Green’s functions has produced software
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that will provide and evaluate analytical solutions
for a wide variety of 3-D time dependent heat
conduction problems in rectangular geometries. It
has been the author’s experience that one of the
most significant uses of this method is to serve as
a tool to verify other approximate numerical
methods.

As an example of this method, consider a 1-d

configuration that might be used in the
comparative method for the determination of
thermal conductivity. This geometry is shown in
Fig. 1. Fixed boundary temperatures are applied
on the two ends and the steady state temperature
profile is measured. The conductivity of one
specimen is known and the other is to be
determined. The analytical expressions for the
temperature profile are

(3)

. (4)

In the design of this experiment, one would like to
have a large sensitivity to the unknown thermal
conductivity and a small sensitivity to the known
thermal conductivity. The two thermal
conductivity sensitivity coefficients can be
computed analytically and are given by

(5)

(6)

The temperature and conductivity sensitivity
coefficient profiles are shown in Fig. 2. Each
profile consists of two straight line segments. The
sensitivity coefficient  is positive throughout,
which indicates that increasing k1 increases the

L1

Tb1

x

L2

Tb2
k1 k2

Figure 1.   Problem definition for 1-D two layer 
slab problem.
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∂T1 Tk1
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–( ) 1 x
L2
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Tk1
Tk2

–

= =

= ,  0 x L2.≤ ≤

Tk1

temperature. The sensitivity coefficient  is
negative throughout, which indicates increasing k2
decreases the temperature. The location of
maximum thermal conductivity sensitivity  is
at the interface between the two regions. This
might seem strange at first, but remember that the
conductivity sensitivity is identically zero on the
boundaries and positive in between. Consequently,
this forces the maximum sensitivity to be at an
interior point. Note that the two conductivity
sensitivity coefficients are correlated. This means
that from a parameter estimation perspective, you
can not estimate both thermal conductivities from
the same experiment. Hence, the name comparator
is appropriate.

The above sensitivity coefficients can be used
to choose the specimen lengths as well as sensor
locations.

FINITE DIFFERENCE DETERMINATION OF 
SENSITIVITY COEFFICIENTS

If a sensitivity analysis requires an analytical
solution, then we would be severely limited in the
problems that we can address. Fortunately, general
purpose software is available to numerically solve
complex three dimensional, time dependent
thermal problems. The discretization schemes
include finite difference, finite volume, control
volume finite element and finite element methods.
In industry, commercially available software is
often used and source code is generally not
available. For this case, sensitivity coefficients are
often computed by running the software for two
different values of a parameter and using a first
order forward difference. Scaled sensitivity
coefficients are then determined from

x/L1 or x/L2
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Figure 2.   Temperature profile and conductivity 
sensitivity coefficients for two layer slab prob-
lem.
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(7)

This approach requires n+1 solutions for the
temperature field and will be first order accurate
in ∆pi. If a second order accurate central
difference is used instead, then 2n+1 solutions of
the temperature field will be required. There are
many examples in the literature where this
approach has been successfully used. An
advantage of this approach is that you numerically
solve the problem with different inputs. Since no
source code modification is required, the software
development costs for this method will be
minimal. Commercial software can be used to
accomplish this, provided the computational
results are available with sufficient precision. 

Some numerical experimentation is strongly
recommended to determine an acceptable value
for the finite difference step size ∆p. If it is too
large, the truncation errors will be excessive; if it
is too small, machine round off may become a
problem. In order to emphasize the importance of
this issue, consider the one dimensional, constant
flux problem given in Fig. 3. This example was

solved numerically using a control volume finite
element code with a lumped capacitance matrix
and a fully implicit time integrator; double
precision on a 32-bit machine (nominally 15
significant digits) was utilized. The final problem
time was 20 s, which corresponded to a
dimensionless time αt/L2 = 0.5. The
dimensionless thermal conductivity sensitivity
coefficient at x = 0 and t = 20 s was computed,
utilizing a range of values for ∆k for a forward
difference approximation. The relative error in
each computation was computed from

(8)

where the subscripts n and a represent numerical

Tpi
pi T p1 p2 … pi ∆pi+ … pn, , , , ,( )

T p1 p2 … pi … pn, , , , ,( )–
[

] ∆pi⁄ O ∆pi( ).+
=

Figure 3.   Schematic of constant heat flux 
problem for 1-d planar slab.
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To = 300 K
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α = 2.5x10-6 m2/s
qL/k = 400 K
adiabatic back wall

q

% Error 100
Tkn

Tka
–

Tka

--------------------=

and analytical, respectively; the error results are
presented in Fig. 4. Uniform grids of 10 and 20

elements were used along with a fixed grid scale
Fourier number (  = 5). Focusing on the
upper right hand corner of this figure, as you
decrease the relative finite difference step size
(∆k/k), the error decreases initially and then
reaches a plateau. From theoretical considerations
of the Taylor series truncation error, the errors in
the finite difference approximation to the
sensitivity coefficient (forward difference) would
decay linearly with decreasing finite difference
step size. However, there are additional
discretization errors in the numerically generated
temperature field. The curve in Fig. 4 labeled
“first order” is such a linear relationship and is
shown for reference. Due to the errors in the
numerical solution for the temperature field, it is
obvious that the sensitivity coefficient errors do
not decay linearly as the finite difference step size
is decreased. This is particularly noticeable for the
10 element case. As the mesh is refined from 10 to
20 elements, the errors are closer to the linear
relationship in the upper right hand portion of the
figure. If the finite difference step size is made
even smaller, it is possible that the errors will
become even larger. An example of this behavior
is shown in the next section.

COMPLEX STEP METHOD
The main criticism of the finite difference

method for computing sensitivity coefficients is
that the computational results exhibit a step size
dependence. In practice, this means that for each
(class of) problem(s), one needs to perform a step
size parameter study for each sensitivity
coefficient. Unfortunately, this could be a time
consuming process for practical problems with

∆k/k
%

Er
ro

r

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-110-1

100

101

10 elements
20 elements
1st order line

Figure 4.   Thermal conductivity sensitivity coef-
ficient errors at x = 0 and t = 20 s as a function of 
∆k/k for two grid refinements.

α∆ t ∆x2⁄
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ten’s of parameters. The complex step method
offers a practical method of eliminating the step
size dependence of finite difference methods, but
at the expense of software modification and
increased run time. 

The derivation of the complex step method
follows from a Taylor series expansion of the real
valued function f about the complex (imaginary)
parameter value  with . This
series is

(9)

Taking the imaginary part of Eq. (9), one obtains

. (10)

Solving for the first derivative yields

. (11)

This simple result says that the derivative of
the function is obtained by taking the imaginary
part of the complex function  divided by
the real parameter step size ∆p. Note that this
result is second order accurate while Eq. (7) is first
order accurate. Computational results for the
complex step method have been presented by
Martins, et al. [4]; they have applied the method to
both analytical expressions as well as
multidimensional structural and fluid dynamic
codes. They demonstrated that the step size can be
made arbitrarily small without suffering the loss of
accuracy associated with the finite difference
method. However, this result comes at the expense
of code modification and increased run times

The computational procedure is as follows: 1)
in the source code, declare all parameter values
and the function f to be complex variables; 2) for
the parameter p of interest, replace p by  in
the input; 3) execute the software to compute f as a
complex variable; 4) evaluate Eq. (11) for the
sensitivity coefficient for parameter p. The
process outlined above must be repeated for each
parameter. Hence, the process of generating
multiple sensitivity coefficients is similar to that
for the finite difference method in that multiple
runs of the same software are required. However,
the big difference is that the step size ∆p in Eq.
(11) can be set to roughly machine zero and the
results will be independent of step size. The
complex step method will eliminate the (generally
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annoying) step of a parametric study in step size.
The complex step method has been applied to

the same example considered in
DIFFERENTIATION OF ANALYTICAL
SOLUTIONS and the results are given in Fig. 5.

For comparison purposes, the central finite
difference results are also shown. Both methods
are second order accurate in the finite difference
step size. Therefore, one would expect similar
accuracy provided there are no machine precision
problems. Both methods display second order
behavior for step sizes down to 10-5, as evidenced
by the straight line behavior with a slope of -2.
Further reductions in step size below 10-5 cause
the central difference method errors to increase.
Contrast this with the complex step method which
is capable of driving the errors to machine zero.
Although there may be a wide range of step sizes
for which the central difference method produces
acceptable accuracy, one is never sure what this
range might be for a different problem. The rule of
thumb on step size that is given in Nocedal and
Wright [5] suggested that 2x10-11 would be
appropriate for a central difference. For this
problem, it appears that this rule of thumb is
optimistic.

The authors have also applied the complex step
method to a finite volume heat conduction code
and computed sensitivity to multiple thermal
conductivities and a contact conductance.
References [6]-[9] apply the complex step method
to compute sensitivity coefficients for a variety of
aerodynamic problems. Some computational aids
for converting a code from real to complex can be
found in Reference [10].

SOFTWARE DIFFERENTIATION
The software differentiation method is a recent
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Figure 5.   Relative error in conductivity sensi-
tivity coefficient as a function of finite differ-
ence step size.
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development. An existing source code
(FORTRAN 77 or C) is input into a special pre-
processor (ADIFOR or ADIC) that performs line-
by-line differentiation of the original source code
while producing a new source code for the
sensitivity coefficient. Examples of this
technology are presented by Bischof, et al. [11],
where they have successfully applied it to large
codes. If there are multiple parameters for which
sensitivity is desired, multiple runs of the pre-
processor ADIFOR or ADIC are required. If the
original source code is modified (enhancements,
bug fixes, etc.), then the pre-processor must be run
again. Since our work has been focused primarily
on techniques that can be readily applied to
software under development as well as many
parameter problems, we have not personally
exercised the software differentiation methods.

SENSITIVITY EQUATION METHOD
A sensitivity coefficient is a field variable just

like temperature and will have its own describing
equation. In this section, we will demonstrate how
to derive the field equation(s) for sensitivity
coefficients; this method is termed the Sensitivity
Equation Method (SEM). This process involves
the differentiation of the describing equation,
along with associated initial/boundary conditions,
with respect to the parameters of interest. These
sensitivity equations are then solved numerically,
using the same kind of algorithm as is used to
solve the energy equation. To demonstrate this
process, consider a 1-D planar slab with a
radiation boundary condition on one face and
convection boundary condition on the other face;
this problem is shown schematically in Fig. 6. Due

to the nonlinear radiation boundary condition, this
problem is unlikely to have an exact analytical
solution. Hence, a numerical solution will be
explored. The energy equation and boundary
conditions can be written as follows:

(12)

(13)

x

L

q εσ Tr
4 T4–( )= q h T T∞–( )=

Figure 6.   Schematic of 1-D problem with radi-
ation and convection boundary conditions.

C t∂
∂T

x∂
∂q+ 0=

q k x∂
∂T–=

(14)

(15)

. (16)

The parameters for this problem are given by the
vector

(17)

Now, we differentiate Eq. (12)-Eq. (16) with
respect to each element in the parameter vector,
Eq. (17). Starting with the volumetric heat
capacity sensitivity coefficient, we will
differentiate Eq. (12) with respect to C, resulting
in

(18)

where it has been assumed that the order of
differentiation can be interchanged. Again, we
will introduce the scaled sensitivity coefficient by
multiplying Eq. (18) through by C to obtain

. (19)

The volumetric heat capacity sensitivity
coefficient is readily identified in Eq. (19). The
sensitivity of the heat flux to changes in the
volumetric heat capacity can be determined by
differentiating Fourier’s Law with respect to C,
resulting in

. (20)

Eq. (19) can now be written as

. (21)

Eq. (19) is the partial differential equation that
describes the field variable TC. Note that the left
hand side of this equation is identical in form to
that of the original energy equation. However,
there is an apparent source term on the right hand
side that was not present in the energy equation. If
the temperature field is known, then this source
term is a known function of position and time.

We will continue the development of the
equations governing the behavior of TC by
differentiating the initial/boundary conditions with
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respect to C. Evaluating Eq. (20) at the x = 0
boundary and differentiating Eq. (14) with respect
to C, this boundary condition becomes

. (22)

While the left hand side boundary condition for
the energy equation was nonlinear and
inhomogeneous, the corresponding TC boundary
condition is linear and homogeneous. This
assumes again that the temperature field is known
prior to the computation of the sensitivity field.
Through a similar procedure, the boundary
condition for the right face is given by

. (23)

This boundary condition is linear and
homogeneous. Since the initial condition is
independent of the volumetric heat capacity, the
corresponding sensitivity initial condition is the
zero condition

. (24)

The formulation of the field equation and
associated boundary/initial conditions for TC is
complete and is given by Eq. (20)-Eq. (24). Due to
the similarities in form of the energy equation and
the volumetric heat capacity sensitivity equation,
the same technique can be used to numerically
solve these equations. It does not matter if the
discretization algorithm is finite difference, finite
volume, control volume finite element or finite
element. In fact, the existing software coding used
to include the effects of capacitance, diffusion and
source terms for the energy equation can be used
to form the analogous terms for the sensitivity
equation. The computational procedure is to first
time march the energy equation one time step and
then solve the sensitivity equation. The source
term for TC in Eq. (21) is known from the
temperature solution. Even though the original
energy equation was nonlinear because of the
radiation boundary condition, the corresponding
sensitivity equation is a linear equation. This
linearity may afford computational savings,
depending on the algorithm used to solve the
nonlinear algebraic equations resulting from the
discretization of the energy equation.

From Eq. (21), the time rate of change of
temperature drives the volumetric heat capacity
sensitivity field. If the temperature field is not
changing with time, the volumetric heat capacity
sensitivity will tend toward zero. For a problem
with a positive temperature rise rate, this source
term is negative, suggesting a negative sensitivity
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to the volumetric heat capacity. Similarly, for a
body that is cooling, the source term is positive
which suggests a positive sensitivity to the
volumetric heat capacity. As one can see, insight
into the thermal response can be gained by simply
studying the describing equation for the sensitivity
coefficients. In some cases, trends may be
determined without actually solving the sensitivity
equations. However, it is best to continue the
process and numerically solve the sensitivity
equations in order to gain maximum insight.

Next, we will derive the equation for the
thermal conductivity sensitivity. The thermal
conductivity sensitivity equation will be more
complicated because thermal conductivity appears
in both the differential equation and boundary
conditions. Following the same procedure as
above, the differential equation for Tk can be
written as

. (25)

Differentiating Fourier’s Law with respect to
thermal conductivity k, we obtain

. (26)

While Fourier’s Law involves a single term, the
sensitivity of Fourier’s Law with respect to the
thermal conductivity involves two terms. The first
term involves what can be thought of as a flux of
sensitivity information plus a second term that is
the heat flux itself. Combining Eq. (25) and Eq.
(26), the Tk equation becomes

. (27)

Again, the left hand side of the Tk equation is
identical in form to the energy equation; the right
hand side has a fictitious source term that is equal
to the negative of the gradient of the heat flux.
Gradients in local heat flux drive the thermal
conductivity sensitivity field. 

Care must be exercised in deriving the
boundary conditions for the Tk equation.
Intuitively, one might be inclined to derive a
boundary condition on . However, we
need a condition on  which can simply be
derived by differentiation of the right hand sides
of Eq. (14) and Eq. (15) with respect to the
thermal conductivity. The results are

(28)
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. (29)

Again, the nonlinear, inhomogeneous boundary
condition for the energy equation has become a
linear, homogeneous boundary condition for the
thermal conductivity sensitivity equation,
provided the temperature field is known. The
initial condition simply becomes 

. (30)

The only inhomogeneous term in the thermal
conductivity sensitivity equation is the gradient of
heat flux term on the right hand side of the Tk
equation in Eq. (27). 

We have addressed two of the three gradient
type boundary conditions that commonly occur.
The third type of gradient boundary condition is a
specified heat flux. This kind of boundary
condition can occur, for example, when there is an
electric heater present. Since the magnitude of a
specified flux is independent of either the thermal
conductivity or the volumetric heat capacity, this
boundary condition becomes “adiabatic like”

(31)

where the subscript b designates the generic
boundary along which this boundary condition is
applied. Note that for the thermal conductivity
sensitivity coefficient,  along a
specified flux boundary. This is a subtle point that
requires careful thought. 

The last boundary condition type that we will
address is the specified temperature boundary
condition. Again, since this is an imposed
boundary condition that is independent of
volumetric heat capacity or thermal conductivity,
specified temperature boundary conditions
become specified sensitivity coefficient boundary
conditions with a value of zero.

(32)

Of the parameters listed in Eq. (17), the thermal
conductivity k and volumetric heat capacity C are
special in that they both appear in the describing
differential equation. For their respective
sensitivity describing equation, inhomogeneous
terms are present. For all other parameters that do
not appear in the energy differential equation,
their sensitivity describing equation can be written
as

(33)
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where Tp is the sensitivity coefficient for
parameter p; note that this is a homogeneous
equation.

The boundary conditions for the four
remaining parameters in Eq. (17) will now be
addressed. Differentiating the x = 0 boundary
condition given by Eq. (14) with respect to these
parameters results in

(34)

(35)

(36)

. (37)

Rather than using Tr and T∞ to scale their
respective sensitivity coefficients, a temperature
change ∆Tr or ∆T∞ is used. This eliminates
problems with zero temperature when absolute
temperature units are not used. These reference
temperature changes represent a characteristic
temperature change for the problem. As an
example, one might choose the maximum
temperature rise of the system, Tmax - Ti. The same
reference temperature rise could be used for both
Tr and T∞ sensitivities, although this is not
necessary. Since the describing equation is
homogeneous for those parameters that do not
appear in the energy equation, the
inhomogeneities in the boundary or initial
conditions will drive the remaining sensitivities.
For example, the emissivity sensitivity is driven in
Eq. (34) by the radiative heat flux term

.

By now, one should see a pattern developing in
the sensitivity equations. With this in mind, the
remaining results will be given as
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(39)

(40)

. (41)

The inhomogeneities in the h and T∞ sensitivity
boundary conditions at x = L are the convective
heat fluxes  and  respectively.

We have discussed the initial conditions for
both TC and Tk, Eq. (24) and Eq. (30) respectively;
they are both zero. It is easy to see that if the
parameter of interest is anything other than the
initial temperature itself, the initial condition for
Tp will be zero. The initial conditions can be
summarized as follows:

. (42)

As with other sensitivity coefficients related to
temperature, we have used a temperature change
as a scale factor.

After the implementation of the sensitivity
equations, the first step is to perform verification
calculations to insure that the equations are being
solved correctly. Since we already have evaluated
the analytical solution for the problem described
in Fig. 3, we will repeat the solution to this
problem using a control volume finite element
method with a lumped capacitance and fully
implicit time integration scheme. We will compute
a percent error as a function of a grid metric using
Eq. (8). This will allow one to verify that the order
of convergence of the scheme as the grid is
refined. All calculations were performed with a
fixed grid scale Fourier number (  = 5.0).
We focus on the spatial location x = 0 for times of
4 s (αt/L2 = 0.1) and 20 s (αt/L2 = 0.5). The grid
refinement results are shown in Fig. 7. The 4 s
results are all less accurate than the 20 s results.
The errors for Tk are highest for a given time;
however, the ordering of the errors for the other
two sensitivity coefficients are not consistent as
time increases. Although not shown, the error in
temperature rise will be the same as the error in
the heat flux sensitivity. The line labeled “2nd
order” is a reference line indicating a slope of -2;
the algorithm used to numerically solve the
equations is theoretically second order accurate
for a spatially uniform mesh. These results
confirm the approximate second order behavior of
the numerical algorithm for sensitivity
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coefficients. The results of Fig. 7 also point out
that if a certain level of accuracy is required for all
sensitivity coefficients, then a different mesh may
be required for each sensitivity coefficient. For
example, if an error of approximately 0.4% is
required, then 10, 20, and 40 elements would be
required for Tq, TC and Tk respectively for αt/L2 =
0.5.

Additional details on the sensitivity equation
method can be found in references [12]-[30].

COMPARISON OF SEM AND DISCRETE 
ADJOINT METHODS FOR STEADY STATE 
PROBLEMS

The discrete form of the steady state energy
equation can be written in matrix-vector form as

(43)

where [K] is the global conduction matrix, {T} is
the vector of unknown temperatures and {S} is the
source/right hand side vector. Sensitivity
coefficients can be computed by differentiating
the discrete energy equation with respect to pi, an
arbitrary element of the parameter vector {p}, to
obtain

. (44)

Experience indicates that scaled sensitivity
coefficients, which are defined by

(45)

are useful concepts. Multiplying Eq. (44) by the
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Figure 7.   Grid refinement error in sensitivity 
coefficient calculation for 1-D planar slab with 
constant flux.
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nominal parameter value pi and rearranging, the
linear system of equations that determines the
scaled sensitivity coefficient becomes

(46)

For each parameter value pi, an additional system
of linear equations must be solved. This solution
will give the scaled sensitivity coefficient at each
nodal point in the computational domain. For
parameter sensitivity studies, it may be desirable
to have the sensitivity coefficient at every point in
the computational domain. However, in parameter
estimation work, the sensitivity coefficients may
be desired only at selected locations. For example,
in the estimation of thermal properties from
temperature measurements, a finite number of
sensors are used and the sensitivity coefficients
are desired only at the temperature sensor
locations. 

Adjoint methods offer some potential
computational savings when the number of sensor
locations are few and the number of parameters
are large. Following Kirsch [31], the adjoint
method can be developed by multiplying the
sensitivity coefficient equation, Eq. (46), by the
inverse of the global conduction matrix.

. (47)

The left hand side of Eq. (47) yields the vector of
sensitivity coefficients for parameter pi at all nodal
locations; however, we are only concerned with
the sensitivity coefficient at a few selected
locations in the computational domain. To extract
the sensitivity coefficient at a single location in the
computational domain, define a row-vector that
has zeros everywhere except for unity at the j-th
nodal location

(48)

and multiply Eq. (47) by this vector results in

(49)

Eq. (49) gives the sensitivity coefficient for
parameter pi at nodal location j. It is
computationally convenient to define the
coefficient of the square brackets on the right hand
side of Eq. (49) as the adjoint variable vector and
is

. (50)

K[ ] Tpi
{ } pi

∂ S{ }
∂pi

------------ pi
∂ K[ ]
∂pi

------------ T{ } ,  i– 1 … np, ,= =

K[ ] 1– K[ ] Tpi
{ } K[ ] 1– pi

∂ S{ }
∂pi

------------ pi
∂ K[ ]
∂pi

------------ T{ }–=

Ij{ } T 0 … 0 1 0 …0, , , , ,{ }=

Tpi
{ } j Ij{ } T K[ ]

1–
K[ ] Tpi

{ }

Ij{ } T K[ ]
1–

pi
∂ S{ }
∂pi

------------ pi
∂ K[ ]
∂pi

------------ T{ }– .

=

=

ξ j{ } T Ij{ } T K[ ]
1–

=

Taking the transpose of Eq. (50) yields

(51)

which can be written as

. (52)

Although Eq. (52) is valid at all n-nodal locations,
the adjoint variable approach is attractive only
when the number of sensors ns is a small subset of
n. Note that Eq. (52) is independent of the
particular sensitivity coefficient one is trying to
compute; this means that the adjoint variable
vector depends only on the spatial (sensor)
location in the computational domain (and [K]).
Once Eq. (52) has been solved for the adjoint
variable vector , the sensitivity coefficient
for all parameters of interest (at this nodal
location) can be computed from Eq. (49), which is
written as

(53)

Eq. (46) defines the discrete form of the SEM
while the Eq. (52) and Eq. (53) define the discrete
adjoint equations. Both approaches have a single
left hand side matrix but multiple right hand side
vectors. The number of right hand side vectors can
be used as a rule of thumb for when one method is
computationally more efficient than the other.

use SEM when np < ns
use adjoint when ns < np

Obviously, when np and ns are approximately
equal, this rule of thumb will have to be inspected
more closely.

FIRST ORDER PROPAGATION OF 
UNCERTAINTY IN COMPUTATIONAL 
MODELS

Sensitivity coefficients are used in the
propagation of uncertainty through computational
models. The process is very analogous to
experimental uncertainty estimation. Following
Coleman and Steele [32], the first order
uncertainty propagation equation is

. (54)

Note that the uncertainty propagation equation has
been written in terms of scaled sensitivity
coefficients. If the sensitivity coefficients are
computed at every nodal location in a
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computational domain, then the uncertainty
estimation due to parameter uncertainty is just a
post processing of all the field variables. An
uncertainty estimation for a thermally activated
battery is given in Blackwell, et al. [15].
Additional details on uncertainty propagation are
contained in Fadale [33] and Fadale and Emery
[34].

SUMMARY
Six methods for computing sensitivity

coefficients have been discussed. Example
calculations were presented for several of them.
The methods discussed can be divided into two
broad categories; code invasive and code non-
invasive. The finite difference method is non-
invasive and probably the most general; it can be
applied when the source code is not available.
This means it can be used in conjunction with
commercially available software. An objection to
the finite difference method is that for non-linear
problems such as temperature dependent
properties, each perturbed parameter solution is a
non-linear solve. If the same problem is solved
using the sensitivity equation method (very code
invasive), the sensitivity coefficient equations are
linear equations. If the source code is available
and the sensitivity equation method is not a viable
option, then the complex step method should be
seriously considered since it eliminates the step
size issue. No matter which method is chosen to
be the primary method, differentiation of
analytical solutions is an important part of the
process of verifying that your equations have been
implemented correctly.

ACKNOWLEDGMENTS
This work was funded by Sandia National

Laboratories, a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000. 

REFERENCES
1. J. V. Beck and K. J. Arnold, Parameter Esti-

mation in Engineering and Science, Wiley & 
Sons, New York, 1977.

2. J. V. Beck, B. F. Blackwell, and C. R. St. 
Clair, Inverse Heat Conduction-Ill Posed 
Problems, Wiley & Sons, New York, 1985.

3. R. J. McMasters, K. J. Dowding, J. V. Beck, 
and D. H. Y. Yen, Methodology to Generate 
Accurate Solutions for Verification in Tran-
sient Three-Dimensional Heat Conduction, 
accepted for publication in Numerical Heat 
Transfer, Part B, 2002.

4. J. Martins, I. Kroo, and J. Alonso, An Auto-
mated Method for Sensitivity Analysis using 
Complex Variables, AIAA Paper 2000-0689, 

Proceedings of the 38th Aerospace Sciences 
Meeting, Reno, NV, January 2000.

5. J. Nocedal and S. J. Wright, Numerical Opti-
mization, Springer, New York, 1999.

6. James C. Newman, III and David L. Whit-
field, A Step-Size Independent Approach for 
Multidisciplinary Sensitivity Analysis and 
Design Optimization, AIAA-99-3102.

7. J. R. R. A. Martins, I. M. Kroo, and J. J. 
Alonso, An Automated Method for Sensitiv-
ity Analysis using Complex Variables, AIAA-
2000-0689, Presented at 38th Aerospace Sci-
ences Meeting and Exhibit, Reno, NV, Janu-
ary 10-13, 2000.

8. J. M. Janus and J. C. Newman III, Aerody-
namic and Thermal Design Optimization for 
Turbine Airfoils, AIAA-2000-0840, Pre-
sented at 38th Aerospace Sciences Meeting & 
Exhibit, Reno, NV, January 10-13, 2000.

9. L. Massa and J. M. Janus, Aerodynamic Sen-
sitivity Analysis of Unsteady Turbine Stages, 
AIAA-2001-2579, Presented at 15th AIAA 
Computational Fluid Dynamics Conference, 
Anaheim, CA, June 11-14, 2001.

10. http://aero-comlab.stanford.edu/jmartins
11. C. Bischof, P. Khademi, A. Mauer, and A. 

Carle, Adifor 2.0: Automatic Differentiation 
of Fortran 77 Programs, IEEE Computational 
Science & Engineering, pp. 18-32, Fall 1996.

12. B. F. Blackwell, R. J. Cochran, and K. J. 
Dowding, Development and Implementation 
of Sensitivity Coefficient Equations for Heat 
Conduction Problems, Proceedings of 7th 
AIAA/ASME Joint Thermophysics and Heat 
Transfer Conference, ASME/HTD Vol. 357-
2, pp. 303-316, 1998.

13. K. J. Dowding, B. F. Blackwell, and R. J. 
Cochran, Application of Sensitivity Coeffi-
cients for Heat Conduction Problems, Pro-
ceedings of 7th AIAA/ASME Joint 
Thermophysics and Heat Transfer Confer-
ence, ASME/HTD Vol. 357-2, pp. 317-327, 
1998.

14. K. J. Dowding, J. V. Beck, and B. F. Black-
well, Estimating Temperature Dependent 
Properties of Carbon-Carbon Composite, 
AIAA 98-2933, presented at 7th AIAA/
ASME Joint Thermophysics and Heat Trans-
fer Conference, Albuquerque, NM, 1998.

15. B. F. Blackwell, K. J. Dowding, R. J. 
Cochran, and D. Dobranich, Utilization of 
Sensitivity Coefficients to Guide the Design 
of a Thermal Battery, Proceedings of ASME 
Heat Transfer Division, HTD-Vol. 361-5, pp. 
73-82, 1998.



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

16. Kevin J. Dowding, Ben F. Blackwell, and R. 
J. Cochran, Study of Heat Flux Gages Using 
Sensitivity Analysis, Proceedings of ASME 
Heat Transfer Division, HTD-Vol. 361-5, pp. 
595-602, 1998.

17. Kevin Dowding, and Ben Blackwell, Design 
of Experiments to Estimate Temperature 
Dependent Thermal Properties, presented at 
Third International Conference on Inverse 
Problems in Engineering, Port Ludlow Wash-
ington, June 13-18, 1999.

18. Bennie F. Blackwell and Kevin J. Dowding, 
Sensitivity Analysis and Uncertainty Propa-
gation in a General-Purpose Thermal Analy-
sis Code, Presented at 3rd ASME/JSME Joint 
Fluids Engineering Conference & FED 
Annual Summer Meeting/Exposition, July 
18-22, San Francisco, CA.

19. B. F. Blackwell, K. J. Dowding, and R. J. 
Cochran, Development and Implementation 
of Sensitivity Coefficient Equations for Heat 
Conduction Problems, Numerical Heat 
Transfer, Part B, 36:15-32, 1999.

20. K. J. Dowding, B. F. Blackwell, and R. J. 
Cochran, Application of Sensitivity Coeffi-
cients for Heat Conduction Problems, Numer-
ical Heat Transfer, Part B, 36:33-55, 1999.

21. Kevin J. Dowding and Bennie F. Blackwell, 
Sensitivity Analysis for Nonlinear Heat Con-
duction, ASME Journal of Heat Transfer, Vol. 
123, pp. 1-10, February 2001.

22. K. J. Dowding, J. Beck, A. Ulbrich, B. F. 
Blackwell, and J. Hayes, Estimation of Ther-
mal Properties and Surface Heat Flux in Car-
bon-Carbon Composite, Journal of 
Thermophysics and Heat Transfer, Vol. 9, No. 
2, pp. 345-351, 1995.

23. K. J. Dowding, J. V. Beck, and B. F. Black-
well, Estimation of Directional-Dependent 
Thermal Properties in a Carbon-Carbon Com-
posite, International Journal of Heat and 
Mass Transfer, Vol. 39, No. 15, pp. 3157-
3164, 1996.

24. E. Turgeon, D. Pelletier, and J. Borggaard, A 
Continuous Sensitivity Equation Approach to 
Optimal Design in Mixed Convection, AIAA 
99-3625, Presented at 33rd Thermophysics 
Conference, Norfolk, VA, June 28-July 1, 
1999.

25. E. Turgeon, D. Pelletier, and J. Borggaard, A 
General Continuous Sensitivity Equation For-
mulation for Complex Flows, AIAA 2000-
4732, Presented at 8th AIAA/NASA/USAF/
ISSMO Symposium on Multidisciplinary 
Analysis and Optimization, Long Beach, CA, 
Sept. 6-8, 2000.

26. E. Turgeon, D. Pelletier, and J. Borggaard, A 
Continuous Sensitivity Equation Method for 
Flows with Temperature Dependent Proper-
ties, AIAA 2000-4821, Presented at 8th 
AIAA/NASA/USAF/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, 
Long Beach, CA, Sept. 6-8, 2000.

27. E. Turgeon, D. Pelletier, and J. Borggaard, 
Sensitivity and Uncertainty Analysis for Vari-
able Property Flows, AIAA 2001-0139, Pre-
sented at 39th AIAA Aerospace Sciences 
Meeting and Exhibit, Reno, NV, Jan. 8-11, 
2001.

28. Andrew G. Godfrey and Eugene M. Cliff, 
Sensitivity Equations for Turbulent Flows, 
AIAA 2001-1060, Presented at 39th AIAA 
Aerospace Sciences Meeting and Exhibit, 
Reno, NV, Jan. 8-11, 2001.

29. E. Turgeon, D. Pelletier, and J. Borggaard, 
Application of a Sensitivity Equation Method 
to the k-ε Model of Turbulence, AIAA 2001-
2534, Presented at 15th AIAA Computational 
Fluid Dynamics Conference and Exhibit, 
Anaheim, CA, June 11-14, 2001.

30. E. Turgeon, D. Pelletier, and J. Borggaard, A 
General Continuous Sensitivity Equation For-
mulation for the k-ε Model of Turbulence, 
AIAA 2001-3000, Presented at 15th AIAA 
Computational Fluid Dynamics Conference 
and Exhibit, Anaheim, CA, June 11-14, 2001.

31. U. Kirsch, Structural Optimization, Springer-
Verlag, New York, 1993.

32. H. W. Coleman and W. G. Steele, Experimen-
tation and Uncertainty Analysis for Engi-
neers, 2nd ed., Wiley, New York, 1999.

33. T. D. Fadale, “Uncertainty Analysis using 
Finite Elements,” Ph.D. Thesis, University of 
Washington, 1993.

34. T. D. Fadale, and A. F. Emery, “Transient 
Effects of Uncertainties on the Sensitivities of 
Temperatures and Heat Fluxes Using Stochas-
tic Finite Elements,” ASME Journal of Heat 
Transfer, Vol. 116, pp. 808-814, 1994.



Application of Genetic Algorithms and Neural Networks to the Solution of 
Inverse Heat Conduction Problems 

 
A Tutorial 

 
Keith A. Woodbury 

Department of Mechanical Engineering 
The University of Alabama 
Tuscaloosa, Alabama, USA 

woodbury@me.ua.edu 
 
 
 

ABSTRACT 
Genetic Algorithms and Neural Networks are 

relatively new techniques for optimization and 
estimation.  These techniques can, of course, be 
applied to the solution of inverse problems.  This 
paper presents a tutorial for application of these 
techniques to the solution of some simple inverse 
problems.  A description of each of the techniques 
precedes presentation of the algorithms.  
MATLAB is used to solve these problems. 

INTRODUCTION 
Genetic Algorithms are a class of search 

methods, which are patterned after evolutionary 
processes.  These algorithms have existed for 
perhaps 20 years, but were first popularized 
following the publication of David Goldberg’s 
text on the subject (Goldberg, 1989).  These 
algorithms search a solution space by 
manipulating populations of candidate solutions.  
These populations are evaluated to determine the 
best members of each generation, and each 
generation reproduces to create the next 
generation.  Notions from evolution are borrowed 
to manipulate the population after reproduction: 
randomly triggered crossover and mutation enter 
in to widen the search region.  At the end of a pre-
specified number of generations, the results are 
examined. 

A Genetic Algorithm is a type of search 
procedure.  Simply put, it is a localized random 
search.  It requires no evaluation of the derivative 
of the performance measure, and is therefore 
highly suited to nonlinear problems. 

Neural Networks describe another type of 
algorithm that is borrowed from nature.  Neural 
Networks are an attempt to model the massively 
parallel operation of a brain.  A collection of 
simple neurons is interconnected with links.  Each 

link will be assigned a weight during the training 
of the network.  During operation of the network, 
the output of each neuron is the result of the 
weighted sum of all the inputs connected to it 
passed through an activation function.  This 
activation function is some suitable non-linear 
mathematical function.  It is through the sum total 
action of many connected neurons that the 
network is able to “learn” its behavior and 
produce intelligible results. 

A Neural Network is an interpolative 
procedure.  Through training, the network 
“learns” an association between a collection of 
inputs and their corresponding outputs.  In 
operation, when the network is presented inputs, 
which were not present in the training set, the 
network will produce a result, which is consistent 
with the training data.  

This paper has two parts, one devoted to 
Genetic Algorithms and one dedicated to Neural 
Networks.  In each section a basic description of 
the method is given, followed by application to a 
simple optimization problem of parameter 
identification.  Then each method is applied to a 
classic inverse boundary problem.  The 
MATLAB programming language is used to 
illustrate the algorithms. 
 

GENETIC ALGORITHMS 
These algorithms mimic the evolutionary 

processes that have led to development of higher 
organisms in nature.  An initial population of 
candidates reproduces to create a new generation 
of the population.  In each generation there are 
random occurrences of mutation in the 
population.  Above all, survival of the fittest 
ensures that the “best” members of the population 
are retained. 



Reproduction. Two Binary strings 
reproduce through crossover of their 
chromosomes.  After two parents are selected, the 
child of the two parents is created by splitting the 
gene (binary string) at one or more points 
(randomly chosen) and splicing the pieces 
together. 

Randomness plays a central role in the genetic 
algorithm search process. A random number 
generator will be called thousands of times during 
the execution of a genetic algorithm. 

A “genetic algorithm” is one that possesses 
the following characteristics: 
1. An initial population of a fixed number of 

candidate solutions is selected. Figure 1 illustrates reproduction with binary 
strings.  Once the two parents are identified, a 
crossover point is randomly selected.  The Child 
“AB” results from splicing the first portion of the 
genetic string “A” onto the second portion of the 
genetic string “B”.  Note that a scond child “BA” 
could easily be produced by splicing the 
remaining portions of the strings. 

2. The “fitness” of each of the members of the 
population is determined using the 
performance measure for the problem. 

3. The members of the current generation of the 
population reproduce to form the next 
generation.  The reproduction should favor 
the better members as “parents”.  During 
reproduction, crossover of the genes results 
in new members not originally in the 
previous generation but related to them. 

 
 

4. Random mutation of some of the “children.” 
These mutations introduce new 
characteristics not in the previous generation 
and not directly related to the previous 
generation but which may result in a “more 
fit” child. 

 
Parent A 

 
 
Parent B 
 
 
 
Child AB 

Crossover Point 
(randomly selected) 

1 0 1 1 0 1 1 0

0 1 1 0 1 0 1 0

1 0 1 0 1 0 1 0

Figure 1.  Reproduction through crossover with 
binary strings. 

5. The reproduction continues until a preset 
number of generations have been created. 
At least two types of encoding are possible 

for the members of the population: binary strings 
and real number arrays.  The latter are more 
useful for numerical problems, but the former are 
classic in the genetic algorithms and will be 
discussed first. 

 
 Binary Encoding 

Mutations. After the new generation is 
created, mutations occur.  For each member of the 
population a random number in the range (0,1) is 
generated.  If the random number is below some 
prespecified mutation threshold, then the gene is 
allowed to mutate.  Mutation in a binary string is 
accomplished by selecting one or more (but not 
all!) of the chromosomes in the string to be 
altered.  Of course “alteration” of a binary digit 
can only mean changing its sense (flipping it’s 
bit): if it’s a zero, make it a one, and if it’s a one, 
make it a zero. 

Early applications of genetic algorithms clung 
to the notion of an organism (member of the 
population) represented as a gene through a 
binary string of chromosomes.  The binary string 
could be interpreted as a color code, and ASCII 
letter code, an integer code, etc., depending on the 
problem at hand.  But the use of binary encoding 
facilitates application of the analogy to 
evolutionary processes.  

Initial Population.  The initial population  is 
typically seeded randomly, but this need not be 
the case. In the case of binary strings, this could 
be done bit-by-bit with random selection of a zero 
or a one for each location. Real Number Encoding 

Binary encoding can literally be applied to any 
problem at hand.  However, if the problem at 
hand happens to be numerical, and the unknowns 
of the problem happen to be continuous real 
numbers, then it is very convenient to represent 
the members of the population using real number 

Selection of Parents.  Parents are chosen 
for reproduction based on their fitness.  One 
complicated method for selection of parents is 
called roulette wheel selection (Davis (1991)), 
however any method that favors the fitter 
members of the population may be used. 



encoding.  A simple example that will be 
presented below is identification of the slope and 
intercept of a line based on knowledge of a few of 
the points on the line.  Although these two real 
numbers (the slope and intercept) most certainly 
can be represented as a string of binary digits 
(indeed, in the heart of our computers that is the 
only form in which they exist!), it is much easier 
to let the “gene” be an real array of length two.  
For such a representation we must discover 
suitable methods for initial population generation, 
reproduction, and mutation.   

Initial Population. The initial real number 
arrays are of course generated randomly.  There 
are at least two possibilities for this and either one 
could be used, but in any case the domain of the 
individual variables  must be known. Remember 
that the genetic algorithm is only a search 
mechanism, and the limits of the search region 
must be known.  One possible method of seeding 
the initial population is to generate a random 
number for each member of each of the arrays.  A 
second possibility is to generate a random number 
for each array in the population and  assign each 
array a constant value.  

Selection of Parents.  My technique for 
selection of parents for reproduction of the next 
generation is simple.  After evaluating the fitness 
of all the members of the population, sort them in 
best-to-worst order, then use a specified number 
of the “best” as parents for the new generation.  
This assures that the next generation is 
reproduced using characteristics of the best of the 
previous generation. 

Reproduction. The key to reproduction is 
some sort of crossover mechanism that combines 
characteristics from each of the parents.  In arrays 
of real numbers both the magnitude of the 
individual members and the order of the array are 
important.  At least two methods of  crossover are 
possible that address these two characteristics. 

To alter the magnitude, averaging of the two 
parent strings will achieve the desired effect 
(Davis, 1991).  Rather than a simple arithmetic 
average, I have employed a weighted average 
with the weight being chosen randomly. 

To modifiy the order of the numbers in each 
child array, I use a crossover technique identical 
to that in Fig. 1 for binary strings.  Choose a 
random location in the array, and crossover the 
sub-arrays from each partner. 

Mutation.  The main purpose of mutation is 
to introduce new information into the population 
that can’t be obtained directly from the parents.   

The method I use was suggested by (Davis, 1991) 
and is a simple replacement of the array with a 
randomly generated array within the search space.  
A mutation threshold must be passed first before 
the mutation is applied. 

Creep.  This is really a second type of 
mutation but proves very necessary to refine the 
search.  Creep (Davis, 1991) refers to the drift of 
the members of a real array around their present 
value.  For each member of the population, a 
creep threshold is applied, and if the member is 
eligible to creep, the magnitude of each number in 
the array is scaled by a random number in the 
range (1 – C, 1 + C), where C is a fraction 
between 0 and 1. 

Elitism.  One final mechanism that often is 
introduced into genetic algorithms is elitism.  
When elitism is employed, the best (or Nelite  best) 
members of each generation are retained in the 
next generation.  This allows the characteristics of 
the “super-individual” to dominate over several 
generations. 

A Simple Example 
To illustrate the techniques for real number 

encoding, consider a simple parameter estimation 
problem.  Suppose we have a number Ndata of 
(xi,yi) data pairs and we want to know the 
equation of a straight line that passes thorugh 
these points (or close to them): 

 mxby += ; (1) 
in other words, the constants b and m are to be 
determined.  The classic solution to this problem 
involves the minimization of the sum of the 
squared errors between the model-predicted value 
and the corresponding data value: 

  (2) ( )∑
=
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This same methodology will be used to solve this 
problem using genetic algorithms. 

MATLAB was used to code a genetic 
algorithm to solve this problem, and the main 
function is shown in Listing 1. Several parameters 
are passed to the routine: the xvals at which the 
known ydata are supplied, the domain of the 
search (low, high), which applies to both the slope 
m and intercept b.  Other parameters must be 
specified for the search: Npop is the number of 
members of the population; Nbest is the number 
of the best members of the population to used for 
reproduction at each new generation; Ngen is the 
number of generations to produces before the 
program terminates; mut_chance is the 



probability threshold for a gene mutation; 
creep_chance is the threshold for creep of the 
member and creep_amount is the maximum 
magnitude of the random creep (the parameter C 
introduced above).  

The routine begins with initialization of some 
arrays and constants.  The value Nelite is set to 
one, which means that only the best member of 
the population is retained from one generation to 
the next.  The population is an array of real 
numbers with Npop rows and two columns (one 
for intercept b  and one for slope m).  This array is 
initialized using uniform random numbers in the 
range (low, high) for the intercept and slope.   

The main loop of the routine performs the 
following steps.  The model (Eq. (1)) is used to 
compute the values ytest using the function 
straight_line and all the current members of the 
population.  These ytest values are compared to 
the ydata values supplied and a fitness index is 
computed for each member of the population 
using Eq. (2).  These fitness values are used to 
sort the population from best to worst, and the 
Nbest members are used for reproduction of the 
next generation.  The reproduction is performed 
by the routine reproduce_by_weighted_avg using 
the weighted averaging scheme described earlier.  
Only after new children are produced, the 
crossover mechanism is applied to all the new 
members, and the mutation and creep 
mechanisms are applied randomly based on the 
thresholds specified. 

As a demonstration, the data for a straight line 
with intercept b = 1 slope m =2 is used (xvals = 
[ 1 2 3 4 5]; and ydata = [ 3 5 7 9 11].  The 
parameter mut_chance was set to 0.1, meaning 
that there is a 10% chance that a child will mutate 
(have its values completely replaced by randomly 
generated numbers in the domain (low, high)).  
The parameters creep_chance and creep_amount 
were set to 0.90 and 0.25, respectively, meaning 
that there is a 90% chance that the child will have 
its value randomly scaled by +/- 25%.  

As a first attempt, 50 generations are 
computed using a population of only 10 members 
and allowing only the best two for reproduction.  
At the end of the 50 generations, the best member 
of the population was b = -0.0756and m = 2.2994.  
The resulting “convergence history”, which is the 
error of the best member of the population at each 
generation, is shown in Fig 2.  The corresponding 
estimates for the points on the line are shown in 
Fig. 3.  These results were obtained in 0.22 

seconds of CPU time on a 1000 MHz Pentium 4 
processor. 

The values obtained are not very good.  The 
size of the population is too small to allow the 
effects of mutation and creep to widen the search.  
Note that without mutation and creep, the search 
space will be constrained to that enclosed by the 
initial randomly generated population as the 
weigted averaging cannot create a candidate 
outside that domain. 

For the next attempt, the population is 
increased to 50 and the number of the best to use 
for reproduction is increased to 10.  The number 
of generations to compute is increased to 100.  At 
the end of the 100 generations, the best member 
of the population was b = 0.9851 and m = 2.0042.  
The convergence history is shown in Fig. 4 and 
the computed y values are compared with the data  

 

 
Figure 2.  Convergence history for Npop = 10 and 
Nbest = 2. 
 

Figure 3.  Model estimates (circles) and exact 
values (line) for Npop = 10 and Nbest = 2. 
(Ngen = 50) 
 



in Fig. 5.  These results were obtained in 
10.22 CPU seconds on the 1000 MHz Pentium 4 
processor. 

Note that the results here are much better than 
those obtained previously, with the minimum sum 
squared error below 10-3.  From the convergence 
history (Fig. 4) we can see that, after the initial 
drop,  there is little improvement in the lowest 
error.  In fact, a good solution is obtained after  20 
generations or so. 

 
Figure 4.  Convergence history for Npop = 50 and 
Nbest = 10. 
 

 
Figure 5.  Model estimates (circles) and exact 
values (line) for Npop = 50 and Nbest = 10 (Ngen 
= 100) 

Classic Function Estimation Example 
As a much more challenging example, 

consider the classical problem of estimation of the 
surface heat flux history for a one dimensional 
slab insulated at x =L.  This problem was 
considered previously by Raudensky, et al. 
(1995), but they worked with an unknown heat 
transfer coefficient rather than the heat flux.   The 
triangular heat flux history popularized by Beck, 
et al. (1985) will be used as  the “unknown 
function” to generate data for the estimation 

problem.  For simplicity, the parameters are taken 
as k = ρcp = L = 1, which of course is the same as 
using non-dimensional data.  Two cases of data 
are considered:  data with an interval 0.18 s and 
another with interval 0.06 s.  The heat flux history 
has the following character: 
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Data were generated for a sensor located at x =L , 
and the data generated for the two data intervals 
are shown in Table 1 and Table 2. 
 

Table 1.  Artificial data for large time interval 
(0.18 s). 

t, secs T, C 
0.00 0.00000 
0.18 0.00000 
0.36 0.00037 
0.54 0.01338 
0.72 0.05446 
0.90 0.12720 
1.08 0.21959 
1.26 0.29501 
1.44 0.34067 
1.62 0.35655 
1.80 0.35942 
1.98 0.35990 

Data Representation.  To estimate the heat 
flux variation, a suitable parameterization of the 
heax flux function q(t) is necessary.  We will 
choose a piecewise constant heat flux, and will 
estimate one component of heat flux between 
every temperature data point.  So, in the case of 
the large time interval data of Table 1, there will 
be 12 unknown heat flux comonents, and the in 
case of the small data interval in Table 2, there 
will be 35 unknown components.  (Our algorithm 
estimates a heat flux component for every data 
point, even the first one;  this assumes a zero 
temperature initial condition).  Again, each 
member of the population will be a real vector of 
the appropriate length. 
Function Evaluation.  The objective function 
for fitness will again be the sum of the squared 
errors between the model-computed values ( 
objective function for fitness will again 

be the sum of the squared errors between the 
model-computed values (ytest) and the data 
(ydata).  The model-computed values will be 
produced using the Duhamel’s summation as 



Table 2.  Artificial data for small time interval 
(0.06 s) 

 

t, secs T, C t, secs T, C 
0.00 0.00000 1.08 0.21959 
0.06 0.00000 1.14 0.24768 
0.12 0.00000 1.20 0.27293 
0.18 0.00000 1.26 0.29501 
0.24 0.00000 1.32 0.31371 
0.30 0.00001 1.38 0.32895 
0.36 0.00037 1.44 0.34067 
0.42 0.00217 1.50 0.34882 
0.48 0.00632 1.56 0.35376 
0.54 0.01338 1.62 0.35655 
0.60 0.02366 1.68 0.35809 
0.66 0.03732 1.74 0.35894 
0.72 0.05446 1.80 0.35942 
0.78 0.07515 1.86 0.35968 
0.84 0.09939 1.92 0.35982 
0.90 0.12720 1.98 0.35990 
0.96 0.15788 2.04 0.35995 
1.02 0.18929   

Figure 6.  Computed temperatures (circles) 
compared to data (line) history for first large time 
interval run. 
 

 

 
described in Chapter 3 of Beck, et al.  Note that 
this computation will be approximate, especially 
for the larger time intervals. 

Algorithm Description.  The MATLAB 
main function for this genetic algorithm is shown 
in Listing 2.  Many of the features are the same as 
in the SimpleGA function, but several 
enhancements have been made.  Specifically, the 
parameters for the problem (Ngen, mut_chance, 
creep_chance, creep_amount) are all vector 
quantities to facilitate modification of these 
parameters during the simulation.  Also, some 
regularization has been added via a Tikhonov 
term, and the coefficients for this are passed 
through the funciton call.  These enhancements 
will be described in more detail below. 

Figure 7, Convergence history for first large time 
interval run. 
 

The sumsquared error is pretty low, and the 
computed values of T(t) are relatively close to the 
data values (as shown in Fig. 6).  But the 
estimated heat flux components bear little 
resemblence to the actual input (see Fig. 8).  
Considering the results (Fig 8.) and the 
convergence history, it seems plausible that the 
problem is not converged well enough.  Note that 
the convergence history decreases past 80 
generations, but then levels out.  Note also that 
the history exhibits a mix of large-scale changes 
(probably caused by mutations) and smaller scale 
decreases (perhaps brought about by creep).  But 
after 80 generations, the large scale changes (in 
the domain (-1, 1) and small scale changes (on the 
order of 25%) are too large to bring any 
improvement.  What is needed is a multiple 
parameter approach. 

Large time interval data.  The case of a 
larger time step in the data is easier from a 
classical solution point of view and thus this case 
will be take first.   

As a starting point, use the same parameters 
that were used at the end of SimpleGA – Npop = 
50, Nbest = 10, and Ngen = 100.  After 100 
generations, the sum squared error S  is less than 
10-3, and the results for the computed 
temperatures ytest can be seen compared to the 
data in Fig. 6.  The convergence history can be 
seen in Fig. 7.  These results are obtained on a 
1.6 GHz Pentium 4 in 5.7 CPU seconds. 

 



  
Figure 8.  Computed (circles) and actual (line) 
heat flux input for first large time interval run. 

Figure 9.  Convergence history for second large 
time interval run. 

  
A modification to the algorithm allows for 

this.  Next let’s try the allowing larger more 
mutations for the first 50 genreations 
(mut_chance  = 0.2), but then decrease the 
mutation chance to 0.1, and keep the creep chace 
the same, but decrease the creep amount: 
mut_chance  = 0.1, creep_chance = 0.9, and 
creep_amount = 0.1).  The idea is to let the search 
fine-tune the result after “getting close”. 

 

One other modification was made to the 
program.  After each “break” in the generational 
loop (after the 50 generations, say), the domain 
for mutations is changed from the initial values to 
the (minimum, maximum) of the heat flux vector.  
The idea is to keep the mutation changes within 
the most reasonable range. 

Figure 10.  Convergence histories for several 
subsequent simulations. 
 

The convergence history, seen in Fig. 9, shows 
improvement in both the final value and the 
sustained decrease past 80 generations.  The final 
S parameter is about 2x10-4, which is pretty good.   
Considering Fig. 9, more generations may help 
reduce the error.   

 

The convergence history for several 
subsequent runs are seen in Fig. 10.  The final run 
corresponds to the lowest line, which achieved an 
S parameter of almost 8x10-4.  This last run  
corresponds to a parameter strategy of Ngen = 
[ 50 100 200 300], mut_chance = [ 0.2 0.1 0.05  
0.02], creep_chance = [0.9 0.9 0.9 0.9], and  
creep_amount  = [0.2 0.1 0.05 0.02]. The 
graphical comparison of the computed ytest and 
the given data ydata is seen in Fig. 11, and it can 
be seen that the comparison is quite good.  The 
estimates for the heat flux history, seen in Fig. 12, 
are quite good, and do reproduce the input curve 
favorably.   

Figure 11.  Computed (circles) values of 
temperature compared with the data (line) 
 
 



  
Figure 12.  Heat flux estimates for last simulation. Figure 13.  Convergence History for small time 

step data.  
Small Time Interval Data.  The data from 
Table 2, which has a (dimensionless) time step of 
0.06, is known to cause estimation problems 
using unregularized methods (such as Stoltz data 
matching).  We next apply the genetic algorithm 
search to this data. 

 

 

The same parameters used were the same as in 
the last run with large time step in the data (Ngen 
= [ 50 100 200 300], mut_chance = [ 0.2 0.1 0.05  
0.02], creep_chance = [0.9 0.9 0.9 0.9], and  
creep_amount  = [0.2 0.1 0.05 0.02]).  The 
convergence history (Fig. 13) suggests the results 
should be good, and the comparison between the 
computed and measured temperatures confirms 
this view (Fig. 14).  However, the plot of the 
estimated heat fluxes shows that the underlying 
ill-posedness of the problem prevents a 
reasonable result from being obtained (Fig. 15.).  

Figure 14.  Computed (circles) values of 
temperature compared with the data (line) for first 
simulation with small time steps. 
 

To get a better result in the face of ill-
posedness, some regularization must be added to 
the problem.  A familiar Tikhonov regularization 
term can be added to the objective function 
(fitness measure) to penalize changes in the first 
derivative of the heat flux.  This is implemented 
in a discrete form (as described in Chapter 4 of 
Beck, et al, 1985) as: 
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Figure 15.  Heat flux estimation for for first 
simulation with small time steps. The α1 parameter is the regularizing parameter 

and must be specified.    



 
Figure 16.  Heat flux estimation with same 
parameters as Fig. 15, but with Tikhonov 
regularization (α1 = 1.e-3). 
 

Figure 16 shows the results from a simulation 
using the same parameters as before, but with a 
First order Tikhonov regularizing term (α1 = 1.e-
3).  The converged solution more clearly defines 
the input heat flux.  Note that the algorithm has 
difficulty where the heat flux is zero (Figs. 8, 12, 
15, and 16). 

Genetic Algorithms Conclusions 
Genetic algorithms are a random search 

procedure that search in a fixed domain without 
using function gradient information.  They can be 
applied to linear or nonlinear problems and are by 
nature computationally intensive.  Real number 
arrays can be used as “genes” in the population to 
represent engineering data.  Genetic algorithms 
can be applied to ill-posed problems such as the 
inverse heat conduction problem, but this solution 
technique does not evade the inherent ill-
posedness of the problem.  Some regularization, 
such as Tikhonov regularization, must be applied 
in the objective (fitness) function to combat the 
ill-posedness.  
 

NEURAL NETWORKS 
Neural networks have been used for perhaps 

50 years, dating from the early works of Frank 
Rosenblatt (Rosenblatt, 1961).  The main feature 
of neural metworks is in pattern recognition.  The 
network “learns” the relationship between given 
input and output, and then generalizes this 
“knowledge”.  The result is that when the network 
is given inputs that are not exactly the same as 
those from the training data, the output from the 
network will be something consistent with the 

training data.  In this way the neural network can 
be considered an interpolative algorithm. 

An early application of Neural Networks was 
in simple pattern recognition.   A classic example 
is a network designed to “recognize” letters based 
on a set of optically encoded inputs.  A network 
might be designed and “trained” to identify the 
letters of the alphabet based on the sense of a *x6 
grid of inputs.  But if the network was well 
trained using, say, a Times Roman font, we might 
expect the netowrk to yield resonable results if it 
was shown letters from another font family, such 
as Ariel. 

Application of Neural Networks, then, have 
two distinct phases: training and simulation.  In 
the training phase, many pairs of inputs and 
outputs are shown to the network and the weights  
within the network are adjusted until the network 
(hopefully) produces the desired output.  In the 
simulation phase, the training algorithm is 
deactivated, and the network merely computes the 
output based on the given inputs. 

There are many classifications of Neural 
Networks according to the construction and of the 
network.  Two broad classes are concurrent and 
recurrent or dynamic networks.  Concurrent 
networks have all their input given at once and 
the output of the network depends only on these 
inputs.  In contrast, recurrent or dynamic 
networks receive their inputs sequentially, and the 
output of some of the neurons in the network are 
fed back into the input for subsequent 
computations.  In this paper I consider only 
concurrent Neural Networks. 

Neural Network Topology 
A schematic of a Neural Network is shown in 

Fig. 17.  A typical network is composed of one or 
more hidden layers of neurons which are 
interconnected by weighted links.  The output of 
each neuron is typically passed through some 
linear or non-linear filter or activation function. 

A neuron is shown schematically in Fig. 18.  
The neuron receives inputs from perhaps n 
neurons in the previous layer.  The output of the 
summation node is the dot product of the weights 
wi and the value of the inputs: 

  (4) ∑=
n

i
iiout pwSUM

where pi  is the value of the input ‘i’.  If an output 
filter is used on the neuron, then the output of the 
neuron is the result of the filter on the SUMout.  
Several output filter are possible, including  



linear, tangent sigmoid, or hyperbolic sigmoid.  A 
sigmoid function has a mathematical character 
similar to: 
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which asymptotically approaches constant values 
as SUMout becomes very large or very small. 

During the training phase of the network, the 
network processes given inputs in an attempt to 
produce given target outputs. The weights of the 
interconnections are adjusted by an appropriate 
algorithm to produce the desired outputs.  This is  

 
Figure 17.  A Schematic of a Neural Network 
 

 
Figure 18.  A Schematic illustrating the neuron. 
 
an inherently iterative process, and the number of 
passes (called epochs) through the network during 
the training may be in the thousands.  To train a 
Neural Network to solve an inverse problem, the 
mathematical model (forward solution) is used to 
generate training data. 
 

MATLAB Toolbox 
MATLAB has an excellent toolbox add-in for 

Neural Network analysis.  This collection of 
programs and interfaces, written by Mark Demuth 
and Mark Beale, allow easy design and training of 
a wide range of networks: backpropagation  
networks, cascade feedforward networks, radial 
basis function networks, and many recurrent 

networks as well.  The examples presented here 
make use of this toolbox add-in. 

A Simple Example 
As a simple example, consider the parameter 

identification problem considered earlier: the 
estimation of the slope and intercept of a line 
based on knowledge of several data points.  We 
will design our network to estimate the slope m 
and intercept b of a line over 0 < x < 1, and we 
restrict the range of  b and m to the interval [0,1].  
Furthermore, the values of y at specified x 
locations of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 will be 
given to the network to estimate b and m. 

A backpropagation network with 6 inputs (for 
the 6 values of y) and two outputs (for the two 
values  b and m) is created.  One hidden layer 
with 12 neurons is employed, and a tangent 
sigmoid is chosen for the activation function on 
the hidden layer.  The input layers have linear 
activation functions (filters). 

A set of training data are generated which 
covers the solution space.  I used the b and m  
pairs in Table 3 to generate y data on the specified 
intervals for x, resulting in 20 training vector 
pairs: input vectors of length 6 containing the 
values of y at the specified locations, and the 
corresponding output values of b and m in vectors 
of length 2. 

 
Table 3.  Intercept and slope used to generate data 
sets for training. 

b m b m 
0.00 1.00 0.00 0.00 
0.25 0.75 0.25 0.25 
0.50 0.50 0.50 0.50 
0.75 0.25 0.75 0.75 
1.00 0.00 1.00 1.00 
1.00 0.00 1.00 1.00 
0.75 0.25 0.75 0.75 
0.50 0.50 0.50 0.50 
0.25 0.75 0.25 0.25 
0.00 1.00 0.00 0.00 

 
The network was set up and trained in the 

MATLAB toolbox.  A scaled conjugate gradient 
training method (Demuth and Beale, 2001) was 
used to adjust the weights in the network.  After 
3000 epochs in the training, the sum squared error 
between the network output and the targets was 
3.E-7. 

After training, the network was tested with the 
eight vector inputs shown in Table 4.  Note that 
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Table 6.  Actual and Computed Line 
Parameters for the rows in Table 4 using two 

hidden layers 

these vector inputs are not in the training set but 
do cover the range of  inputs used in the training.  
The actual parameters corresponding to the rows 
of y values in Table 4 are shown in Table 5, along 
with the values computed using the trained Neural 
Network.  As can be seen in Table 5, the values 
estimated from the Neural Network are 
reasonably good:  the RMS errors are 0.0255 for b 
and 0.0069 for m.   

ACTUAL NN Output 
b m b m 

0.9 0.7 0.9009 0.6601 
0.1 0.9 0.0997 0.9003 
0.9 0.1 0.9005 0.0997 
0.3 0.5 0.3021 0.4871 
0.5 0.3 0.4996 0.3170 
0.3 0.7 0.3001 0.7000 
0.7 0.3 0.6999 0.3001 
0.7 0.9 0.6997 0.9384 

 
Table 4.  Test vectors (in rows) for the Line 
Identification Neural Network 

y1 y2 y3 y4 y5 y6 
0.90 1.04 1.18 1.32 1.46 1.60 
0.10 0.28 0.46 0.64 0.82 1.00 
0.90 0.92 0.94 0.96 0.98 1.00 
0.30 0.40 0.50 0.60 0.70 0.80 
0.50 0.56 0.62 0.68 0.74 0.80 
0.30 0.44 0.58 0.72 0.86 1.00 
0.70 0.76 0.82 0.88 0.94 1.00 
0.70 0.88 1.06 1.24 1.42 1.60 

 

 
Table 5.  Actual and Computed Line 

Parameters for the rows in Table 4 using single 
hidden layer 

ACTUAL NN Output 
b m b m 

0.9 0.7 0.8533 0.6928 
0.1 0.9 0.1001 0.8997 
0.9 0.1 0.9003 0.0997 
0.3 0.5 0.2766 0.4958 
0.5 0.3 0.5140 0.3139 
0.3 0.7 0.3001 0.6999 
0.7 0.3 0.7000 0.2999 
0.7 0.9 0.7476 0.9110 

Another approach to the line parameter 
identification problem is to try to train the 
network to learn the relationship between 
arbitrary groups of (x,y) data and the parameters b 
and m.  We’ll try this by adding an extra 6 inputs 
to the network, corresponding to the x locations.  
The network with two hidden layers was trained 
using the same data as before, but giving the x 
values as input also.  The network learned this 
relationship very easily – in 6 epochs the SSE is 
less that 10-29.   Next, the network was tested by 
generating  y data values for  x values not in the 
training set: ( 0.1, 0.3, 0.45, 0.55, 0.7, 0.9). The 
six (x,y) data pairs for the eight test lines were 
input to the trained network, and the results are 
seen in Table 7.  The results are not as good as 
those obtained previously with fixed x value 
inputs. 

 
Table 7.  Actual and Computed Line 

Parameters for the rows in Table 4 using one 
hidden layer and (x,y) inputs 

 ACTUAL NN Output 
b m B m 

0.9 0.7 0.92865 0.68718 
0.1 0.9 0.14523 0.87785 
0.9 0.1 0.93050 0.092988
0.3 0.5 0.33520 0.48794 
0.5 0.3 0.53171 0.29446 
0.3 0.7 0.33841 0.68561 
0.7 0.3 0.73234 0.29215 
0.7 0.9 0.73396 0.88615 

 
Another Neural Network was constructed and 

an additional hidden layer with 12 neurons was 
added.  This network was trained using the same 
data (generated from Table 3) and after 3000 
epochs the sum squared error was 2.3E-8.  The 
test data from Table 4 was again shown to the 
network, and the results in Table 6 were obtained.  
The RMS errors for this case are 0.0008 for b and 
0.0210 for m.  Note the improvement in the 
estimates with an additional hidden layer in the 
network. 

 

Application to Heat Flux Estimation  
Time and space constraints do not allow the 

demonstration of the neural network to the 
solution of the inverse heat conduction problem.  

 



7.  J. Krejsa, K. A. Woodbury, J. D. Ratliff., 
and M. Raudensky, “Assessment of Strategies and 
Potential for Neural Networks in the IHCP,”  
Inverse Problems in Engineering, Vol 7, n 3,  pp. 
197-213. (1999) 

However, this problem was considered by Krejsa, 
et. al (1999).  In that work they considered two 
possible approaches: the whole domain estimation 
problem (as was considered in the genetic 
algorithm problem earlier, where all heat flux 
components are estimated simultaneously) and a 
sequential estimation scheme.  Only concurrent 
neural networks were considered.  Their 
conclusion was that the whole domain method 
offered the best possibility for solution of the 
inverse heat conduction problem using concurrent 
networks.  However, I note here that recurrent 
networks may offer the possibility of sequential 
estimation. 

 

The approach to solving the whole domain 
estimation of heat fluxes is similar to that taken in 
the line parameter estimation problem.  Training 
data must be generated over the whole solution 
space of (t, q).  This might be done by considering 
a range of different types of inputs: linear ramps 
of different slope, steps, parabolas, etc.  The key 
is that the generated training data must cover the 
whole space of possible inputs for the neural 
network.  

Neural Network Conclusions 
Neural networks offer the possibility of 

solution of parameter estimation problems and 
also boundary inverse problems.  Proper design of 
the network itself and the training data set is 
essential for successful application of this 
approach. 
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  Listing 1.  Main function for the estimation of parameters of a straight line 
 
 
% function simpleGA( xvals, ydata, Npop, low, high, Nbest, Ngen, mut_chance, creep_chance, 

creep_amount ) 
% function to perform simple GA search 
%   find the slope and intercept of a line described the  
%   data in 'xvals' and 'ydata' 
%   1) randomly initialize 'Npop' candidate vectors in range 
%      'low' to 'high' 
%   2) evaluate the fitness using least squares criteria 
%   3) sort to find best 'Nbest' candidates to use for reproducing 
%   4) repopulate using random selection from the Nbest and random recombination 
%      (use elitism - keep the top performer) 
%   5) allow mutation of new generation at 'mut_chance' rate of magnitude 
%       mut_amount 
%   6) repeat for 'Ngen' new generations 
function simpleGA( xvals, ydata, Npop, low, high, Nbest, Ngen, mut_chance, creep_chance, 

creep_amount ) 
Nunknown = 2;   % slope and intercept are the two unknowns 
Nelite = 1;     % clone the super-individual 
Ndata = length( ydata ); 
 
% generate the initial population 
population = gen_rand_real( Npop, Nunknown, low, high ); 
% create matrix to keep best values and fitness for each generation 
best = zeros( Ngen, Nunknown + 1 ); 
index = zeros( Ngen, 1); 
 
% loop for the generations 
for gen = 1 : Ngen 
    % use model to compute values from population 
    ytest = straight_line( population, xvals ); 
    % compute the fitness using least squares 
    fitness = sum_square_fitness( ytest, ydata ); 
    % sort them  
    sorted = sort_by_fitness( fitness, population ); 
    % copy generation champion into storage array 
    best( gen, : ) = sorted( 1, : ); 
    index(gen)=gen; 
    % copy best candidates into top of population 
    population( 1:Nbest, : ) = sorted( 1:Nbest, 2:Nunknown+1 ); 
    % reproduce to fill the bottom of the population 
    population = reproduce_by_weighted_avg( Nbest, population, Nelite ); 
    % crossover the children 
    population = crossover( Nelite, population ); 
    % creep the children 
    population = creep( Nelite, population, creep_chance, creep_amount ); 
    % mutate the children  
    population = mutate( Nelite, population, mut_chance, low, high ); 
end 
figure(1); 
semilogy( index, best(:,1) ); 
b_best = best( Ngen, 2 ); 



m_best = best( Ngen, 3); 
ybest = b_best * ones( 1, Ndata ) + m_best * xvals; 
figure(2); 
plot( xvals, ydata, '-' ); 
hold on; 
plot( xvals, ybest, 'o' ); 
hold off; 
best 
sorted; 
population; 
 
  Listing 2. Main Function for Estimating Heat Flux History 
 
% function estimateQ_GA( xvals, ydata, dt, Nunknown, Npop, low, high, Nbest, Ngen, mut_chance, 

creep_chance, creep_amount, alpha ) 
% function to estimate a heat flux function of time using simple GA search 
%   the location(s) of the sensors are contained in 'xvals', and the corresponding 
%   measurements vectors are in 'ydata' (for more than one location xvals(1),  
%   xvals(2), etc., the data are ydata = [ ydata(1), ydata(2), etc. ]. 
%   The time step in the data is 'dt' 
%   The vector 'alpha' is length 2 and contains the tikhonov regularization 
%   scalar weights. 
% 
%   1) randomly initialize 'Npop' candidate vectors in range 
%      'low' to 'high' 
%   2) evaluate the fitness using least squares criteria 
%   3) sort to find best 'Nbest' candidates to use for reproducing 
%   4) repopulate using random selection from the Nbest and random recombination 
%      (use elitism - keep the top performer) 
%   5) allow mutation of new generation at 'mut_chance' rate of magnitude 
%       mut_amount 
%   6) repeat for 'Ngen' new generations 
function estimateQ_GA( xvals, ydata, dt, Nunknown, Npop, low, high, Nbest, Ngen, mut_chance, 

creep_chance, creep_amount, alpha ) 
nx = length(xvals); 
Nloop = length( Ngen ); 
Ndata = round( length(ydata) / nx ); % number of values in the unknown vector 
Nelite = 5;     % clone the super-individuals 
 
% generate the initial population 
% for random distribution 
% population = gen_rand_real( Npop, Nunknown, low, high ); 
% for uniform distribution 
values = gen_rand_real( Npop, 1, low, high ); 
population = ones( Npop, Nunknown); 
for i = 1:Npop 
    population( i, : ) = population( i, : )* values(i); 
end 
 
% create matrix to keep best values and fitness for each generation 
best = zeros( Ngen(Nloop), Nunknown + 1 ); 
index = zeros( Ngen(Nloop), 1); 
 
t_x = [ dt xvals ];  % special data vector for the evaluation function 



 
% loop for the generations 
gen = 1; 
for loop = 1 : Nloop 
    for gen = gen : Ngen(loop) 
        % use model to compute values from population 
        ytest = eval_qvec( population, t_x, Ndata ); 
        % compute the fitness using least squares 
        fitness = sum_square_fitness( ytest, ydata ); 
        fitness = fitness + tikhonov_term( population , alpha ); 
        % sort them  
        sorted = sort_by_fitness( fitness, population ); 
        % copy generation champion into storage array 
        best( gen, : ) = sorted( 1, : ); 
        index(gen)=gen; 
        % copy best candidates into top of population 
        population( 1:Nbest, : ) = sorted( 1:Nbest, 2:Nunknown+1 ); 
        % reproduce to fill the bottom of the population 
        population = reproduce_by_weighted_avg( Nbest, population, Nelite ); 
        % crossover the children 
        population = crossover( Nelite, population ); 
        % creep the children - modify slightly each value (by chance) 
        population = creep( Nelite, population, creep_chance(loop), creep_amount(loop) ); 
        % mutate the children - random replace of chromosome 
        population = mutate( Nelite, population, mut_chance(loop), low, high ); 
    end 
    range = minmax( best( gen, 2:Nunknown+1 ) ) 
    low = range(1); 
    high = range(2); 
end 
figure(1); 
semilogy( index, best(:,1) ); 
time_max = Ndata * dt; 
dt_unk = time_max / Nunknown; 
time = zeros( Ndata, 1); 
time_half = zeros( Nunknown, 1); 
time(1) = dt; 
time_half(1) = dt_unk/2; 
for i = 2:Nunknown 
    time_half(i) = time_half(i-1) + dt_unk; 
end 
for i = 2:Ndata 
    time(i) = time(i-1) + dt; 
end 
last = best( Ngen(Nloop), 2:Nunknown+1); 
figure(2); 
plot( time_half, last, 'o' ); 
t_exact = [ 0 .24 .84 1.44 1.8 ]; 
q_exact = [ 0   0  0.6  0   0  ]; 
hold on; 
plot( t_exact, q_exact, '-' ); 
hold off; 
qbest = best(Ngen(Nloop),2:Nunknown+1) 
% use model to compute values from population 



ybest = eval_qvec( qbest, t_x, Ndata ); 
figure(3); 
plot( time, ybest, 'o' ); 
hold on; 
plot( time, ydata, '-' ); 
hold off; 
sum_sq_err = sum_square_fitness( ybest, ydata ); 
rms_error = sqrt(sum_sq_err/Nunknown) 
sorted; 
population; 
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ABSTRACT

This work presents numerical methods for the 
determination of the free boundary in the two-
phase Stefan problem. This paper does not 
directly concern the idenfication from measured 
data, which will be a futur development. The 
method is based on a Feyman-Kac representation 
of the solution: the position of the free boundary 
is the solution of an algebraical equation 
involving the means of random variables. This 
equation can be numerically solved by iterative 
methods and the free boundary can be determined 
by algebraical calculations.  

The approach introduced is based on a 
Feynman-Kac representation involving the mean 
of a convenient random variable. The  numerical 
methods have some interesting properties: they 
are meshless (i.e., they may be implemented  
without introducing a spatial discretization). 
Other features are the independence of the 
dimension and a natural parallelism. In addition, 
the methods are adapted to both the tracking of 
the front and the direct evaluation of the position 
at a few given moments without discretization in 
time.  

The method has been tested in two and three 
spatial dimensions. The result of a numerical 
experiment is presented.  

 
NOMENCLATURE 
 

ai ,bi lower and upper bounds for xi  
c diffusivity; cs on ΩS(t), cL on ΩL(t) 
cL diffusivity in the liquid region 
cs diffusivity in the solid region 
cε regularized function c 

E(Y | X) Mean of Y conditional to X 
 

div(u)   Divergence of u = (u1, u2, u3),  
div(u) = ∂u1/∂x1 +∂u2/∂x2 +∂u3/∂x3 

Id Identity Matrix 
n ∇φ /|∇φ|, unitary normal to Σ(t) 

N(0,σ) Normal distribution  having mean 
zero, standard deviation σ 

N(0,σId) 
Multidimensional normal 

distribution  having mean zero, 
Covariance matrix σ Id 

Q Ω ×T 
QL {( x,t) ∈ Q | θ(x,t) > θc } 
QS {(x,t) ∈ Q | θ(x,t) < θc } 
R The set of real numbers 
S {( x,t) ∈ Q | θ(x,t) = θc } 

t, T time variable and maximum time 
v velocity of the free boundary 

x, xi spatial variable, a component of x 
Wt Wiener process 
∂Ω boundary of  Ω 
ε regularization parameter 
χ indicator  of the solid region 
χε regularized function χ 
φ equation of the free boundary 
ϕ numerical approximation of φ 
λ latent heat of the material 

Σ (t) free boundary: θ = θc , φ = 0 
θ field of temperatures 
θc temperature of solidification 

θS, θL, θS restriction of θ to QS,QL or S 
θ0 initial field of temperatures 
θ∂Ω field of temperatures on  ∂Ω 

∇u Gradient of u,  
∇u = (∂u/∂x1, ∂u/∂x2, ∂u/∂x3) 

Ω spatial domain 
ΩL(t) liquid region: θ > θc , φ > 0 
ΩS(t) solid region: θ < θc , φ < 0 
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INTRODUCTION 
Multiphase and multiregion problems arise in 

several significant situations in Engineering. In 
those problems, the determination of the 
interfaces, i. e., of the surfaces or regions 
separating the different phases, is a crucial point, 
which leads to mathematical and numerical 
difficulties. In this framework, many works have 
considered a heat transfer problem frequently 
introduced as a simple model for melting or 
solidification phenomena: the two-phase Stefan 
problem.  

The usual formulation of a Stefan problem 
leads to evolution equations describing the 
temperature of the material and the moving 
boundary. The major difficulty in a direct 
problem lies in the fact that the unknown 
boundary intervenes explicitly in the equations 
giving the thermal state of the system. The 
problem is frequently rewritten in order to 
eliminate the unknown boundary (see, for 
instance [1], [2]).  

A different standpoint considers the 
temperature as an auxiliary variable (instead of 
the position of the moving boundary). In this case, 
the main variable is the position of the free 
boundary : the field of temperatures is determined 
by solving two linear heat equations on each 
region (liquid and solid), once the moving 
boundary  has been found. Level set methods may 
be considered as included in this approach (see, 
for instance, [3],[4]) 

The numerical resolution of two-phase Stefan 
problem has been extensively treated in the 
literature since 30 years (see, for instance, [5], [6], 
[7]). In this paper, we introduce an original 
numerical approach based, on the one hand, on a 
formulation of the Stefan problem leading to a 
non-linear evolution equation verified on the 
whole domain (see, for instance, [8])  and, on the 
other hand, on Feynman-Kac representations of 
the solutions of linear parabolic equations (see, 
for instance, [9]).   

 An interesting feature of the numerical 
methods associated to Feynman-Kac 
representations  is the absence of  discretization in 
space (i. e., they are meshless). Usually, when we 
are looking for the position of the free boundary 
on the interval (0,T), we must introduce N 
subintervals of length ∆t involving N+1 values ti 
such that  0 = t0 < t1 < t2 < � < tN+1 = T  and the 
solution is constructed at the N discrete times t1 , 
�, tN. The construction of the solution at each 
one of the considered times ti involves a Finite 

Difference or Finite Element Method. The 
proposed approach does not involve such a 
discretization in space.  

Other interesting properties of the Feynman-
Kac approach are the independence of the number 
of dimensions and its natural parallelism (see, for 
instance [10], [11]). 

In the next section, we recall  the formulation 
of the Stefan problem which will be used. Then 
we recall some elements concerning the 
Feynman-Kac representation and, at last, we shall 
present the results of some numerical experiments 
show that the resulting numerical method is 
effective to calculate.  

 
A MODEL FOR THE PROCESS 

In this section, we shall present the notations 
and a model for the situation previously 
described. Main results and formulations 
mentioned are stated in [8] and will be not 
detailed here.  

 
Description  

The solidifying material is inside a rectangular 
cavity. In a first approximation, we consider that  
the temperature is known on the boundary: the 
method extends to given fluxes or Newton's 
conditions. We assume that the system is well 
described by a two dimensional problem. These 
simplifications allow us to point the essential 
difficulties and are not essential: on the one hand, 
as previously observed, the results and the method 
can be extended to upper dimension, and, on the 
other hand, cavities of arbitrary but regular 
enough shape can be considered. Thus, we 
consider the open bounded domain Ω ⊂  R3 
defined by  

 
Ω = { x = (x1, x2, x3) | ai < xi < bi}           (1) 

 
The boundary of Ω  is denoted by ∂Ω. The 

time is denoted by t ∈ T = (0, T), T > 0 and we 
set Q = Ω×T. The field of temperatures is a 
function  θ : Q = Ω×T → R. At each time t, Ω is 
partitioned as follows:  

 
Ω = ΩS(t) ∪ ΩL(t) ∪ Σ(t)                  (2) 

 
where  
 

ΩS(t)  = { x ∈ Ω | θ(x,t) < θc},               (3) 
 

ΩL(t)  = { x ∈ Ω | θ(x,t) > θc},               (4) 
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Σ (t)  = { x ∈ Ω | θ(x,t) = θc}.               (5) 

 
We assume that the solid/liquid interface Σ(t) 

can be represented at each time t by a curve 
described by an equation φ(x,t) = 0 and the  sets 
ΩS(t), ΩL(t), Σ(t) are characterized respectively by 
φ(x,t) < 0, φ(x,t) > 0, φ(x,t) = 0. Thus, the 
different regions can be also characterized by  

 
ΩS(t)  = { x ∈ Ω | φ(x,t) < 0},               (6) 

 
ΩL(t)  = { x ∈ Ω | φ(x,t) > 0},               (7) 

 
Σ (t)  = { x ∈ Ω | φ(x,t) = 0}.               (8) 

 
We assume also that φ is regular enough in 

order that the unitary normal n to Σ(t) is defined 
for any  x ∈ Σ (t) and  t ∈ T:  

 
n = ∇φ /|∇φ| .                          (9) 

 
We notice that n points inwards ΩL(t)  (and 

outwards ΩS(t)). 
The natural choice for φ is φ = θ - θc , but  φ 

can take infinitely many values: the previous 
equations hold for an arbitrary function such that 
sign(φ) = sign(θ - θc), where  

 

)10(
.0α,1
;0α,0
;0α,1

)α(sign
!
"

!
#

$

<−
=
>

=   

The Stefan condition  
Let us introduce λ, the latent heat of the  

material;  cS and cL , the diffusivity in the  solid 
and liquid parts, respectively; θS, θL the 
temperatures in the solid and liquid parts, 
respectively: 

 
θS =  θ|QS   ;   θL =  θ|QL                (11) 

 
             QS = {(x,t) ∈ Q |  x ∈ ΩS(t) }  ;     (12) 

                    
             QL = {(x,t) ∈ Q |  x ∈ ΩL(t) }  .     (13)                                               
 
As previously observed, two heat equations 

are verified on each region (solid and liquid): 
 

)14(Qon0)div(c
t
θ

SSS
S =∇−

∂
∂ θ

)15(Qon0)div(c
t
θ

LLL
L =∇−

∂
∂ θ  

 
On the free boundary, the Stefan condition is 

satisfied: 
 

 cL∇θL.n - cS∇θs.n = λv.n   on    S ,       (16) 
 

where v is  the velocity of the free boundary. 
 

We denote by c(•)  the  function 
 

( ) (18)
0.α,c
0;α,c

αc
L

S

"
#
$

>
<

=  

 
Let us introduce a function χ(•)  such that:  
 

( ) (19)
0.α0,
0;α1,

αχ
"
#
$

≥
<

=  

 
With these notations, (11)-(16) is equivalent to 

(Cf. [8]): 
 

( ) ( ) )20(on)χ(
t

λθ)div(c
t
θ Ω

∂
∂−=∇−

∂
∂ φφ

 
sign(φ) = sign(θ - θc)        on  Ω      (21) 

 
We point that the equations (20)-(21) are verified 
on the whole Ω and, as above mentioned, 
infinitely many choices of φ are possible. 
 
 
The evolution problem  

 We denote by θ0 , the initial field of 
temperatures:   

 
θ(x,0) = θ0(x)   on  Ω                 (22) 

 
We assume that θ0 has square summable 

partial derivatives: θ0 ∈ H1(Ω). We assume also 
that the temperature on the boundary is known:  

 
 θ(x,t) = θ∂Ω(x,t)  on  ∂Ω                (23) 

 
We assume also that θ∂Ω is square summable: 

θ∂Ω ∈ L2(∂Ω). Moreover, the following 
compatibility condition is satisfied:   
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θ∂Ω (x,0) = θ0(x).                       (24)  
 

The unknowns (θ, φ) satisfy  the following 
boundary value problem: 
 
Problem 1: Find  (θ, φ )  satisfying (20)-(24). 
 

From [8], we have the following result: 
 
Theorem 1: The field of temperatures θ  and  the 
regions ΩS(t), ΩL(t), Σ(t) are uniquely determined.  

 
As previously observed, φ is not uniquely 

determined. 
 

Regularization  
In order to obtain a more regular problem, we 

shall introduce continuously differentiable and  
lipschitzian approximations of c and χ, denoted cε 
and χε, respectively.  In order to construct such an 
approximation, let us consider 
  

)25(
.1α,1

;1α0,α2α3
;0α,0

)α(η 32
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We observe that η is continuously 

differentiable on  R. η is not uniquely determined. 
More regular approximations involving 
differentiability at an arbitrary order n can be 
introduced by convenient choices.  

Let ε > 0 be a given parameter. We shall 
approximate the discontinuous functions c(•) and 
χ(•)  by  
 

)26(
ε2
εαηc
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αεηc)α(c LSε %
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'

(
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* ++%
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We have   

cε(φ) = c(φ)  ,  if   |φ| ≥ ε   ;          (28)  
 

χε(φ) = χ(φ)   ,  if   φ ≤  - ε  or  φ ≥ 0 .     (29) 
 
cε and χε are used in order to obtain a 

regularized boundary value problem. The 
equations  of Problem 1 are approximated as 
follows: 

 

( ) )30(on)(χ
t

λ)θ)(div(c
t
θ

Ω
∂
∂−=∇−

∂
∂

εεεεε
ε φφ

   
sign(φε) = sign(θε-θc)   on  Ω          (31) 

  
θε (x,0) = θ0(x)   on  Ω                 (32) 

 
θε (x,t) = θ∂Ω(x,t)   on  ∂Ω             (33)  

 
and we denote by (θε, φε) the solution of the 
associated boundary value problem: 
 

Problem 2: Find  (θε, φε )  verifying  (30) �  
(33) 

 
From [8], we have the following result:  
 
Theorem 2: The field of temperatures θε and 

the associated approximated regions ΩSε(t), 
ΩLε(t), Σε(t)  are uniquely determined. Moreover,   

)34())0 12
0 Ω → +→ (,T;H(θ   in   Lθ εε

 
 

DISCRETIZATION OR ITERATION IN TIME 
FOR THE REGULARIZED PROBLEM  

As previously observed, the numerical 
resolution of two phase Stefan problem has been 
extensively treated in the literature and many 
methods of discretization in time have been 
proposed.  We present here only the particular 
methods used for the Feynman-Kac 
approximation.  

In order to alleviate the notations, we shall 
drop the index  ε. 

Iterative solution of the regularized 
problem
 The problem 2 may be solved by an iterative 
procedure.  Let us set 
 

φ =  θ - θc     .                         (35) 
 

We have 
 

( ) ( ) )36(
t
θ χ')χ(

t ∂
∂=

∂
∂ φφ  

 
Thus,  Equation  (30)  is equivalent to  
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)37(0θ))div(c(
t
θ))('1( =∇−

∂
∂+ φφλχ  

 
Let be given an initial guess (θ0, φ0) (such as, 

for instance, θ0 = θ0 , φ0 =  θ0 - θc). We define a 
sequence {(θk , φk) }k≥0  by  
 

)38(on0)θ)div(c(
t
θ))('1( 1k

1k
Ω=∇−

∂
∂+ +

+
kk φφλχ

 
φk+1 =  θ k+1 - θc                         (39)  

  
θ k+1(x,0) = θ0(x)   on  Ω                 (40) 

 
θ k+1(x,t) = θ∂Ω(x,t)   on  ∂Ω             (41) 

 
We have the following result:  

 
Theorem 3: For each k ≥ 0, the field of 

temperatures θk+1
 and φk+1 are uniquely 

determined. Moreover,  
  

)42())0 12 Ω → +∞→ (,T;H(   in   Lθθ k
k

ε  
 
Approximation of the free boundary by 
interpolation

In order to alleviate the notations, we shall 
drop the indexes  k and k+1.  

Let us introduce an integer N > 0 and,  for  
0 ≤ i ≤ N,    

 
∆t = T/N ;  ti = i ∆t                   (43)  

 
θi(x) = θ(x, ti) ;   φi(x)  = φ(x, ti)             (44) 

 
The function φ is approximated by a function 

ϕ: φ ≅ ϕ. The approximation uses an interpolation 
procedure involving the the values φ0, �, φN.  
Many interpolation procedures can be considered. 
Here, we shall consider two kinds of 
approximation: a polynomial approximation of 
degree N and  piecewise constant approximations.  

Polynomial interpolation. In this appro- 
ximation, we set 

 
ϕ(x,t) = k0(x) + k1(x) t + � + kN(x) tN  ,    (45) 
 

where  
 

ki  = ki(φ0, φ1, � , φN)                    (46)  
is such that  

 
ϕ(x, ti) = φi(x)                        (47) 

 
For instance, for N=1, we have 
 

k0 = φ0  ;   k1 = (φ1- φ0)/T                (48)  
 

while for N = 2 we have 
 

k0=φ0; k1=(4φ1-3φ0-φ2)/T; k2=2(φ2-2φ1+φ0)/T2  (49) 
 

We observe that, when (48) is used, φ(x,T) is 
calculated without discretization in time. Into an 
analogous way, the use of (49) furnishes φ(x,T/2) 
and φ(x,T) without the evaluation of the free 
boundary for other values of  t. 

Piecewise constant approximation. In 
this case, we set 

 
  ϕ(x,t) =  φi(x)    for   ti ≤ t ≤ ti+1               (50) 

 
This approximation leads to an explicit 

method: on each each subinterval (ti, ti+1), φi is 
known and  φi+1 can be determined by solving  

 

)51(),(on0θ))div(c(
t
θ))('1( 1+×Ω=∇−

∂
∂+ iiii ttφφλχ

 
θ(x,ti) = θi(x)   on   Ω                (52) 

  
θ(x,t) = θ∂Ω(x,t)  on  ∂Ω             (53) 

 
φi+1 =  θi +1 - θc                         (54)  

 
This approach leads to the tracking of the free 

boundary by its calculation at the times t1, �tN, 
but can also be used analogously to (48) by 
performing a few steps in order to get φ(x,T). 
 
 
A FEYNMAN-KAC METHOD FOR THE 
DETERMINATION OF THE FREE 
BOUNDARY AT A GIVEN TIME  

As mentioned in the introduction, we shall 
introduce a method based on Feynman-Kac 
representations of the solutions. By reasons of 
limitation of the room, we give only some 
elements concerning the construction of 
representations. The reader interested in more 
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complete developments is invited to refer to [9], 
[10], [11].  
Ito’s Formula 

The main tool for the construction of 
Feynman-Kac representations is the Ito�s formula.  

Wiener processes. Let {Wt}t≥0 be a family 
of real random variables. We say that {Wt}t≥0 is a 
standard Wiener process if and only if 

 
W0 = 0 ;                             (55) 

 
Wt � Ws  is  N(0, (t-s)1/2)    ( t ≥ s)          (56) 

 
Wt � Ws is independent of Wz ( t ≥ s ≥ z)  (57) 

 
Multidimensional Wiener processes are 

defined into an analogous way, by considering  
Wt � Ws  as  Gaussian vectors having the 
distribution  N(0, (t-s)1/2 Id). 

Ito’s stochastic Integrals. Let  γ: R → R 
be a function and {Zt}t≥0 be a stochastic process. 
We define 

)58()(),(
0

1 dtZZI tt +=
τ

γγ  

 

)59()(),
0

(2 ttt dWZZI +=
τ

γγ  

 
as follows: let  p > 0 be an integer and h = τ/p. 
We note 
 

 Zi = Zti  ;  Wi = Wti  ;  ti = i h               (60) 
 
And we consider the finite sums: 
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We define 

 
)63(2,1,),(lim),( ==
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iZIZI t

p
ipti γγ  

 
when such a limit exists. 

Ito’s formula. Let us denote by  {Wt}t≥0 a 
standard Wiener process and  Xt the following 
Ito�s diffusion 

 
dXt =  α dWt     ; dSt =  -β(Xt,t) dt            (64) 

 
X0 =  x     ;  S0 =  s                           (65) 

 
Then, the diffusion 
 

Yt = u(Xt, St)                                 (66) 
 

verifies  the following  Ito�s formula: 
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Numerical determination of  the free 
boundary 

Representation of the solutions of 
linear parabolic problems. Let u satisfy the 
equation 

 

(68)T)(0,Ωont),f(u)
2
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t
ut),β(

2
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∂
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Then equation (67) becomes 
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So,  we have, for any  τ > 0 : 
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and, taking (57) into account : 
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Numerical solution of a parabolic equa- 
tion using the representation. Equation (70) 
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furnishes a simple way for the numerical 
evaluation of u(x,s): let us  assume that the 
following data is given:  
 

 u(●,0) = u0(●)  on  Ω                    (71) 
 

u(●,t) = u∂Ω(●,t)  on  ∂Ω                (72)  
 

u(●,t) = uc(●,t)  if  ϕ(●,t) = 0                (73) 
 

Then, we consider τ as the first time where u 
takes a known value, i. e. : 

 
τ =  inf { t | (Xt, St) ∉ Q }  ;         (74) 

 
So, 

( ) (75))dtS,f(S,uY
τ

0
ttττ ++= XX

 
corresponds to the given data (71)-(73) and we 
have: 
 

u(x,s) = E(Y)                      (76)  

Thus the value of u(x,s) may be approximated 
by using an empirical mean: we may generate NS 
values  of  Y, denoted by Y1 , � , YNS and we 
have 

 
u(x,s) ≅ (Y1 + � + YNS) /NS          (77) 

The values of Y1 , � , YNS can be generated 
by simulation of (64)-(65). Methods of simulation 
can be found, for instance,  in [10], [11]. A simple 
method of generation is the Euler�s discretization 
involving a step h > 0 and a gaussian vector Z ~ 
N(0, Id) (Zi denotes a value from Z) 

 
Xi+1 = Xi +αh Zi     ; Si+1 = Si - hβ(Xi,t)   (78) 

 

Determination of the interface.  As 
previously observed, the free boundary satisfies 
an algebraical equation such as, for instance,  

 
φ =  θ - θc 

 
This equation may be considered as being of 
algebraical type and solved by iterative methods 
such as fixed point or Newton�s iterations. For 
instance, we can consider the iterations   
 

φk+1 = φk + µ (θ k+1 - θc- φk) 

 
where µ ∈ R is a parameter to be conveniently 

chosen. These iterations imply the evaluation of  
φ on the whole Ω. In order to limit the evaluation 
to the single interface, we may introduce θS ,  the 
restriction of θ to  S and observe that 

 
θS = θc 

 
Thus, we can also consider the iterations 

 
φk+1 = φk + µ (θk+1,Sk

- θc)           (79) 
 

where θk+1,Sk
 is the restriction of θk+1  to Sk. 

Equations (38)  and (51) can be reduced to the 
form (68). Thus, θk+1 or its restriction θk+1

S
k can 

be determined by using (76)-(78) and the 
iterations can be performed without use of a 
Finite Element of Finite Difference method for 
the evaluation of the temperatures. 

If  the free boundary verifies: 
 

φ(x,t) = x3 - ρ(x1, x2, t) 
 

the iterations reads as follows:  
 

ρk+1 = ρk- µ (θk+1,Sk
 - θc)              (80) 

 
A NUMERICAL EXAMPLE 

By reasons of limitation of the room, we 
present here the results of a single experiment 
concerning the determination of the free boundary 
at T = 1.  

Let us consider the situation where Ω= (-1,1)3, 
cS = 10 ;  cL = 11 ;  λ = 4 ; θc = 0; 

 
θ(x,t) = (x1+1)2+(x2+1)2 +(x3+1)2  - exp(-t)    (81) 

 
In order to numerically perform the iterations 

(81), we introduce a discrete set of  np 
calculation (and not measurement) points 
distributed on the horizontal plane (Ox1, Ox2): 

 
p(n) = (x1(i), x2(j))  ,  0≤i ≤n1 ,  0≤j≤n2     (82) 

 
n = i + (j-1)n1;    np = (n1+1)(n2+1)       (83) 

 
x1(i)= -1+2i/n1; x2(j)= -1+2j/n2          (84)   

 
The results presented concern n1 = n2 = 40. 

The error in the evaluation of the free boundary is 
measured by the mean quadratic deviation  
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ρ(n) =  ρ(p(n)) ;  ρk(n) =  ρk(p(n))        (86) 

 
For a generic point x, the value of  ρk is 

obtained by linear interpolation using the values 
(86). The initial guess is the initial position of the 
free boundary: ρ0 = ρ(x1,x2,0). The results  
furnished by (80) with ns = 104; µ = 0.5 and the 
interpolation (48) are shown in Figures 1 and 2. 
Results furnisheed by the Robbins-Monro 
procedure with µk = 0.5/(1+k/4);  ns = 102 and the 
interpolation (48) are shown in Figure 3. 
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Figure 1� Free Boundary at t = 1. 
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Figure 3�Results obtained by Robbins-Monro 

 
CONCLUDING REMARKS  

We have presented a numerical method for the 
determination of the Stefan free boundary, based 
on a formulation of the Stefan problem as a non-
linear evolution equation verified on the whole 
domain and a Feynman-Kac representation of the 
solution of a linear parabolic equation. The 
method does not involve spatial discretization: the 

values of the temperatures are evaluated by 
simulating a stochastic diffusion. The approach is 
naturally adapted to parallel computation. It has 
been tested in two or three dimensional situations 
and has shown to be effective to calculate. 
Improvements may be obtained by using more 
sophisticated spatial and temporal interpolation of 
the free boundary ore other methods of simulation 
of the stochastic diffusion.  
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ABSTRACT 
      We present an automated technique for the 
approximate reconstruction of arbitrary spatial 
and time varying source terms using the observed 
solutions to the forward problem on a discrete set 
of points. The numerical method is based on 
computations of the derivatives of filtered 
versions of the noisy data by discrete 
mollification and generalized cross validation. 
      The unknown forcing terms are identified in a 
compact subset of the domain where the solutions 
are measured, the compact subset being 
automatically determined by the amount of noise 
in the data. We restore continuous dependence on 
the data, estimate the rate of convergence when 
certain conditions are met, and provide several 
numerical examples of interest. 
 
1. INTRODUCTION 
      For 1 max0 ,0x x t t< < < < , consider a 

linear partial differential equation of the form  
 

( ( , ) ) ( , )t x xu a x t u f x t= + ,                          (1) 

  
together with the corresponding initial (IC) and 
boundary conditions (BC) 
 

0 max(0, ) ( ),0u t u t t t= ≤ ≤ ,                          BC 

1 1 max( , ) ( ),0u x t u t t t= ≤ ≤ ,                         BC 
0

1( ,0) ( ),0u x u x x x= ≤ ≤ .                           IC 

 
Ordinarily, ( , )f x t and ( , )a x t are known func- 

tions and we are asked to determine the solution 
functions ( , )u x t so as to satisfy equation (1)  

and  (BC-IC). So posed, this is a direct problem. 
 

 
 
     
     There is, however, an interesting inverse 
problem that can be formulated. The objective of 
this new problem is to determine part of the 
structure of the system, in our case the forcing 
term ( , )f x t , from experimental information 

given by the approximate knowledge of the 
function ( , )u x t  at a discrete set of points in its 

domain. This question belongs to a general class 
of inverse problems, known as system 
identification problems, and, in particular it is an 
ill-posed problem because small errors in the 
function ( , )u x t might cause large errors in the 

computation of the partial derivatives ( , )tu x t , 

( , )xu x t , and ( , )xxu x t which are needed in 

order to estimate the forcing term function 
( , )f x t . 

     To better illustrate the poor stability properties 
of the mapping from the data function u to the 

solution function f , let's consider a slab in 

the ( , )x t plane, where the temperature function 

u satisfies 
 

( , ),0 ,0t x xu u f x t x tπ= + < < < < ∞,  

 
with homogeneous (zero) boundary and initial 
conditions. We wish to reconstruct ( , )f x t  from 

the exact transient temperature history 

0( ) ( , )T t u x t=  given at some point 0x , 

0< 0x <π . Separation of variables leads to the 

integral representation  
 

0 0

( ) ( , ) ( , )
t

T t k x t s f x s dx ds
π

= −∫ ∫ , 
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where the kernel function is given by 
 

 
2

0
1

2
( , ) sin( )sin( )n

n

k x e nx nxττ
π

∞
−

=
= ∑ . 

 
Introducing the sequence of data functions 
 

 
2

3

2
0( ) (2 )sin( ), 0n t

nT t n e nx n
− −= − ≥ , 

 
the source terms nf  are independent of t  and we 

obtain 2 sin( )nf n nx= . From here, it is clear 

that when  n → ∞ , nT  →0  and 

 

0max | ( ) | 2x nf x nπ< < =  → ∞ , 

 
showing that the problem is greatly ill-posed with 
respect to perturbations in the data. 
     The identification of source terms in the one-
dimensional inverse heat conduction problem 
(IHCP) has been extensively explored. However, 
the available results are based on the assumptions 
that the source term f depends only on one 

variable (Cannon and DuChateau [1]) or that it 
can be separated into spatial and temporal 
components (Ewin and Lin [3], Nanda and Das 
[5], Coles and Murio [2].) A historical and 
technical review of general inverse source 
problems can be found in the classical book of 
Isakov [4]. 
     The basic idea of the method presented in this 
paper begins by attempting to reconstruct 
mollified versions of several partial derivative 
functions. The approximations are generated 
initially by filtering the noisy data by discrete 
convolution with an averaging kernel and then 
using finite differences to numerically solve the 
associated well-posed problems. Once the 
approximate derivative functions have been 
computed, the function f is evaluated providing 

an estimate for the unknown forcing term. The 
efficiency of this “direct” and simple approach is 
demonstrated in section 3 where several 
numerical examples of interest are presented. In 
section 2 the stabilized problem is introduced and 
the corresponding error bounds are derived. 
 

2. STABILIZED PROBLEM 
     In what follows we consider, without loss of 
generality, the temperature function ( , )u x t  

measured in the unit square 

x tI I I= × =[0,1] [0,1]×  of the ( , )x t plane, 

i.e., we set 1x = 1 and maxt =1 in equation (1). On 

the basis of this information we discuss the 
problem of estimating the forcing term function 

( , )f x t in some suitable compact set K I⊆ . 

We denote the x and t - projections of K  by xK  

and tK , respectively. 

     If 0 ( )C I  represents the set of continuous real 

functions over I with norm  
 

, ( , )|| || max | ( , ) |I x t Ig g x t∞ ∈= , 

 
we assume that the functions ( , )u x t , ( , )a x t , 

( , )xa x t , ( , )tu x t , ( , )xu x t , ( , )xxu x t and 

( , )f x t ∈ 0 ( )C I . We also assume that instead 

of the function ( , )u x t , we know some data 

function ( , )u x tε  such that ,|| || Iu uε ε∞− ≤ .  

     In order to stabilized the source problem, we 
introduce the function 
 

2

2
,

1
exp( ),| | ,

( )

0, | | ,
p

x
A x p

x

x p

ρ
δ

δρ δ δ
δ


− ≤= 

 >

 

 

withδ >0, p >0, and 2 1( exp( ) )
p

p

p

A s ds
δ

δ

−

−

= −∫ . 

, pδρ ∈ ( , )C p pδ δ∞ − , is nonnegative,  and 

satisfies , ( )
p

p

p

x dx
δ

δ
δ

ρ
−
∫ =1. 

For 1( ) ( )xg x L I∈ , and for x ∈ xK , we define 

the δ -mollification of g  by  

 

( ) ( )( )J g x g xδ δρ= ∗ = ( ) ( )
xI

x s g s dsδρ −∫  
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= ( ) ( )
x p

x p

x s g s ds
δ

δ
δ

ρ
+

−

−∫ ,                          

 
with the p - dependency on the kernel   dropped 

for simplicity of notation. We observe that 

tan ( , )x xp dis ce K Iδ = ∂ . 

     The following lemma and theorem are needed 
for the stability analysis. The proofs can be found, 
for example, in Murio, Mejía and Zhan [6]. 
     In all cases, the discrete (sampled) functions  

, { ( ), ( ) : }j jG G g x g x j Zε ε= ∈  are defined 

on a uniform partition of xI , with step size x∆ , 

and satisfy ,|| ||
xKG Gε ε∞− ≤ . The symbol C 

represents a generic positive real parameter. 
 

Lemma 1  If ( )g x , ( )
d

g x
dx

 and 
2

2
( )

d
g x

dx
 

0 ( )xC I∈ , there exist constants C  and Cδ , 

independent of δ and x∆ , respectively, such that 
 

,|| || ( )
xKJ G J G C xε

δ δ ε∞− ≤ + ∆ , 

 

,|| || ( )
xKJ G g C xε

δ ε δ∞− ≤ + + ∆ , 

 

,|| || ( )
xK

d d x
J G g C

dx dx
ε

δ
εδ

δ∞
+ ∆− ≤ + , 

 
2 2

,2 2 2
|| || ( )

xK

d d x
J G g C

dx dx
ε

δ
εδ

δ∞
+ ∆− ≤ + , 

 

2
0 ,|| ( ) || ( ) ( )

xK

d x
D J G g C C x

dx
ε

δ δ
εδ

δ∞
+ ∆− ≤ + + ∆  

 
and 
 

0

2
2 2

, ,2 2
|| ( ) || ( ) ( )

xK

d x
D J G g C C x

dx
ε

δ δ
εδ

δ∞
+ ∆− ≤ + + ∆  

 

where 0D  and 2
0D denote the centered and 

backward - forward finite differences  approxima-
tions to the first and  second derivatives,  respecti- 

vely. 

In what follows we will use 0
tD , 0

xD and 2,
0

xD to 

indicate the corresponding finite differences 
approximations to the partial derivatives. 
     Lemma 1 shows that attempting to reconstruct 
derivatives of mollified noisy data functions is a 
stable problem with respect to perturbations in the 
data, in the maximum norm. This regained 
stability property is naturally inherited by the 

mollified reconstructed source term ( , )J F x tε
δ , 

which is obtained as a linear combination of 
partial derivatives of the measured temperature 
function. More precisely, we have 
 

0( , ) ( )x
xJ F x t a D J uε ε

δ δ= 2,
0 ( )xaD J uε

δ+    

0 ( )tD J uε
δ− .                                               (2) 

 
We can now state our main theoretical result. 
 
Theorem 1  Under the conditions of  Lemma 1, 
for fixed δ > 0, the reconstructed mollified 

source term J F ε
δ , given by formula (2),  

satisfies 
 

,|| || {KJ F f Cε
δ δ∞− ≤ +

2
}

x tε
δ

+ ∆ + ∆
 

           2 2[( ) ( ) ]C x tδ+ ∆ + ∆ . 

 
Proof  Rearranging terms in equations (1) and 
(2), subtracting, and using maximum norms, we 
have 
 

,|| || KJ F fε
δ ∞− ≤ 0 ,|| ( ) ||t

t KD J u uε
δ ∞−  

+  
, 0 ,|| || || ( ) ||
K

x
x x Ka D J u uε

δ∞ ∞−  

+  
, 0

2
| ,|| || || ( ) ||

Kx xx Ka D J u uε
δ∞ ∞− , 

 
and by Lemma 1 we have 
 

,|| || KJ F fε
δ ∞− ≤  

( )
t

C
εδ

δ
+ ∆+ 2( )C tδ+ ∆  

+
,

2
||| || [ ( ) ( ) ]

Kx

x
a C C xδ

εδ
δ∞

+ ∆+ + ∆  
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,

2
| 2

|| || [ ( ) ( ) ]
K

x
a C C xδ

εδ
δ∞

+ ∆+ + + ∆ . 

 
Setting 

, ,
max(|| || ,|| || , 2)

K KxM a a
∞ ∞

= , we ob- 

tain the desired estimate 
 

,|| || KJ F fε
δ ∞− CM≤ {δ +

2
}

x tε
δ

+ ∆ + ∆
  

        2 2[( ) ( ) ]C x tδ+ ∆ + ∆ . 

 
Corollary  To get formal convergence, the ill-
posedness of the problem requires to relate all the 
parameters involved.  

The choice 1/3(2( ))x tδ ε= + ∆ + ∆ shows  that 

 ,|| || KJ F fε
δ ∞− = 1/3( )O x tε + ∆ + ∆ , which 

implies formal convergence as ε , x∆ , and 

t∆ →0. 
 
Remarks In practice, when modeling, the 
selection ( )δ δ ε=  is performed automatically 

by combining the mollification method with the 
statistical procedure of generalized cross 
validation, as described in Murio, Mejía and Zhan 
[6]. 
     We also note that the choice of δ  
automatically defines the compact subset 
K I⊆ where we seek to reconstruct the 

unknown forcing term ( , )f x t . 
 
3. NUMERICAL PROCEDURE 
      Let 1/h x M= ∆ =  and 1/k t N= ∆ =  be 
the parameters of the finite differences discretiza- 

tion of I . We denote by n
jR , n

jW , n
jQ , n

jU , and 
n
jF , the discrete computed approximations of the 

mollified temperature function ( , )u jh nkε , the 

mollified time derivative temperature 

( , )tu jh nkε , the mollified space derivative 

temperature ( , )xu jh nkε , the mollified second 

space derivative temperature ( , )xxu jh nkε , and 

mollified source term function ( , )f jh nkε , 
respectively.  Here, the ε  dependency on the dis- 

 
 
crete functions  has  been eliminated  to  simplify 
the notation. 

     Computation of n
jF throughout the entire do- 

domain I  requires the extension of the data to a 

slightly larger domain Iδ  [ ,1 ]x xp pδ δ= − +  ×  

[ ,1 ]t tp pδ δ− + . For computational efficiency, 

the original two-dimensional problem is reduced 
to a sequence of one-dimensional problems by 
“marching” in the x  (or t ) direction and we only 
need to consider one-dimensional extensions. If 
needed, by storing the radius of mollification at 
each step, we can reconstruct K I⊆ , the 
compact subset where the error estimate given by 
Theorem 1  is valid. For details, see Zhan and 
Murio [7] and the references therein. 
     For j = 1 to M - 1, the space marching scheme 

to compute n
jW , n

jQ , n
jU , and n

jF is defined by 

 
1 1

2

n n
j jn

j

R R
W

k

+ −−
= , 1, 2,..., 1n N= − , 

1 1

2

n n
j jn

j

R R
Q

h
+ −−

= , 1, 2,..., 1n N= − , 

1 1

2

2n n n
j j jn

j

R R R
U

h
+ −− +

= , 1, 2,..., 1n N= − , 

( , )n n n
j j x jF W a jh nk Q= −  ( , ) n

ja jh nk U− , 

1, 2,..., 1n N= − . 

 
The discretized measured approximations of the 
temperature data functions are modeled by adding 
random errors to the exact data functions. That is, 
the reconstructions are attempted on the whole 
domain [0,1]I =  [0,1]× , and 

( , ) n n
j ju jh nk uε ε= + ,  

0,1,...,j M= , 0,1,...,n N= , 

where the  n
jε ’s are Gaussian random variables 

with values in [ , ]ε ε− . 

 
Examples   
     The numerical examples presented next  cover  
an interesting  variety of  possible   behaviors  for 
the source term ( , )f x t . The  first  example des- 

cribes  a  forcing  term  that is oscillatory in space
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while the second example illustrates a forcing 
term which is highly oscillatory in time. Example 
3 corresponds to a smooth source term that 
decreases rapidly in time near the boundary 

0x = and very slowly near the boundary 1x = . 
Finally, example 4 involves a rather complicated 
non-smooth rapidly varying forcing term in the 
x - component.  
     Tables 1, 2, 3, and 4, illustrate the quantitative 
behavior of the numerical method. For each of the 

four examples, the average 2l  relative error norm 

-over 200 hundred random trials- corresponding 

to ( , )f x t , ( , )u x t , ( , )xu x t , ( , )xxu x t  and  

( , )tu x t , are reported. 

     The qualitative behavior of the method is 
illustrated in Figures 1, 2, 3, and 4, where we 
show the exact and typical computed source terms 
associated with each one of the examples. All the 
graphs correspond to source terms reconstructed 

with parameters 
1

h x
M

= ∆ = 1
k t

N
= = ∆ = , 

128M = , 3p =  andε  = 0.005. 
 
    Example 1 
     Identify ( , )f x t in ( ) ( , )t x xu xu f x t= − + if 
the exact data temperature is given by 
 

( , ) sin(10 )x tu x t e t−= . 

 
In this example, the exact source term function is  
 

( , ) ( sin10 10cos10 ) x tf x t x t t e −= + . 
 

Table 1 Relative l2 error norms  (M = N) 
M ε f u u x u xx u t 
64 .005 .169 .009 .073 .243 .171 
128 .005 .088 .008 .064 .203 .088 
256 .005 .022 .009 .062 .199 .016 
64 .010 .171 .010 .074 .243 .173 
128 .010 .087 .011 .064 .203 .087 
256 .010 .022 .010 .062 .199 .017 
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Figure 1a Exact source term 
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Figure 1b Computed source term 
 

 
     Example 2 
     Identify ( , )f x t in  
 

15
(( sin 20 ) ) ( , )

10t x xu x u f x t= + +  

 
if the exact data temperature is given by 
 

( , ) x tu x t e −= . 
 
In this example, the exact source term function is  
 

25
( , ) ( 20cos 20 sin 20 )

10
x tf x t x x e −= − + + . 
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Table 2 Relative l2 error norms  (M = N) 
M ε f u u x u xx u t 
64 .005 .171 .0085 .073 .243 .172 
128 .005 .059 .0024 .058 .187 .028 
256 .005 .022 .0087 .062 .199 .017 
64 .010 .079 .0048 .075 .251 .075 
128 .010 .059 .0049 .058 .187 .028 
256 .010 .022 .0048 .062 .197 .017 
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Figure 2a Exact source term 
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Figure 2b Computed source term 
 

 
    Example 3 
     Identify ( , )f x t in  
 

21
((1 4( ) ) ) ( , )

2t x xu x u f x t= + − +  

 
 

 
 
if the exact data temperature is given by  
 

( , ) x tu x t e −= . 
 
In this example, the exact source term function is 
 

21 1
( , ) (4( ) 8( ) 2)

2 2
x tf x t x x e −= − − + − + . 

 
Table 3 Relative l2 error norms  (M = N) 

M ε f u u x u xx u t 
64 .005 .124 .0027 .075 .259 .059 
128 .005 .088 .0025 .058 .187 .089 
256 .005 .055 .0023 .055 .174 .081 
64 .010 .119 .0051 .075 .259 .069 
128 .010 .085 .0049 .058 .187 .069 
256 .010 .063 .0047 .055 .174 .076 
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Figure 3a Exact source term 
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Figure 3b Computed source term 
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    Example 4 
     Identify ( , )f x t in ( ) ( , )t x xu au f x t= +  

if the exact diffusivity coefficient is given by 
 

1
1, 0 ,

4
1 1

4 , ,
4 2( )
1 3

3 2 , ,
2 4
3

1.5, 1,
4

x

x x
a x

x x

x

 ≤ <

 ≤ <= 
 − ≤ <


 ≤ ≤


 

 
and the exact data function is 
 

( , ) x tu x t e −= . 
 
In this example, the exact source term function is 
 

2 , 0 1,

1 1
(5 4 ) , ,

4 2
( , ) 1 3

( 2 2 ) , ,
2 4

25 3
, 1.

10 4

x t

x t

x t

x t

e x

x e x

f x t
x e x

e x

−

−

−

−

− ≤ <

− + ≤ <
= 

− + ≤ <

− ≤ ≤

 

 
Table 4 Relative l2 error norms  (M = N) 

M ε f u u x u xx u t 
64 .005 .119 .0025 .075 .026 .070 
128 .005 .101 .0026 .058 .187 .020 
256 .005 .096 .0025 .055 .174 .059 
64 .010 .118 .0050 .075 .026 .062 
128 .010 .098 .0049 .058 .187 .045 
256 .010 .092 .0036 .055 .174 .042 

 
4. CONCLUSIONS 
     The simple approach and results offered in this 
presentation indicate that the methodology is a 
viable alternative to recover arbitrary source 
terms depending on space and time. 
     Extension of the procedure to higher 
dimensional cases is straightforward. 
        

50

100

50

100
-10

-7.5
-5

-2.5
0

50

100

 
Figure 4a Exact source term 
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Figure 4b Computed source term 

 
 
    Figures 1-4 illustrate numerical results obtained 
with sensors placed at every single point of the 
spatial grid. If the number of sensor is smaller 
than 1M + , or are not equally spaced, the data 
should be carefully interpolated before applying 
the algorithm. 
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¸�ªUÎ�³�Â�ÊgËÌ§U¨�ª 5 ] $
ÁW¦*§U¨�ªK½�­�±,´ º�§U¨i¹�®�®�µ
´"ÃUÅ
º�¸�±6ª-6DÞ"¹�ª:¶Í±6²:®¯¨�­¯¬,¨�¶Í·�±6ª,¬,¨�­�Î�¨�ª:·�¨#±�½�º�§U¨X´�¹�Å
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Function Optimization Using Extremal Dynamics

ABSTRACT
In this paper a new stochastic algorithm for function

optimization is presented. Called   Generalized  Extremal
Optimization, it was inspired by the theory of Self-
Organized Criticality and is intended to be used in
complex inverse design problems, where traditional
gradient based optimization methods may become
inefficient. Preliminary results from a set of test
functions show that this algorithm can be competitive to
other stochastic methods such as the genetic algorithms.

NOMENCLATURE
k      Index of bit rank.
L   Length of binary string that encodes the design

variables.
l        Length of binary string for one design variable.
N      Number of design variables.
V    Value of the objective function for a given binary

string.
x       Design variable.
∆V    Bit fitness.
τ        Free adjustable parameter of the optimization

algorithm.

INTRODUCTION
Stochastic algorithms inspired by nature have been

successfully used for tackling optimization problems in
engineering and science. Simulated Annealing (SA)[1]

and Genetic Algorithms (GAs)[2] are probably the two
methods most used. Their robustness and ability to be
easily implemented to a broad class of problems,
regardless of such difficulties as the presence of multiple
local minima in the design space and the mixing of
continuous and discrete variables, has made them good
tools to tackle complex problems, for example, in the
aerospace field[3-7].  The main disadvantage of these
methods is that they usually need a great number of
objective function evaluations to be effective. Hence, in
problems where the calculation of the objective function
is very time consuming, these methods may become
impracticable. Nevertheless, the availability of fast
computing resources or the use of hybrid techniques[8-10]

has made the power of those algorithms available even to

that kind of problems. There are today many derivatives
of the SA and GAs methods, created to give more
efficiency to the proposed original algorithms, but that
keep essentially their same principles.

 Recently, Boettcher and Percus[11] have proposed a
new optimization method based on a simplified model of
biological evolution developed to show the emergence of
Self-Organized Criticality (SOC) in ecosystems.[12]

Called Extremal Optimization (EO), it has been
successfully applied to tackle hard problems in
combinatorial optimization.

Although algorithms such as SA, GAs and the EO are
inspired by natural processes, their practical
implementation to optimization problems shares a
common feature: the search for the optimal is done
through a stochastic process that is “guided” by the
setting of adjustable parameters. Since the proper setting
of these parameters are very important to the
performance of the algorithms, it is highly desirable that
they have few of such parameters, so that the cost of
finding the best set to a given optimization problem does
not become a costly task in itself. The EO algorithm has
only one adjustable parameter. This may be an “a priori”
advantage over the SA and GA algorithms, since they
use more than one.

In this paper the Generalized Extremal Optimization
(GEO) algorithm is presented. The GEO algorithm is
built over the EO method, but the way it is implemented
allows it to be readily applied to a broad class of
engineering problems. The algorithm is of easy
implementation, does not make use of derivatives and
can be applied to nonconvex or disjoint problems. It can
also deal in principle with any kind of variable, either
continuous, discrete or integer. All these features make it
suitable to be used in complex inverse design problems,
where traditional gradient methods could not be applied
properly due to, for example, the presence of multiple
local minima or use of mixed types of design variables.
In this work the performance of the GEO algorithm is
tested in a set of non-linear multimodal functions used
commonly to test GAs. The performance of the GEO
algorithm    for these functions is compared with the
ones for a standard GA and the Cooperative Co-
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evolutionary GA (CCGA) proposed by Potter and De
Jong.[13]

THE EXTREMAL OPTIMIZATION ALGORITHM
Self-organized criticality has been used to explain the

behavior of complex systems in such different areas as
geology, economy and biology.[14] The theory of  SOC
states that large interactive systems evolves naturally to a
critical state where a single change in one of its elements
generates “avalanches” that can reach any number of
elements on the system. The probability distribution of
the sizes “s” of these avalanches is described by a power
law in the form P(s) ~ s-γ , where γ is a positive
parameter. That is, smaller avalanches are more likely to
occur than big ones, but even avalanches as big as the
whole system may occur with a non-negligible
probability.  To show that SOC could explain features of
systems like the natural evolution, Bak and Sneepen[12]

developed a simplified model of an ecosystem in which
species are placed side by side on a line with periodic
boundary conditions. To each species, a fitness number
is assigned randomly, with uniform distribution, in the
range [0,1]. The least adapted species, the one with the
least fitness, is then forced to mutate, and a new random
number assigned to it. The change in the fitness of the
least adapted species alters the fitness landscape of their
neighbors, and to cope with that new random numbers
are also assigned to them, even if they are well adapted.
After some iterations, the system evolves to a critical
state where all species have fitness above a critical
threshold. However, the dynamics of the system
eventually causes a number of species to fall below the
critical threshold in avalanches that can be as big as the
whole system.

An optimization heuristic based on a dynamic search
that embodies SOC would evolve solutions quickly,
systematically mutating the worst individuals. At the
same time this approach would preserve throughout the
search process, the possibility of probing different
regions of the design space (via avalanches), enabling the
algorithm to escape local optima. Inspired by the SOC
theory, the basic EO algorithm was proposed as
follows:[11]

1.Initialize configuration C of design variables xi at
will; set Cbest = C.

2. For the current configuration C,
a) set a fitness Fi to each variable xi,
b) find j satisfying Fj ≤ Fi for all i,
c) choose C’ in a neighborhood N(C) of C so that xj

must change,
       d) accept C = C’  unconditionally,
       e) if F(C)  <  F(Cbest) then set Cbest = C.

3. Repeat step (2) as long as desired.

4. Return Cbest and F(Cbest).

The above algorithm shows good performance on
problems, such as graph partitioning, where it can choose
new configurations randomly among neighborhoods of
C, while satisfying step 2c. But when applied to other
types of problems, it can lead to a deterministic
search.[11] To overcome this, the algorithm was modified
as follows: in step 2b the N variables xi are ranked so
that to the variable with the least fitness is assigned rank
1, and to the one with the best fitness rank N. Each time
the algorithm passes through step 2c a variable is chosen
to be mutated according to a probability distribution of
the k ranks, given by:

 P(k) = k−τ
 ,   1 ≤ k ≤ N ,                                       (1)

where τ is a positive adjustable parameter. For τ → 0, the
algorithm becomes a random walk, while for τ → ∞, we
have a deterministic search. The introduction of the
parameter τ, allows the algorithm to choose any variable
to mutate, but privileging the ones with low fitness. This
implementation of the EO method received the name τ-
EO algorithm[11], and showed superior performance to
the standard implementation even in cases where the
basic EO algorithm would not lead to local minima.

As pointed out by Boettcher and Percus,[11] “a
drawback of the EO method is that a general definition
of fitness for the individual variables may prove
ambiguous or even  impossible”. What means that for
each new optimization problem assessed, a new way to
assign the fitness to the design variables may have to be
created. Moreover, to our knowledge it has been applied
so far to combinatorial problems with no implementation
to continuos functions. In order to make the EO method
applicable to a broad class of design optimization
problems, without concern to how the fitness of the
design variables would be assigned and capable to tackle
either continuos, discrete or integer variables, a
generalization of the EO, called Generalized Extremal
Optimization, was devised. In this new algorithm, the
fitness assignment is not done directly to the design
variables, but to a “population of species” that encodes
the variables. Each species receives its fitness, and
eventually mutates, following general rules. The GEO
algorithm is described in the next Section.

THE GENERALIZED EXTREMAL OPTIMIZATION
ALGORITHM

We devised the GEO algorithm using the same logic
of the evolutionary model of Bak and Sneppen,[12] but
applying the τ-EO approach to choose the species that
will mutate. Following Bak and Sneppen,[12]  L species
are aligned and for each species is assigned a fitness
value that will determine the species that are more prone
to mutate. We can think of these species as bits that can
assume the values of 0 or 1. Hence, the entire population
would consist of a single binary string. The design
variables of the optimization problem are encoded in this
string that would be similar to a chromosome in a
canonical GA, but with each bit considered as a species
or individual, as shown in Figure 1.



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

To each species (bit) is assigned a fitness number that
is proportional to the gain (or loss) the objective function
value has in mutating (flipping) the bit. All bits are then
ranked from rank 1, for the least adapted bit, to N for the
best adapted. A bit is then chosen to mutate (flip)
according to the probability distribution (1). This process
is repeated until a given stopping criteria is reached and
the best configuration of bits (the one that gives the best
value for the objective function) found through the
process is returned.  In Figure 1

The practical implementation of the GEO algorithm
to a function optimization problem is as follows:

1. Initialize randomly a binary string of length L
that encodes N design variables of bit length lj (j = 1,
N). For the initial configuration C of bits, calculate
the objective function value V and set Cbest = C and
Vbest = V.

2. For each bit i of the string, at a given iteration:
a) flip the bit (from 0 to 1 or 1 to 0) and
calculate the objective function value Vi of the
string configuration Ci,
b) set the bit fitness as ∆Vi = (Vi - Vbest). It
indicates the relative gain (or loss) that one has
in mutating the bit, compared to the best
objective function value found so far.
c) return the bit to its original value.

3. Rank the bits according to their fitness values,
from k = 1 for the least adapted bit to k = L for the
best adapted. In a minimization problem, higher
values of ∆Vi will have higher ranking, and otherwise
for maximization problems. If two or more bits have
the same fitness, rank them randomly.

4. Choose with equal probability a candidate bit i
to mutate. Generate a random number RAN with
uniform distribution in the range [0,1]. If the
mutating probability Pi(k) of the chosen bit is equal
or greater than RAN the bit is confirmed to mutate.
Otherwise, the process is repeated until a bit is
confirmed to mutate.

5. For the bit i chosen to mutate set C = Ci and V =
Vi.

6. If  V  <  Vbest (V  >  Vbest, for a maximization
problem) then set Vbest = V and Cbest = C.

7. Repeat steps 2 to 6 until a given stopping
criteria is reached.

8. Return Cbest and Vbest.

Equality and inequality constraints can be easily
incorporated to the algorithm simply setting a high (for a
minimization problem) or low (for a maximization
problem) fitness value to the bit that, when flipped, leads
the configuration to an unfeasible region of the design
space. Side constraints are directly applied through the
encoding of the design variables. Note that the move to
an infeasible region is not prohibited, since any bit has a
chance to mutate according to the P(k) distribution.
Moreover, no special condition is posed for the
beginning of the search process, which can even start
from an infeasible region.

A slightly different implementation of the GEO
algorithm can be obtained, changing the way the bits are
ranked and mutated. Instead of ranking all the bits
according to steps 2-3, we can rank them separately for
each variable. In this way the bits of each variable will
have a rank ranging from 1 to lj. In step 4 one bit of each
variable is chosen to be flipped according to the
probability distribution P(k). We will call this
implementation hereinafter GEOvar. In the following
Section the performance of the GEO algorithm is
verified against a set of test functions.

RESULTS
The GEO algorithm and its variation GEOvar were

applied to a set of test functions described in [13]. They
are nonlinear, multimodal, multidimensional functions
with variables bounded by side constraints. As in the
GAs used in [13], each variable is encoded in 16 bits. All
functions have one global optimum, where the value of
the objective function is zero. As with any stochastic
algorithm, the performance of GEO is influenced by its
control parameter. In order to find the “best” value of τ
applicable for each test function, we varied τ in the range
[0.25,3.0] with steps of 0.25.  For a given test function,
the best value of τ was the one that lead to the best
(minimal) value for the objective function, after a given
number of function evaluations (NFE).

In Figures 2 to 6, the performance of the GΕΟ
algorithms for the set of test functions is shown together
with the results for the GAs. All data points on the
graphs below represent an average of 50 independent
runs. The best objective function value found through the
search is shown against the number of function
evaluations.

Each bit represents one species

Figure 1 – Encoding of N design variables. In this
example each design variable is represented by 6 bits.

Design variable
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Figure 2 – Results for the Rosenbrock function.  aFrom
[13].
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Figure 3 – Results for the Rastringin function. aFrom
[13].
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Figure 4 – Results for the Schwefel function. aFrom [13].
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Figure 5 – Results for the Griewangk function. aFrom
[13].
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Figure 6 – Results for the Ackley function.
aFrom [13].

From the results shown throughout this Section, it can
be seen that the GEOvar performed equally or better than
the GEO for all functions. This indicates that, at each
iteration, mutating one bit per variable may be
advantageous compared to mutating only one bit for the
whole string.

It can be also observed that, for a given test function,
the value of τ that gave the best results was always lesser
in the GEO algorithm than in the GEOvar. It must be also
remarked, that the range where the “best” τ was found
for both GEOs is not large, what means that the
computational effort to “fine tune” τ is not really a
burden for the method.

Finally, the results shown above indicate that the
GEO can work successfully. Although it performed very
poorly for the Schwefel function, when compared to the
GAs, it was quite competitive for the other test functions,
mainly when the variables were tackled simultaneously
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(GEOvar). In fact, it must be remembered that does not
exists a “best of all” optimization algorithm,[15] and  it is
not  expected that the GEO algorithm would  outperform
all the other kinds of stochastic algorithms in all cases.

CONCLUSIONS
In this paper the Generalized Extremal Optimization

algorithm was presented. Inspired by the theory of Self-
Organized Criticality, it is an stochastic algorithm
devised to tackle complex design optimization problems
that presents such features as nonconvex design spaces
or presence of different kinds of design variables. As an
“a priori” advantage over other popular stochastic
algorithms, it has only one adjustable parameter, and can
be easily fine tuned to give its best performance on a
given problem. Tested in a set of nonlinear, multimodal
functions commonly used to assess the performance of
stochastic algorithms, it showed to be a potential
candidate to be incorporated into the designer’s tool
suitcase. Ongoing research is aimed at the study of the
implementation of the GEO algorithm to constrained
function optimization and its application to real inverse
design problems.
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ABSTRACT 
 
The estimation of  some unknown parameters is 
carried out by using least square methods 
requiring the computation of a gradient. We 
present a method for the derivation of second 
order quantities especially the products of the 
hessian with a vector. We will see how this 
information can be used for the estimation of 
the condition number of the Hessian and for 
sensitivity analysis . 
 
SECOND ORDER ANALYSIS 
 
Let us consider a model describing the 
evolution of fluid, we will assume that the 
model has been discretized with respect to time, 
it writes: 

( ),

(0)

dX
F X K

dt
X U

 =

 =

 

 
X is the state variable describing the medium, K 
is some unknown parameter and U the initial 
condition which is also unknown. We assume 
that the medium has been observed between 
times 0 and T and we have an observation Xobs 
. C is an operator from the state space toward 
the space of observation. K and U are estimated 
by the minimization of the cost function J 
defined by : 

( ) 2

0

1
, .

2

T

obsJ U K C X X dt= −∫  

This is the simplest form for the cost function. 
In practice it should contains some 
regularization term 
The optimal values of U and K are solutions of 
the optimality system: 

0

0
U

K

J
J

∇ =
∇ =

 

The gradients are evaluated by introducing the 
adjoint model, P being the adjoint variable of  
the same dimensionality as X,  defined by: 

( )

( ) 0

t
t

obs
dP F

P C CX X
dt X

P T

 ∂ + = −  ∂ 
 =

 

Then it comes : 
 

( )

.

0

t

U

K

F
J P

K

J P

 ∂ ∇ = −  ∂ 
∇ = −

 

The compution of the gradient, by a backward 
integration of the adjoint model,  permits to 
carry out some descent type method to compute 
U and K 
To compute H, the hessain matrix of J : 

( ) , ,

, ,

, U U U K

U K K K

H H
H U K

H H
 

=  
 

 

we introduce Q and R.  If we consider the sytem 
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( )
( )

2

2

0

0

0

tt
tdQ F F

Q R P C CR
dt X X

dR F
R

dt X

Q T

R V

  ∂ ∂ + − =   ∂ ∂   
 ∂  − =  ∂ 
 =

 =

 

 
If  this is integrated, then it can be shown [1], 
that we have : 
 

( ),

,

. 0

. .

U U

t

U V

H V Q

F
H V Q

K

=

∂ =  ∂ 

 

 
 
In the same way, we will consider  
 

( )
( )

2

2

0

0 0

tt
tdQ F F

Q R P C CR
dt X X

dR F
R V

dt X

Q T

R

  ∂ ∂ + − =   ∂ ∂   
 ∂  − =  ∂ 
 =

 =

 

 
Then we will have : 
 

. . .
∂ =  ∂ 

t

V V
F

H V Q
K

 

 
Thus  it is possible to compute the product of 
the Hessian by a vector. The systems differ by 
the forcing terms and the initial or final 
conditions. The first equation can be deduced 
from the adjoint model by changing the right 
hand side, the second equation is obtained by a 
linearization of the model. 
Of course the full Hessian can computed if we 
take for U and V the vectors of the canonical 
base. But the Hessian is by itself of little 
interest, what could be important is to access its 
spectral properties : largest and smallest 

eigenvalues, eigenvectors. These quantities can 
be computed without an explicit computation of 
the Hessian. 
 
APPLICATION TO AN INFILTRATION 
MODEL 
 
 Identification 
 
As an application we will consider a 1-D model 
of infiltration in  an unsaturated ground. The 
state variable is (h) : water pressure., in a 
domain between the surface at z=0 and the 
bottom at z=Z. 

( ) ( )

( ) ( )
( ) ( )
( ) ( )

1

0,

,0

,

ini

surf

bot

h h
C h K h

t z z

h z h z

h t h t

h t Z h z

 ∂ ∂  ∂  = −   ∂ ∂ ∂  
 =
 =
 =

 

 
C(h) and K(h) are given by: 

( )
( )

2
21

2
1 , 0

0, 0

n n n
s

g g g

n h h
hC h h h h

h

θ
−−

     −   + <   =          
 ≥

 
 

( )

2
1

1 , 0

, 0

n n

s
g

s

h
K hK h h

K h

η − 
 


  
  + < =      

 ≥

 

 
There are five parameters ( ), , , ,s g sK h nθ η  
and the three initial and boundary conditions  to 
be identified. 
If all the parameters of the model are known, 
then its is possible to compute a cumulated 
infiltration given by:  

( ) ( )( )
0

,
Z

cum iniI t t z dzθ θ= −∫  

where θ  is the water content of the ground. 
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The observation bear on the cumulted 

infiltration ( )obsI t .Therefore the problem is to 

determine  ( ), ,ini surf botU q q q= and 

( ), , , ,s g sL K h nθ η=  minimizing the cost 

function J defined by : 

( )

( ) ( )( )

2 21 2

2

0

,
2 2

2

e
e

M

cum j obs j
j

J U L U U L L

t
I t I t

λ λ

=

= − + −

∆
+ −∑

 

 
Remarks: 

1- the dependance with respect to the 
parameters is highly non linear. 

2- The first two terms are used as 
regularization terms, eU  and 

eL are a priori estimations of U 
and L 

3- The model has been discretized. 
with a finite difference scheme in 
space with Z =1m, the grid size 
was 1cm. The temporal scheme 
was an implicit Euler scheme with 
T=2h and a time step of 1s. 

 
P being the adjoint variable, the adjoint model 
is defined by: 
 

( )

( ) ( )

( )
( )
( )

. . .

. . 1

, 0

, 0 0

, 0

cum
cum obs i

C h
C P P

t h t

P K P h
K

z z h z z

I
I I t t

h
P t T z

P t z

P t z Z

δ

 ∂ ∂  ∂    − +     ∂ ∂ ∂    
 ∂ ∂ ∂  ∂ ∂      − + − =       ∂ ∂ ∂ ∂ ∂      
 ∂ − − ∂


= =
 = =
 = =

 

 
 
From the backward integration of the adjoint 
system we deduce the gradient: 
 

( )

( ) ( ) ( )

0 0

2
0 0

, . .

. 1

T Z

L

ZM
cum

cum obs i e
i

C h
U L P

L t

K P h
dtdz

L z z

I
I I t t dz L L

L
δ λ

=

 ∂  ∂    ∇ = −     ∂ ∂     
∂  ∂ ∂    − −    ∂ ∂ ∂    

∂ + − − + − ∂ 

∫ ∫

∑∫

 

( ) ( ) ( ) ( )

( )
0

0

1

, .
ini

Z

q cum obs it

e
ini ini

U L C P I I t t dz

q q

δ

λ

=
∇ = − − −

+ −

∫  

( ) ( )1
0

,
bot

T
e

q bot bot
z Z

P
U L K dt q q

z
λ

=

∂ ∇ = + − ∂ ∫  

It is well known that there is no commutativity 
between discretization and the derivation of the 
adjoint, therefore all the former calculations 
should also be carried out on the discrete model. 
A numerical experiment has been realized  on a 
material known as Grenoble sand. 
The method of optimization was a conjugate 
gradient method written in the code M1GC3 [2] 
 
 Experimental values Identified 

sK  4.528 ( 10-3) 1.7793 (10-3) 

gh  -16.40 -15.90 

sθ  0.312 0.2879 

η  6.73 4.97 
n  2.79 2.34 

iniθ  8.166 (10-2) 7.49(10-2) 

surfθ  0.312 0.29 

botθ  8.16 (10-2) 0.3 
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Fig 1: Adjustment of the optimal  cumulated 
infiltration to the observations. 
 
The numerical results show that if  some 
parameters are correctly identified some others 
are more difficult to adjust. It is clear that the 
cost function is not convex with respect to the 
parameters to be identified. 
 
Computation of the condition number of 
the Hessian 
 
The convergence properties of the optimization 
algorithm are linked to the condition number of 
the Hessian, the condition number is the ratio ( 
in module)  of the largest eigenvalue to the 
smallest one, therefore the condition number is 
always greater or equal to 1 ( the hessian being 
symetric its eigenvalues are real ). A large 
condition number means that the problem is ill-
conditionned. 
The largest eigenvalue can be computed by 
iterated power method : if the largest eigenvalue 
is simple then the sequence defined by: 
- 0V is given 

 - 1kV + is defined by  

1

1
1

1

1 1

k k

k
k

k

k k

U HV

U
V

U

Uλ

+

+
+

+

+ +

 =

 =

 =

 

then  maxkλ λ→ , the spectral radius of H, 

when k → ∞ . Therefore to compute the 
spectral radius it is sufficient to be able to 
compute the product of the Hessian by a vector. 
To compute the smallest eigenvalue it is enough 
to point out that ( in module) the smallest 
eigenvalue of a matrix is the largest of the 
inverse matrix. Therefore at each step of the 
former algorithm a linear system has to be 
solved. To solve a linear system does not 
require to know explicitly the matrix of the 
system with, for instance, a conjugate gradient 
method, it is enough to be able to compute the 
product hessian.vector. 
For different values of the number of 
observations the condition number has been 
computed. Fig. 2 display the spectral radius of 
the Hessian, Fig. 3 the smallest eigenvalue and 
Fig. 4. the condition number. Even if the 
behaviour is not monotonic, the condition 
number increases when there is less 
observations. 
 
 

 
 
 
Fig 2: Largest eigenvalue as a function of the 
number of observations 
 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

 
Fig 3: Smallest eigenvalue as a function of the 
number of observations 
 

 
 
Fig4: Condition number as a function of the 
number of observations 
 
 
SENSITIVITY STUDY 
 
General sensitivity study 
 
Let us consider a general model written : 

( ), 0M X Z = . 
X is the state variable of the model and Z some 
parameters; We assume that Z being given then 
the model has a unique solution X(Z). 
A sensitivity study is defined by a so-called 
response function G(X,Z), a real value function, 
X is the solution of the model associated to  Z . 
Therefore this function is totally defined when  
has been fixed.. By definition the sensitivity is 
the gradient of G. 

In many physical application the sensitivity is 
computed by finite difference : if  

( )    1,...,iZ z i N= = , then the sensitivity is 
estimated by : 

( )( ) ( )( ), ,

i

i i

G
G

z

G X Z e Z e G X Z Zα α

α

 ∂
∇ =  ∂ 
 + + −
  
 

;

 

 
ie  being the vectors of the canonical base. This 

method has several inconvenients: 
- it requires N integrations of the 

model. In many geophysical 
applications M may be very large. 

- the value of  α is arbitrary. To get 
the correct value, the result should 
be independent of  α , therefore 
several attempt may be necessary 
before getting the right value. 

Introducing an adjoint model permits to 
compute the exact sensitivity in only one run of 
the adjoint model. To derive this sensitivity , let 
us introduce some perturbation h on Z, the 
Gateaux derivative are defined by: 
 

( ) ( )
0

ˆ ( ) lim
X Z h X Z

X h α

α
α→

+ −
=  

Deriving the model and the response function 
gives: 
 

ˆ 0

ˆ ˆ

M M
X h

X Z
G G

G X h
X Z

∂ ∂
+ =

∂ ∂
∂ ∂

= +
∂ ∂

 

We will get the gradient of G by exhibiting the 

linear dependance of  Ĝ  with respect to h. 
To do so we introduce Q the adjoint variable, 
with the same dimensionality as the state 
variable, then we take the inner product of the 
Gateaux derivative of the model with Q. It 
comes:  

ˆ, , 0
M M

Q X Q h
X Z

∂ ∂   + =   ∂ ∂   
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It is clear that if the adjoint model is defined as 
the solution of: 

t
M G

Q
X X

∂ ∂  = ∂ ∂ 
 

Then we will obtain 

ˆ ,
t

M G
G Q h

Z Z

 ∂ ∂ = − +  ∂ ∂  
 

and : 
t

M G
G Q

Z Z

∂ ∂ ∇ = − + ∂ ∂ 
 

 
 
Therefore the sensitivity is obtained in only one 
run of the adjoint model. The price to be paid is 
to write the adjoint code, with a complicated 
model it could be a tremendous task. 
Nevertheless some tools of automatic 
diifferentiation may be helpful. 
 
Sensitivity in the presence of 
observations. 
 
In many cases the input of a model are 
observations. If we are looking for the 
sensitivity with repect to these observations a 
difficulty comes from the fact that they does not 
appear explicitly in the model. The observations 
are included only in the optiamlity system. 
Therefore this last one should be considered as 
a generalzed model and the general sensitivity 
analysis should be carried out on the optimality 
system. Because O.S. will be derived we will 
introduce second derivatives in the sensitivity 
analysis. 
 
Example 
 
If the model is :  

( ),

(0)

dX
F X K

dt
X U

 =

 =

 

Where the initial condition has been choosen by 
the minimization of a cost function: 

( ) 2

0

1
2

T

obsJ U CX X dt= −∫  

The adjoint model is: 

( )

( )

0

t
t

obs
dP F

P C CX X
dt X

P T

 ∂ + = −  ∂ 
 =

 

 
The optimality condition is: 
 

( ) (0) 0J U P∇ = − = . 
 
If the response function has the form: 

( ) ( )
0

T

W K G X dt= ∫  

Then the general sensitivity analysis is carried 
out on the optimality system. 
Q and R two adjoints variables are introduced 
as the solution of the system: 
 

( )
( )

2

2 .

0

0 0

0

tt

t

dQ F F
Q P R

dt X X

G
C CR

X
dR F

R
dt X

Q

Q T

  ∂ ∂ + +   ∂ ∂   
 ∂ − =   ∂ 
 ∂  − =  ∂ 
 =


=




 

 
Then the sensitivity is given by: 

( )
2

0

ttT F F
W K Q R P dt

K X K

  ∂ ∂  ∇ = − +    ∂ ∂ ∂    
∫  

 
We obtain a non standard system because one 
of the equation has two boundary condition and 
the second one, no boundary condition. It is 
possible to transform this problem into a 
problem of optimization for which a conjugate 
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gradient method can be use [2]. An iterative 
method has to be used to solve the system. 
 
Therefore we see that in the presence of 
observartions requires to use second order 
information. 
The equation which are used for computing the 
sensitivity are the close ( from the coding point 
of view) ofthose used to compute the Hessian. 
Example 
 
With the same  physical model as above we 
have considered as response function the 
quadratic norm of the hydraulic conductivity. 

 

( ) ( )2

0 0

T Z

obsEK h K h dzdt= ∫ ∫  

The observation being a function of time, its 
gradient will be also a function of time.  In 
Figure 5 , the norm of the sensitivity is 
represented as a function of time, it is assumed 
that there is an observation at each time step of 
the numerical scheme.  The same quantity is 
displayed in Figure 6, but with an observation 
each minute.  Both simulation last one hour. 

 
Fig5. Norm of the sensitivity. One observation 
at each time  step. Unity of time =40s. 
 

 
Fig5. Norm of the sensitivity. One observation 
each 60s. Unity of time =40s. 
  
 
It is clear that, in this case, an evaluation of the 
sensitivity by finite differences would have 
been very costly from the computational  
viewpoint. 
 
CONCLUSION 
 
The access to second order information is 
important to improve the numerical algorithms 
and to estimate the propagation of uncertainties 
in the observations or on some other parameters 
of the model. This information is obtained 
through the second order adjoint, which can be 
considered as an important tool for inverse 
problems. 
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ABSTRACT 

Specification of prior distribution is one of the most 
important methodological as well practical problems in 
Bayesian inference. Although a number of approaches 
have been proposed, none of them is completely 
satisfactory from both theoretical and practical points of 
view. We propose a new method to infer prior distribution 
from a priori information which may be available from 
observations. The method consists of specifying a 
predictive distribution of the value of interest and then 
working backwards towards the prior distribution on the 
parameters. The method requires the solution of the 
Fredholm integral equation of the first kind, which can be 
effectively solved using Tikhonov regularization. 
Numerical examples for two cases of Bayesian inference 
are presented. 

 
NOMENCLATURE 
L-likelihood function 
π(θ|α)-prior distribution of the parameter 
π(θ|x,α)-posterior distribution of the parameter 
π(z|α)-prior predictive distribution 
π(z|x,α)-posterior predictive distribution 
θ-parameter of binomial distribution 
λ-regularization parameter 
α,β-hyperpameters 
N-number of Bernoulli trials  
z-random variable 
x-random variable 
µ,σ2-parameters of normal distribution 
B(α,β)-beta function 

 
INTRODUCTION 
 Transferring prior beliefs into an exact mathematical 
form has been, and remains one, of the most controversial 
and challenging issues of Bayesian inference. The problem 
is twofold. The first one is how to specify our knowledge 
in the most succinct and tractable form and the second one 
is how to transfer prior knowledge of observable variables 
onto prior knowledge of parameters which are generally 
unobservable. A number of approaches have been 
developed, with the most notable ones being: conjugate 
priors, Jeffreys noninformative priors and empirical 
Bayesian methods [1,3]. Conjugate priors, although being 
widely used, can only be justified if enough information is 
available to believe that the true prior distribution belongs 
to the specified family; otherwise, the main justification for 
using conjugate prior is their mathematical tractability. 
Jeffreys noninformative prior uses the Fisher information 
matrix to place a maximally noninformative prior on the 
parameters, exploiting the fact that the Fisher information 
matrix is widely considered to be an indicator of the 
accuracy of a parameter estimate.  However, this approach 
can only be effectively used in one-dimensional cases and 
does not satisfy the Likelihood principle [1]. Other 
problem with noninformative priors is that there might be a 
number of them for a given problem and there is no clear 
cut rule which noninformative prior has to be preferred. 
Empirical Bayesian methods use the marginal distribution 
of the value of interest to elicit prior distribution on the 
parameters. The empirical estimation of the prior is strictly 
speaking a violation of Bayes theorem because the same 
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data set is used for both: estimation of the likelihood and 
inferring the prior distribution. This approach effectively 
invalidates Bayes theorem due to the fact that: 

 

)(
)|()|(

)|(
DP

DPDP
DP

θθ
θ

⋅
≠                                (1) 

 
The formula (1) means that once the prior probability is 
conditioned on the current data set, the Bayes formula is no 
longer valid and we can not formally go ahead with 
Bayesian inference. Our approach is based on the 
observation that for many practical engineering problems 
the range of predicted values is known and hence through 
the predictive distribution this knowledge can be 
transferred to the prior distribution over parameters by 
solving the Fredholm integral equation of the first kind. 
 
BAYESIAN INFERENCE AND BAYESIAN 
PREDICTIONS  

The core of Bayesian inference is Bayes formula, 
which inverts information contained in a data set into an 
estimation of a parameter or model, 

 

∫
Θ

=
θαθπθ

αθπθ
αθπ

dxL
xL

x
)|()|(
)|()|(

),|(                    (2) 

 
where π(θ|x,α) is posterior distribution of the parameter θ  
conditioned on the current data set x and a hyperparameter 
α which defines the prior distribution π(θ|α).  L(x|θ) is the 
likelihood function which specifies the probability for the 
given data set x to occur conditioned on the parameter θ. 
Bayesian predictions can be based on both posterior and 
prior distributions of the parameter. Instrumental to 
performing Bayesian prediction is the likelihood of a future 
data set z, which is defined as L(z|θ). This likelihood 
assesses the plausibility for data z to occur in future 
experiments for a given value of the parameter θ. 
Combining this likelihood with the prior distribution on the 
parameters, we get what is called the prior predictive 
distribution: 

 

θαθπθαπ dzLz ∫
Θ

= )|()|()|(                            (3) 

 
This reflects a distinct feature of Bayesian inference: it 

can produce predictions with no current data at hand, 
providing prior information is informative enough.  

Combining the future likelihood and the posterior 
distribution we get the posterior predictive distribution: 

 

θαθπθαπ dxzLxz ∫
Θ

= ),|()|(),|(                 (4) 

 
Equation (4) summarizes our inference about future 

values of z after have seen the data x. Integrals  (3) and (4) 
have been used in Bayesian inference for a long time and 
are known under different names. As we already 
mentioned, if the likelihood of future data is used in (3) 
and (4), they are known as prior and posterior predictive 
distributions respectively [2]. If the current data set is used 
to estimate the likelihood, then integral (3) is known as the 
marginal distribution of x [3] or, in the neural networks 
community, as evidence [4]. We shall use the terms prior 
predictive distribution and marginal distribution 
interchangeably in this paper.  There are a number of ways 
in which the marginal distribution is used to select a prior 
in Bayesian analysis. One of them is the maximum 
likelihood II approach [4] where the integral in (3) is 
maximized over the prior distribution π(θ|α) for different 
values of the hyperparameter α. The moment approach [4] 
tries to relate moments of the prior distribution to moments 
of the marginal likelihood. The distance approach [4] is 
most closely related to the method that we propose. It 
prescribes to estimate the empirical marginal distribution 
from the historical data and then attempts to match the left-
hand side of equitation (3) to this empirical prior using 
different priors in the right-hand side. However, this 
approach requires a complex optimization. It should be 
pointed out that all of the approaches that we mentioned 
attempt to restrict the class of priors which can be deduced 
from the integral relationship (3). However, they stop short 
of directly solving the integral equation (3) using 
regularization techniques. Our approach consists of solving 
the integral equation (3) using Tikhonov regularization [5] 
thus restricting the class of desired priors to smooth ones. 

The focus of our analysis is the prior predictive 
distribution (3). Under the assumption that π(z|α) and 
L(z|θ) are known, Formula (3) represents a linear 
Fredholm integral equation of the first kind. In this case, 
the future likelihood represents the kernel, and the prior 
distribution over the parameter is the desired solution. It 
should be stressed that the predictive distribution is a 
function of an observable variable z, while the prior 
distribution is a function of an unobservable variable θ. 
The integral relationship (3) represents the forward 
problem of Bayesian inference, inference of predictive 
distribution when prior and likelihood are known. However 
to place restrictive informative prior on parameters one 
often has to solve equation (3) for prior distribution which 
is the inverse problem of Bayesian inference. In many 
practical engineering applications, the range of future 
observations is known from physical considerations. For 
example, the range of temperature, pressure and flow rate 
measurements in nuclear power plants is known if plant 
operates under normal conditions. Hence, we can place 
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rather informative restrictions on the predictive distribution 
of future observations. This information can come from 
physical and engineering judgments as well as from 
historical observations of the variable of interest. Once we 
deduce what the possible predictive distribution of future 
observations is, we can solve the integral equation (3) to 
get the prior distribution of the parameter θ. Doing this we 
effectively transform prior information about observable 
variables onto prior information about unobservable 
parameters.  

However, the solution of the integral equation (3) will 
require the use of regularization because of the ill-posed 
nature of the problem. It should be pointed out that the 
predictive distribution of the future observation π(z|α) will 
always contain uncertainty or noise because of its 
empirical nature. Solving integral equation (3) by 
numerical methods will effectively transform ill-
possedeness into ill-conditioning of the matrix L(z|θ). We 
apply Tikhonov regularization to solve this ill-conditioned 
system of equation.  

Tikhonov regularization scheme in its general form 
can be written as: 
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Tikhonov regularization imposes smoothness 

constrains on the sought solution which is, in our case, the 
probability density function. Imposing smoothness 
constrains on the probability density function (pdf) is a 
very natural restriction because all known and practical 
pdfs are smooth and differentiable. 

Summarizing our approach we can outline three steps 
that should be performed in order to apply it: 

1. Using prior information or engineering 
judgment, define marginal distribution of the 
variable of interest. 

2. Define the likelihood of future measurements 
of the variable of interest. 

3. Solve integral equation (3) for prior 
distribution of the parameter. 

 
 

NUMERICAL EXAMPLES 
 

Inferring the Value of the Parameter for a 
Binomial Distribution 

 We present two numerical examples of backward 
specification of prior by solving the integral equation. The 
first one deals with the inference of a parameter for a 
binomial distribution and the second one deals with the 
inference of the standard deviation for a normal 
distribution with known average. 

 The likelihood of a future data set z for a binomial 
distribution can be written as: 

 
zNzN

zCzL −−= )1()|( θθθ                                  (6) 
 

If the number of trials N is fixed, then the likelihood (6) 
represents a function of two variables: z and θ. The prior 
predictive density of z would be: 

 

∫ −−=
1

0
),|()1(),|( θβαθπθθβαπ dCz zNzN

z  (7) 

 
or in terms of the Fredholm integral equation of the first 
kind: 
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Assuming the beta distribution as a conjugate prior for 

binomial likelihood, we get: 
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which after simplifications produces: 
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B
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which is beta binomial distribution. Hence, the integral 
equation (7) has an exact solution in analytical form and 
we can estimate how close the regularized solution would 
be to the true one. 

In order to progress from equation (9) to a system of 
linear equations, we use the midpoint rule for 
discretization. We discretize the likelihood for N=100, 
z=0…100 and p=0…1 with 100 samples. We consider z as 
the number of successes in 100 trials. The matrix 
representing the likelihood is 100X100. Thus the 
discretization leads to a square system of linear equations  

 
100100, xRAAb ∈= θ                                                 (11) 

 
The condition number of matrix A is 1.1*1018, pointing 

to severe ill-conditioning. We use Tikhonov regularization 
in standard form to solve this ill-conditioned system of 
linear equations: 
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{ }222minarg θλθθλ +−= bA                                  (12) 

 
The left-hand side π(z|α,β) and the exact solution 

π(θ|α,β) of the integral equation (8) are shown in Figs.1 
and 2 
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Fig. 1 Predictive  distribution π(z)    
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Fig.2 Prior distribution on parameter θ . 
 

To obtain the predictive distribution in Fig. 1, we 
solved the forward problem (11) with prior distribution 
depicted in Fig.2 as θ. 
The ordinary least squares (OLS) solution for the system 
(11) is presented in Fig. 3 
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Fig.3 OLS solution. 

 
 

As we can see, the OLS solution is very oscillatory and 
makes no sense. It bears no resemblence to the exact 
known solution shown in Fig.2. However, the regularized 
solution presented in Fig.4 is very close to the exact one in 
Fig.2 and can be used as the prior distribution. 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
Regularized solution

teta

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

  
Fig. 4 Regularized solution 

 
 

We used Morozov's discrepancy principle [6] to select 
regularization parameter λ=8.5*10-5. However, the most 
interesting case represents a situation in which the 
predictive distribution is estimated from the data or from 
the priori knowledge, as in the case shown below. 

Suppose we have some statistical data about the 
number of successes in 100 tosses in previous trials. We 
can use this historical data to estimate what can be called 
the empirical predictive distribution or marginal 
distribution, and using this distribution, we can solve for 
prior equation (9). The empirical predictive distribution 
being estimated from the data would contain a significant 
amount of noise, which would make the OLS solution of 
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equation (9) very unstable and irrelevant. An example of 
the empirical prior distribution estimated from the data is 
shown in Fig. 5.  

The kernel density estimator, with a Gaussian kernel 
width of 10, was used to estimate this density from some 
historical data representing 5 trials of 100 tosses of a fair 
coin. The parameter of interest was the number of 
successes that was recorded as 61, 51, 60, 47, and 49 in 
simulations. As can be seen from Fig. 5, the marginal 
distribution of z is a bell shaped curve with mean value 
slightly higher than 50.  
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Fig. 5 Marginal distribution 

Due to the large kernel width used to estimate the 
density from the empirical data, the curve has one mode. 
Using this empirical density as the left hand side of 
equation (9), we can again numerically solve it for the 
prior distribution. The unregularized solution is shown in 
Fig.6 
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Fig.6 Ordinary least squares solution 

 
 

As we can see, the solution is still very oscillatory and 
does not represent a real probability density function. 
However, the regularized solution depicted in Fig.7 looks 
like a proper probability density and can be used as a prior 
for future inference. 
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Fig.7 Regularized solution 

 
 

 In this case, the most remarkable feature of using 
regularization is that it makes the inference about the 
possible prior distribution virtually insensitive to the 
ambiguous nature of the kernel density estimator. The 
problem with empirical density estimators is that their 
results are very sensitive to the chosen parameters of the 
techniques. For example, the density estimated with kernel 
techniques depends very much on the kernel width. Fig. 8 
shows the density of the same data set estimated with the 
kernel width chosen to be 3. 
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Fig.8 Marginal probability density function 

 
 

The estimated density now has two modes which looks 
quite plausible in the light of the available data. The OLS 
and regularized solutions are shown in Figs 9 and 10. 
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Fig. 9 OLS solution 
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Fig. 10 Regularized solution 

 
 

As can be seen from these figures, the OLS solution is 
again highly unreasonable and does not represent a real 
probability density function; however, the regularized 
solution is very close to the one obtained for the kernel 
width equal to 10 and shown in Fig. 7. The discrepancy 
principle was again used to choose the regularization 
parameters for these cases. It should be mentioned that in 
the last example, with the marginal distribution obtained 
from the data the first order, Tikhonov regularization was 
used with a smoothing operator representing an 
approximation of the first derivative. 

 
Inference of Variance of Normal Distribution with 
Known Mean. 

The second numerical example to be analyzed is the 
inference about the variance of a normal distribution when 
the mean value is known. In this case the likelihood of 
future data z can be written as: 
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where µ is the known mean value. The corresponding 
conjugate prior density for variance is inverse-gamma and 
can be written as: 
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where α and β are two hyperparameters which define the 
shape and scale of prior distribution. Combining the 
likelihood and prior distribution we again obtain the prior 
predictive distribution: 

 

∫=
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σ

σβασπσβαπ dzLz        (15) 

 
Now assume that we have a data sample y generated 

from N(µ,σ2). We can use this data sample to estimate the 
empirical distribution and use it as π(z|α,β). Having done 
this, we can again solve the integral equation (15) for the 
prior distribution π(σ2|α,β) using Tikhonov regularization. 
Suppose we have a data sample of ten random values 
generated from y ~ N(0,1), y=(0.4855;-0.0050;-
0.2762;1.2765;1.8634; -0.5226;0.1034;-0.8076;0.6804;-
2.3646). The probability density function estimated from 
this sample is shown in Fig.11. 
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Fig. 11 Empirical marginal distribution 

 
 

This probability density function is the only source of 
information about the random variable y that we have. The 
probability density function can be used as the empirical 
marginal distribution π(z/α,β) in the left-hand side of 
equation (15). Because the likelihood for the data is written 
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in (12), we can numerically solve the integral equation 
(15). The OLS solution is shown in Fig. 12 
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Fig.12 OLS solution 

 
 

This solution cannot represent a real density function. 
However, the regularized solution is much more plausible 
and is very close to the inverse-gamma distribution. The 
regularized solution is shown in Fig.13.  
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Fig. 13 Regularized solution 

 
 

CONCLUSIONS 
This paper presents a new inverse problem: 

inference of the prior distribution from the marginal or 
predictive distribution. The solution of this inverse 
problem requires the solution of the Fredholm integral 
equitation of the first kind, which can be effectively solved 
using Tikhonov regularization. The assumption about the 
smoothness of the sought solution is very legitimate in this 
case because the sought solution is a probability density 
function, which must be smooth by its nature. Two 
numerical examples for the inference of the prior 
distribution for the parameter were given: first of a 
binomial distribution and then for inference of the variance 

of normal distribution with known mean. The described 
approach may represent a valuable alternative to the 
selection of prior in practical applications and provides 
new insight into the nature of prior selection. One 
dimensional case is only analysed. In multidimensional 
case we would have to obtain prior for each individual 
parameter and then form the joint prior as a product of 
those individual priors using the argument about 
parameters independence. 
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Abstract

This paper discusses the implementation of the it-
eration algorithms for solving the general problem
of recovering a complete set of thermal coefficients.
It is well known that in the solution of inverse heat
conduction problems it often becomes necessary to
determine several independent functions or param-
eters at one time. An example of multi-function
estimation is the inverse heat conduction problem,
which uses transient temperature measurements to
estimate the thermal dependent conductivity and
specific heat of a given material. An example of
combined parameter and function estimation is the
determination of a constant heat transfer coefficient
and time-wise varying heat source. Numerical al-
gorithms based on gradient type-methods of min-
imization are often used in the estimation proce-
dure. In such situations, these methods are less
efficient and present low convergence rate. The use
of a common descent parameter (step size) is at the
origin of this problem. An optimal choice of vecto-
rial descent parameter is introduced in this study
and shows a considerable increase in the conver-
gence rate. The developed algorithm was applied
to different inverse heat conduction problems in-
volving parameter and function or multi-function
estimation. This approach appears to be effective
for improving the computational efficiency of iter-
ative algorithms for the two cases.

Nomenclature

Bi(t) trial function,
cp heat capacity of tissue,
D descent direction vector,
J residual function,
∇J residual function gradient vector,
∇Ji residual function gradient component,
k thermal conductivity,
K number of time step,
M number of unknown parameters,
N number of sensors,

∗To whom all correspondence should be addressed.

qi component of unknown heat flux vector
Q(t) unknown heat flux,
Q1(t) unknown heat flux,
Q2(t) unknown heat flux,
T (x, t) computed temperature,
Ti initial temperature,
t, tf time, final time,
U unknown vector,
V (x, t) variation variable,
x, L space, slab thickness
Yi(t) measured temperature,
– –
β parameter in descent direction,
δ integrated measurement error,
∆ small variation,
γ descent parameter,
γ vector of descent parameter,
ψ(x, t) adjoint variable,
ρ density,
σ standard deviation of measurement,
ω random variable

Introduction

The subject of inverse problem has been an active
area of research for the past several decades. This
exciting field has found application in almost all
disciplines of science and technology in general, and
in heat transfer in particular. Different technics
have been used to solve inverse problems including
the conjugate gradient method [1, 2], the sequential
estimation method [3, 4], the mollification method,
and other several methods.

The present work deals with the implementation
of the iteration algorithms for solving the general
problem of recovering a complete set of thermal
coefficients in a quasi-linear parabolic model. It
is well known that in the solution of inverse heat
conduction problems it often becomes necessary to
determine several independent functions or param-
eters at one time. Such multi-parameter estimation
problem arise in the solution of coefficient-type in-
verse problems. In the solution of inverse transfer
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problems with one unknown (function or parame-
ter) it has been found and proved very effective to
use algorithms based on gradient type-methods of
minimization. The use of these methods in a case
when it is necessary to determine several indepen-
dent variables becomes more difficult by the fact
that the descent parameter (descent step) is chosen
to be the same for all components of the direction of
descent. Such a method of choosing a common step
frequently leads to very slow or no convergence at
all of the gradient-type methods. The convergence
may be speeded up considerably by choosing dif-
ferent descent parameters for the different compo-
nents of the gradient of the minimizing functional,
i.e. to determine not only one common step but a
vector of steps (descent parameter) from the condi-
tion that the target functional has a minimum with
respect to this factor at each iteration. The de-
veloped algorithm was applied to different inverse
heat conduction problems involving the estimation
of combined parameter and function or two func-
tions. The first problem deals with the estimation
of constant thermal conductivity or specific heat
and a time dependent heat flux. As second exam-
ple two unknown surface heat fluxes are estimated
simultaneously by utilizing temperature measure-
ments collected inside a one dimensional slab. The
third problem concerns the estimation of two plane
heat sources within a finite wall. A comparison be-
tween the conjugate gradient method using a com-
mon descent step and the same method but with
vectorial descent step in term of the convergence
rate, the estimation error, and the CPU time is pre-
sented for each example. The developed approach
is a modification of conventional optimization tech-
niques of gradient type and appears to be effective
enough for improving the computational efficiency
of iterative algorithms for combined parameter and
function or multi-function estimation problems.

This paper is divided in four major sections. The
mathematical formulation of an inverse heat con-
duction problem and its resolution for estimating
simultaneously one parameter and one function is
shown in section two. The modification of the de-
scent parameter from a common scalar for all pa-
rameters to be recovered to vector form is presented
in section three. Numerical results of a systematic
investigation of the method are given in section four
with several examples. The last section presents
some concluding remarks.

Inverse problem formulation

Generally, inverse heat conduction problems are
solved by minimizing a residual functional J(U)

based on the ordinary least square norm and cou-
pled with some stabilizing technic used in the iter-
ative procedure of the estimation. The sum of the
squared residuals between a given measured data
and the responses of a model simulating the phys-
ical problem under investigation defines the least
square norm. For continuous measured data, the
residual functional is written as follows :

J(U) =
N∑

i=1

∫ tf

0

[T (xi, t; U) − Y (xi, t)]
2

dt (1)

where T (xi, t; U) and Y (xi, t) are respectively the
computed and the measured temperature, at the
location xi and over the time period [0, tf ] corre-
sponding to the duration of the experiment. Usu-
ally the measured temperatures are not contin-
uous time function but are collected at known
sensor locations and at discrete time steps, i.e.
tk, k = 1, . . . K. In the following sections, the
computed and measured temperature are denoted
T k

i = T (xi, tk) and Y k
i = Y (xi, tk).

The vector U can be a set of parameters and/or
coefficients of basic functions used to approximate
an unknown or more functions to be recovered by
solving the inverse problem under consideration.
As example let consider the following problem for
estimating simultaneously one parameter and one
function.

A slab of thickness L is initially at zero tem-
perature. For time > 0, the boundary surface at
x = L is kept insulated, while that at x = 0 is
subjected to prescribed heat flux Q(t). The math-
ematical model for this one-dimensional transient
heat conduction problem, with constant physical
properties, is given as follows

ρ cp
∂T

∂t
= k

∂2T

∂x2
, 0 < x < L t > 0 (2)

− k
∂T

∂x
= Q(t), x = 0 t > 0 (3)

∂T

∂x
= 0, x = L t > 0 (4)

T (x, 0) = 0, 0 ≤ x ≤ L (5)

Our objective is to estimate the unknown param-
eter k and the function Q(t) from the transient
temperature histories taken at two or more precise
known sensor locations inside de slab i.e. 0 < xi <
L, i = 1, . . . N, N ≥ 2. For estimating a constant
thermal conductivity k and a transient heat flux
Q(t), one way to construct U is :

UT = [k, q1, q2, . . . , qm] (6)
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where the superscript T denotes the transpose and
qi are the coefficients of the following parametric
representation of the unknown heat flux, i.e. :

Q(t) =
m∑

i=1

qi Bi(t) (7)

The functions Bi(t) are any trial functions (poly-
nomials, B-splines, . . . ), used to approximate the
unknown function form of the heat flux Q(t). In
this special case, the total number of parameters
to be recovered by the solution of the inverse prob-
lem is M = 1 + m.

As detailed in Özişik [1], Alifanov [2], and Jarny
[5] the solution of an inverse problem with the con-
jugate gradient method involves the following basic
steps : (a) the solution of the direct problem, (b)
the solution of the adjoint problem, (c) the com-
putation of the gradient equation, (d) the solution
of the variation problem, (e) the choice of stopping
criterion, and (f) the computational algorithm.

The minimization procedure of the functional
(1) by utilizing the conjugate gradient method is
built as follows [6] :

U s+1 = U s + γs Ds, s = 1, 2, . . . (8)

where the superscript s is the iteration number, γs

is the common descent parameter given by :

γs =

N∑

i=1

∫ tf

0

[T (xi, t) − Y (xi, t)] V (xi, t)dt

N∑

i=1

∫ tf

0

[V (xi, t)]2 dt

(9)

The variable V (x, t) is the solution of the variation
problem in the case of estimating a function or the
solution of the sensitivity problem when estimating
a parameter.

For the problem under consideration, one can
show [1, 2, 5] that the associated variation problem
is given by :

ρ cp
∂V

∂t
= k

∂2V

∂x2
+ ∆k

∂2T

∂x2
(10)

0 < x < L t > 0

− k
∂V

∂x
− ∆k

∂T

∂x
= ∆Q(t) (11)

x = 0 t > 0
∂V

∂x
= 0, x = L t > 0 (12)

V (x, 0) = 0, 0 ≤ x ≤ L (13)

In equation (8), the coefficient γs determines the
step size in going from U s to U s+1. It is computed
by minimizing J(U s+1) given in equation (1) with
respect to γs

min
γs

∫ tf

0

[T (U s + γs Ds) − Y ]2 dt (14)

Taylor series expansion are employed to develop
an approximative formula to equation (14) and the
obtained result is differentiated with respect to γs

to get the expression (9).
In the step size expression, Ds represents the

descent direction vector which is given by :

Ds = −∇Js + βs Ds−1 (15)

where ∇J is the gradient vector of J(U) and the
parameter βs is given by :

βs =
< ∇Js − ∇Js−1 , ∇Js >

< ∇Js , ∇Js >
, β0 = 0 (16)

where < , > is the scalar product defined in the
space of real parameters. The above expression is
known as Polak-Ribiere version of the conjugate
gradient method [6]. Using the parametric form,
the gradient of the residual functional (1) is given
by the vector

∇JT = [∇J1, ∇J2, . . . , ∇JM ] (17)

For the special case mentioned above, the simul-
taneous estimation of k and Q(t) and by consider-
ing the parametric representation of Q(t), given in
equation (7), it can be shown that the ith compo-
nent of the vector ∇J has the following analytical
expression :

∇Ji =
∫ tf

0

ψ(0, t)Bi(t) dt, i = 1, . . .m (18)

It corresponds to the components of the gradient
vector of J(U) with respect to the parametric rep-
resentation of the function Q(t). The first compo-
nent of the vector ∇J corresponding to the gradi-
ent of J(U) with respect to thermal conductivity
k is given by :

∇J1 =
∫ tf

0

ψ(0, t)
∂T (0, t)

∂x
dx dt

+
∫ tf

0

∫ L

0

ψ(x, t)
∂2T (x, t)

∂x2
dx dt

(19)

where the variable ψ(x, t) is solution of the so called
adjoint problem and for this case, it is given by the
following system :

− ρ cp
∂ψ

∂t
= k

∂2ψ

∂x2
+ S(x, t) (20)
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0 < x < L 0 ≤ t < tf

∂ψ

∂x
= 0, x = 0 0 ≤ t < tf (21)

∂ψ

∂x
= 0, x = L 0 ≤ t < tf (22)

ψ(x, tf ) = 0, 0 ≤ x ≤ L (23)

where the source term is given by S(x, t) =
2 [T (xi, t) − Y (xi, t)] δ(x − xi). δ represents the
Dirac function. All the components of the in-
verse problem resolution are obtained. The iter-
ative procedure can be applied to estimate k and
Q(t) following the numerical algorithm presented
in [1, 2, 5].

Stopping criterion : In the absence of noise, the
iterative process, equation (8), is repeated until
each component of the vector U satisfies the fol-
lowing stopping criteria :

∣∣∣∣
us+1

i − us
i

us+1
i

∣∣∣∣ ≤ ε, i = 1, . . . M (24)

where ε is a small number (10−4 ∼ 10−6). In
the event that the input temperatures are given
with errors, the iterative process is stopped in ac-
cordance with the residual criterion [2], i.e. upon
fulfillment of the following condition :

J(U) ≤ δ2 (25)

where δ2 is given by

δ2 =
N∑

i=1

∫ tf

0

σi(t) dt (26)

It represents the integrated error of the measured
data at location xi and having σi(t) as standard
deviation. Many iterative methods exhibit a self-
regularizing property in the sense that early ter-
mination of the iterative process has a regularizing
effect. In the iterative regularization method, the
iteration index s plays the role of the regularizing
parameter α used in Tikhonov’s method [7], and
the stopping rule (J(U) ≤ δ2) plays the role of the
parameter selection method.

Modification of the descent parameter

As reported in [8, 9, 10], the convergence of the
conjugate gradient method may be altered by us-
ing the same descent parameter γ in the itera-
tive process (8). Indeed, the preliminary numer-
ical computations have shown that with the con-
ventional choice of a descent parameter common to
all unknown components of vector U , the conver-
gence of the presented method to the true values

of the parameters depends strongly on the initial
guess. Moreover, the convergence rate is strongly
affected by the dependence between the separate
unknowns. This problem is well discussed and
explained in Beck’s book [4] in term of sensitiv-
ity coefficient analysis. The parameter dependence
which is known as degree of correlation is an inher-
ent characteristic of any considered material and
many parameter estimation technics can fail be-
cause of this characteristic. To overcome this diffi-
culty, we develop in what follows a procedure pre-
sented in reference [2], for selecting the descent pa-
rameter in vector form with as many components
as parameters and function or multi-function to be
estimated. The descent vector will be denoted γ.

For the test case considered above, the vector γ
will contain two components γk and γQ (estimation
of k and Q(t)). The basic idea is built on the lin-
earity of the variation problem. Indeed, the total
variation variable V (x, t) defined in equations (10)-
(13) can be regarded as the sum of two independent
variation variables :

V (x, t) = V1(x, t) + V2(x, t) (27)

where V1(x, t) is due to a small change in k, and
V2(x, t) is due to the variation of Q(t). Under this
hypothesis, two “new” variation problems with re-
spect to k and Q(t) are introduced

ρ cp
∂Vi

∂t
= k

∂2Vi

∂x2
+ Zi(x, t) (28)

0 < x < L, 0 < t ≤ tf

− k
∂Vi

∂x
= Xi(t), x = 0 t > 0 (29)

∂Vi

∂x
= 0, x = L t > 0 (30)

Vi(x, 0) = 0, 0 ≤ x ≤ L (31)

where the two terms Zi(x, t) and Xi(t) are given
by :

Zi(x, t) =





∂2T (x, t)
∂x2

∆k for k (i = 1)

0. for Q (i = 2)

Xi(t) =





∂T (0, t)
∂x

∆k for k (i = 1)

∆Q(t) for Q (i = 2)

As presented in references [1, 2] the descent pa-
rameter is obtained from the condition of mini-
mizing the residual functional (1) with respect to
the unknown to be recovered. The same approach
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developed above (see expression (14)) to compute
γs can be applied to calculate the descent vector
components γT = [γk, γQ]. The minimization of
J(U s+1) with respect to γs is obtained from :

min
γs

∫ tf

0

[T (U s + γs Ds) − Y ]2 dt (32)

and by using the linearity of the variation problem,
i.e. the variation variable Vi(x, t; γi Di) is a linear
function of γi which means :

Vi(x, t; γi Di) = γi Vi(x, t; Di), i = 1, 2 (33)

Equation (32) is differentiated with respect to each
component of γs and the result is set equal to zero.
Finally the differentiation results are rearranged to
obtain the following set of linear algebraic equa-
tions :

2∑

j=1

αj,k γj = δk, where k = 1, . . . 2 (34)

where αj,k and δk are given by :

αj,k =
N∑

i=1

∫ tf

0

Vk(xi, t) Vj(xi, t) dt

δk = −
N∑

i=1

∫ tf

0

[T (xi, t) − Y (xi, t)] Vk(xi, t) dt

The descent parameter vector components γT =
[γk, γQ] are obtained from the solution of equation
system (34) by using any classical method of solv-
ing linear algebraic equations. We should mention
here that the minimization algorithm remains the
same except the step (d) (solution of the variation
problem). In fact, instead of solving one variation
problem, defined in equations (10)-(13), one should
solve the “new” two variation problems defined in
equations (28)-(31) to obtain respectively V1(x, t),
and V2(x, t).

The determination of a vectorial descent param-
eter (step sizes) is the key-point to the inverse so-
lution of simultaneously estimating combined pa-
rameters and functions or many functions because
the rate of convergence can greatly improved in
comparison with “traditional ways” of the conju-
gate gradient method which uses a common descent
parameter to determine many parameters or func-
tions or both.

Results and discussion

The accuracy and efficiency of the inverse analysis
for simultaneously estimating a set of combined pa-
rameters and function or a set of functions is exam-
ined by conducting several test cases. All numeri-
cal simulations are performed for one-dimensional

quasi-linear heat conduction problem in a slab of
thickness L = 1 and over a time interval tf = 2.
Any one of several well-established analytical or nu-
merical approaches can be used to solve the test
cases under investigation. In this work we consider
the finite difference method using an uniform space
grid and a pure implicit time scheme. A mesh grid
with 41 nodes in space and 101 in time is used for all
the results presented below. A dimensionless space
step of ∆x = 0.025 and time step step ∆t = 0.02
are used in the computations. In the iterative pro-
cess, the maximum allowed number of iterations is
itmax = 500. We prescribe the stopping criterion
of 10−5 in expression (24) when the computation
are run with errorless temperatures.

The simulated transient temperature data Y k
i

containing measurement errors are generated by
adding random errors to the computed exact tem-
peratures T k

i as :

Y k
i = T k

i + σ ωi,k





i = 1, . . . N

k = 1, . . . K
(35)

where σ is the standard deviation of measurement
errors which is assumed to be the same for all mea-
surements, N is the number of sensors, and K is the
number of measurements taken with each sensor i.
For normally distributed random errors, there is a
99 % probability of the value of ωi,k lying in the
range :

− 2.576 < ωi,k < + 2.576 (36)

The values ωi,k are generated randomly by the Imsl
subroutine DRNNOR [11]. For each considered
case two tests were performed, the first (1) with
simulated measurements with standard deviation
of σ = 0 (errorless measurements), the second (2)
with σ 6= 0 (noisy data).

Estimation error : To quantify the relative error
of the estimation procedure, the following defini-
tions are introduced :

εp =
∣∣∣∣
p − p̄

p̄

∣∣∣∣ × 100% (37)

is the computation error for a given parameter p,
and

εf =

∫ tf

0

[f̄(t) − f(t)]2dt

∫ tf

0

[f̄(t)]2dt

× 100% (38)

is the estimation error for a given function. The
over-bar designates the exact parameter or function
under hand. When the conjugate gradient method



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

is used with vectorial descent parameter, it is de-
noted VDP and CDP when a common descent pa-
rameter is employed.
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Figure 1: Computed and exact heat flux Q(t) ob-
tained with noisy data and estimated simultane-
ously with k

Test case 1 : Estimation of one parameter and
one time dependent function. As first test exam-
ple, we present the results obtained with the de-
tailed problem given in the section inverse problem
formulation and which consists in simultaneous es-
timation of k and Q(t). The unknown heat flux
Q(t) is applied on the surface x = 0. The measure-
ment data are collected by two (2) sensors placed
at distinct locations x1 = 0.20 and x2 = 0.80 inside
the slab. The specific heat is constant and set equal
to 1. We present the inverse problem results for the
following exact thermal conductivity and time-wise
varying heat flux :

Q(t) =
(t − tf ) sin(− 2 π t/tf )

Qmax
k = 1 (39)

where Qmax = 10. The unknown heat flux Q(t) is
parameterized according the equation (7) by uti-
lizing cubic splines and taking m = 12 (number of
trial functions).

The obtained results are summarized in table
(1). The first remak is about the convergence with
the used initial guess. The method using VDP
converges in both cases of the utilized data, i.e.
errorless and noisy. While the method with CDP
doesn’t converge at all. Even with noisy data, the
obtained results with the modified descent param-
eter method are good and in acceptable agreement
with the exact values. The recovered heat flux is
plotted on figure (1). The error estimation is less
than 1% for the shown cases. We should mention
here that the conjugate gradient method with CDP

Test 1
m unknowns −→ Q(t) k

initial guess 2.0 0.01
meas. error σ 0.0
iteration number 283

VDP
CPU time 6.01
results / 0.999982
estimation error 0.00 0.00
initial guess 2.0 0.01
meas. error σ 0.0CDP
iteration number no convergence

m unknowns −→ Q(t) k
initial guess 2.0 0.01
meas. error σ 1.0
iteration number 96

VDP
CPU time 2.05
results fig. (1) 0.997005
estimation error 0.04 0.29
initial guess 2.0 0.01
meas. error σ 1.0CDP
iteration number no convergence

m unknowns −→ Q(t) ρ cp

initial guess 2.0 0.01
meas. error σ 1.0
iteration number 146

VDP
CPU time 2.05
results / 0.993915
estimation error 0.11 0.60
initial guess 2.0 0.01
meas. error σ 1.0CDP
iteration number no convergence

Table 1: Results of estimating simultaneously Q(t)
and k and Q(t) and ρ cp by utilizing errorless and
noisy data.

converges when a better initial guess is used, for
example q0

i = 10. and k0 = 0.1 but with high iter-
ation number (> 500).

With VDP method, the number of iteration
drops to 147 with errorless data, and to 157 with
noisy data when the following sensor locations x1 =
0.20 and x2 = 1.00 are considered. While we still
having no convergence with the CDP method. This
observation suggests that an experimental design
investigation should be conducted to optimize the
different factors involving in the estimation proce-
dure : sensor location, experiment duration, opti-
mal boundary condition, . . .

On the same table, we show the results of esti-
mating simultaneously the heat flux Q(t) and ρ cp

by using noisy data. The presented results are ob-
tained after 146 iterations. With errorless temper-
atures, the exact results are reached after 80 it-
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Test 2
m unknowns −→ q1(t) q2(t)

initial guess 0.0 0.0
meas. error σ 0.0
iteration number 55

VDP
CPU time 1.04
results / /
estimation error 0.14 0.00
initial guess 0.0 0.0
meas. error 0.0
iteration number 250

CDP
CPU time 3.13
results / /
estimation error 0.18 0.00

m unknowns −→ q1(t) q2(t)
initial guess 0.0 0.0
meas. error σ 0.01
iteration number 51

VDP
CPU time 2.07
results fig.(2)
estimation error 0.30 0.00
initial guess 0.0 0.0
meas. error σ 0.01
iteration number 149

CDP
CPU time 3.05
results / /
estimation error 0.34 0.12

Table 2: Results of estimating simultaneously two
heat fluxes q1(t) and q2(t) by utilizing errorless and
noisy data.

erations (not shown to alleviate the table). The
“best” sensor locations were found to be x1 = 0.30
and x2 = 0.60 for the considered heat flux shape
and the utilized initial guess. The estimation error
is of the same order of magnitude as the one ob-
served in the previous case. In the second case, we
have no convergence with or without errors in the
simulated data when the CDP method is employed.

Test case 2 : Estimation of two time depen-
dent heat fluxes. A slab of unit thickness is initially
at zero temperature. For time > 0, the boundary
surfaces at x = 0 and and x = L are subject to
two prescribed heat flux of strength q1(t) and q2(t).

The inverse heat conduction problem considered
here is that of estimating simultaneously the two
unknown time dependent surface heat flux q1(t)
and q2(t) from the transient temperature record-
ings taken at two known sensor locations inside the
considered domain x1 = 0.20 and x2 = 0.80. The
maximum heat flux value is Qmax = 10. The two
heat fluxes q1(t) and q2(t) have respectively trian-
gular and rectangular shapes.
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Figure 2: Computed and exact heat fluxes q1(t)
and q2(t) obtained with noisy data

The results of the inverse estimation, with exact
data and without any parametric representation of
the two functions are presented in table (2). The
results underline clearly the advantage of the vecto-
rial descent parameter method when estimating si-
multaneously two time dependent heat fluxes. The
ratio of iteration number between CDP method
and VDP method for errorless data is about 5.
This ratio drops to 3 in the case of noisy data.
The CPU time is more important with the CDP
method. The two estimated heat fluxes q1(t) and
q2(t), with noisy data are plotted on figure (3). A
comparison of the VDP and CDP methods reveals
that accuracy is of the same order of magnitude,
while the CDP method needs more iterations for
convergence which results in an important CPU
time.

Test case 3 : Estimation of two time depen-
dent heat sources. A plate of thickness L initially
at a uniform temperature Ti = 0 contains two
plane heat sources of unknown strengths S1(t) and
S2(t) placed at specified locations x1 = 0.20 and
x2 = 0.80, respectively, inside the plate. For time
t > 0, heat is generated by the sources at unknown
rates, while the boundaries of the plate are kept in-
sulated. Our goal is to estimate simultaneously the
unknown strengths of the sources S1(t) and S2(t)
from transient temperature measurements taken at
both boundaries of the plate x = 0 and x = L.
More details on the mathematical formulation of
the above inverse problem, analytical derivation
of the gradient, the computational algorithm and
several numerical examples can be found in Silva
Neto et al.[12] and are not repeated here for sake
of brevity. In solving this problem we have used
the same shapes and magnitude of the two sources
presented in the above reference without any para-
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Test 3
m unknowns −→ S1(t) S2(t)

initial guess 0.0 0.0
meas. error σ 0.10
iteration number 34

VDP
CPU time 1.88
results / /
estimation error 0.89 4.95
initial guess 0.0 0.0
meas. error σ 0.10
iteration number 89

CDP
CPU time 2.44
results fig. (3)
estimation error 0.93 4.84

Table 3: Results of estimating simultaneously two
heat sources S1(t) and S2(t) with noisy data.

metric form. The two heat sources S1(t) and S2(t)
have rectangular shapes with a significantly differ-
ent duration of energy releases.

Here again the VDP method was found to be 3
times faster than the CDP method in the case of
noisy data. The agreement between the estimated
and exact source strengths is good. The devel-
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Figure 3: Computed and exact heat sources S1(t)
and S2(t) obtained with noisy data

oped procedure remains valid in the case of multi-
parameter estimation and one can show that it is
reduced to the well known Newton-Gauss method
[2, 4].

Conclusion

We have shown in this paper the application of the
conjugate gradient method for estimating a set of
parameters and functions or multi-functions with
two kinds of descent parameter : common param-
eter or vectorial parameter. The obtained results

illustrate the efficiency of the conjugate gradient
method when applied with a vectorial descent pa-
rameter.

A comparison of the two variants of the conju-
gate gradient method (with VDP and with CDP )
reveals that accuracy is of the same order of mag-
nitude for both versions, while the CDP method
needs more iterations for convergence resulting in
more CPU time. An other important result is that
the VDP method converges with wider deviation
in the initial guess.
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ABSTRACT 

We consider Nonlinear Least Squares 
problems with equality and inequality constraints 
and propose a numerical technique that integrates 
methods for unconstrained problems, based on 
Gauss-Newton algorithm, with FAIPA, the 
Feasible Arc Interior Point Algorithm for 
constrained optimization. We also present some 
numerical results on test problems available in the 
literature and compare them with the quasi-
Newton version of FAIPA. We also describe an 
application to the identification of mechanical 
parameters of composite materials. The present 
algorithms are globally convergent, very robust 
and efficient. 

 
INTRODUCTION 

In this paper we consider Nonlinear Least 
Squares Problems with equality and inequality 
constraints, when nonlinear smooth functions are 
involved. Calling x ≡ [x1, x2, �, xn] the design 
variables, f(x) the objective function,                
g(x) ≡ [g1(x), g2(x), �, gm(x)] the inequality 
constraints and h(x) ≡ [h1(x), h2(x), �, hp(x)] the 
equality constraints, the problem can be denoted 
as: 
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The function f(x) is a sum of squares of  the 

nonlinear functions )(xri ; i = 1,�, s. 
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Problems of this type occur when fitting 
model functions to experimental data [1, 2].  In 
this case ri(x) is called a residual function. It 
represents the discrepancy between the true value 
and the approximate value, predicted by a 
nonlinear model. If the model is to have any 
validity, we can expect that ( )*xf  will  be 
�small�, and that s, the number of data points, will 
be much greater than n. We assume that s > n.  
Note that, if the set of equality constrains verifies 
regularity conditions [3], to have a solution it 
must be p ≤ n. 

A large number of special purpose algorithms 
is available in the unconstrained case, but only 
very few methods were developed for the 
nonlinearly constrained case [4, 5, 6].   

A numerical technique that integrates well-
known methods for unconstrained problems in a 
general method for Nonlinear Constrained 
Optimization is presented in this paper.  This 
method is the Feasible Arc Interior Point 
Algorithm, �FAIPA�, that makes iterations in the 
primal and dual variables of the optimization 
problem to solve Karush-Kuhn-Tucker optimality 
conditions.  Given an initial interior point, FAIPA 
defines a sequence of interior points with the 
objective reduced at each of the iterations.  At 
each point, a feasible descent arc is obtained and 
an inexact line search is done along this arc.  To 
compute the feasible arc, FAIPA solves three 
linear systems with the same matrix.  These 
systems include the second derivative of the 
Lagrangian function.  There is also a quasi-
Newton version of FAIPA. In this one, the 
Hessian of the Lagrangian is replaced by a quasi-
Newton approximation.  

In the present algorithm, instead of the 
Hessian, we employ an approximation based on 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

Gauss-Newton method and some of their 
modifications. In the following sections we 
describe FAIPA, some existing methods for Least 
Square and we present the algorithm proposed 
here. Finally we describe the numerical results on 
some test problems and a practical application in 
solid mechanics. 
 
FAIPA, THE FEASIBLE ARC INTERIOR 
POINT ALGORITHM  

FAIPA, proposed by Herskovits [3, 7, 8], is an 
interior point method that solves general problems 
of nonlinear optimization. FAIPA makes 
interactions in the primal and dual variables of the 
optimization problem to solve Karush - Kuhn - 
Tucker (KKT) optimality conditions. 

KKT conditions corresponding to Problem (1) 
can be written as follows: 
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where mR∈λ and pR∈µ  are the Lagrange 
multipliers corresponding to the inequality and 
the equality constraints respectively, mmRxG ×∈)(  
denotes a diagonal matrix such that 

)()( xgxG iii = . In what follows we call 
mm×ℜ∈Λ a diagonal matrix with iii λΛ = . 

FAIPA requires a feasible initial point and 
defines a sequence of feasible points, with a 
monotone reduction of the objective function. 

The Feasible Arc Interior Point Algorithm to 
solve Problem (1) is described now: 
 
FAIPA ALGORITHM 
Parameter. α ∈  (0,1). 
Data. x ∈ 0

aΩ , λi > 0, λ ,mR∈  µi > 0, ,pR∈µ                  
B nxnR∈ symmetric and positive definite and       ci 
= 0, c .pR∈   
 
Step 1. Computation of a feasible descent 
direction. 
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where ,0

nRd ∈ ,  0
mR∈λ   .0
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if d0 = 0, stop. 

 
(ii) Solve the linear system in (d1, λ1, µ1):  
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where ,1

nRd ∈ ,  1
mR∈λ   .1

pR∈µ  
 
(iii) If iic 0µ≤ , make iic 02.1 µ> , for                
i = 1,..., p.  
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0=ρ  (13) 

 
(v) Compute d 
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Step 2. Computation of a feasible descent arc. 
 
(i) Let be 
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(ii) Solve the linear system in (
~~~

,, µλd ): 
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(iii) Find a step length t satisfying a given line 
search criterion on the auxiliary function ),( cxφ  
such that: 
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otherwise. 
 
Step 3. Updates. 
 
(i) Set 
 

~
22

1 dttdxx kkk ++=+  
(20) 

 
and define new values for: w > 0, λ > 0, µ > 0  
and B symmetric and positive definite. 
 
(ii) Go to back to step1.                                         
 

The size of linear systems (10) and (11) is 
equal to the sum of the number of variables plus 
the number of equality  and inequality constrains. 
In [9] it is provide that (10) and (11) had a unique 
solution. 

In Figure1 the Feasible Arc is represented in 
the case when there is an active inequality 
constraint, that is 0)( =ki xg . It is proved that it is 
possible to walk from kx along the arc to get a 
new feasible point with a lower objective value. 
The algorithm has global convergence for any B 
symmetric and positive definite. However, taking 

),,,( µλxHB ≡  where 
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is the second derivative of the Lagrangian, a 
Newton algorithm is obtained. A very efficient 
algorithm, without need of second derivatives 
computation, is obtained with B equal to a quasi- 
Newton approximation of ).,,( µλxH  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Feasible Arc. 
 

ABOUT THE UNCONSTRAINED LEAST 
SQUARES PROBLEM 

To understand the basic features of the 
algorithm present here, we consider the 
unconstrained nonlinear least square problem: 
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where r(x) represent the residual vector. 
 

The Jacobian Matrix of the residual is  
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and the Hessian matrix of f(x)  
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In the Gauss-Newton method, Q(x) is ignored  

and the Hessian is simply approximate by 

gi(x) = 0
xk 

d1
d0 

−∇ f(x)

∇ g(x)

d 

d~
Feasible arc 

d1 ρ 
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).()()(2 xJxJxf t≈∇   (26) 

 
The iterations for Gauss-Newton method are 

then 
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Gauss-Newton method is based on Newton�s 

method and it can fail for the same reasons as 
Newton�s method does. In particular, when 

)()( k
t

k xJxJ  is not positive definite or when it is 
badly conditioned. 

Gauss-Newton method assumes that, near of 
the solution, )()( xJxJ t  is a good approximation 
to )(2 xf∇ , i. e. Q(x) can be neglected. This 
assumption is not justified for problems with a 
large residual.  A possible strategy in this case, is 
to include a quasi-Newton approximation M of 
the unknown second derivative term Q(x) [4]. 

The search direction with a quasi-Newton 
approximation to Q(x), called M, is given by: 
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The following formula for M is based on the 

BFGS update [9]: 
 

t
kk

k
t
k

k
t
kkk

kk
t
k

kK yy
sy

WssW
sWs

MM 11
1 +−=+   (31)  

 
where 
 

kk
t

kk MxJxJW += ++ )()( 11  (32) 

 
It is proved that if it is ensured that 0>k

t
k sy , 

then the updating formula has the property that if 
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k MxJxJ +++ )()( 11  is a positive-definite matrix, 
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k MxJxJ , see [4]. This 

property is used asymptotically when k
t
k JJ is 

approximately equal to 11 ++ k
t
k JJ . However, 

kk
t

k MxJxJ +++ )()( 11 can be singular or badly 
conditioned, resulting in a non-descent search 
direction, and the iteration fails. Levenberg � 
Marquardt method consists on adding a positive 
diagonal matrix Iε  where 0>ε  is taken big 
enough to have IMxJxJ kk

t
k ε++++ )()( 11  

positive definite. The main difficulty to apply this 
technique is to get a way of choosing ε  not very 
large in order to maintain as well as possible the 
speed of convergence of Gauss � Newton 
algorithm. 

 
LEVENBERG � MARQUARDT METHOD  
WITH CHOLESKY DECOMPOSITION 

Let be matrix 111 )()( +++ += kk
t

kk MxJxJB . If 
B is symmetric and positive-definite, it can be 
obtained a Cholesky factorization 
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where L is lower-triangular matrix.  
The modified Cholesky factorization is a 

numerically stable method to compute ε  that 
produces a positive-definite matrix [4]. 

The elements of L can be expressed by a 
simple recurrence relation: 
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In the case when B is not positive definite, it is 
proved that one or more diagonal elements are 
such that 
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In consequence, kkl obtained in (35) is not a real 
number 
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Adding to kkb a big enough positive number, a 
positive definite matrix +B is then obtained. This 
procedure is equivalent to Levenberg � Marquardt 
and allows to define very precisely the 
perturbation required to get a positive definite 
matrix. 
 
ABOUT CONSTRAINED LEAST SQUARE 
PROBLEMS 
 

The algorithm that we propose here is based on 
FAIPA. Instead of taking B equal to a quasi � 
Newton approximation of ),,( µλxH , we 
construct a matrix that includes a Gauss-Newton 
approximation of the objective function. 
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We employ the same update formula (31), but 
taking 
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where 
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In unconstrained optimization it is proved that 

)(2 xf∇ is positive definite at a local minimum. 
When there are constraints, we have that in 
general ),,( µλxH  is not positive-definite. In 
effect, it is only ensured that ),,( µλxH  at a local 
solution is positive definite in the space tangent to 
the active constraints. However, FAIPA requires a 
positive definite matrix B.  

We employ Levenberg-Marquardt method 
with Cholesky decomposition to obtain B  
positive definite. 
 
NUMERICAL TESTS 

We present some numerical results obtained 
with the algorithm for Constrained Least Squares  
problems, FAIPA_LS presented in this 
contribution. These results are compared with a 
quasi � Newton version of FAIPA. 

We also describe an application to an inverse 
problem in solids mechanics. 
Problem 25: 

 
Source: Holzmann [10], Himmelblau [11]. 
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 Problem 57:  
 

Source: Betts [12], Gould [13]. 
Objective Function: 

( )

( ) ( )( )

[14] ofA appendix  : ,
.44,...,1

8exp49.0)(

)()(

211

44

1

2

ii

iii

i
i

ba
i

axxxbxr

xrxf

=
−−−−=

=∑
=

 

Constraints: 

2

1

21

4
4.0

009.049.0

x
x

xx

≤−
≤

≥−−
 

Start (feasible): 

0307986020)(
)5,42.0(

0

0

.xf
x

=
=

 

 
Problem 70: 
 

Source: Himmelblau [11, 14]. 
Objective Function: 
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Table 1. Numerical Results on Problems 
Hock/Schittkowski and Linear Equality 

Constrained Least Square Problem. 
 

Problem 25 (n = 3, m = 6, p = 0) 
 

Update of B cfv ofv iter 
FAIPA_qN 1.07239 510−×    0.0 14 

FAIPA_LS 3.89665 510−×     0.0 13 
 

Problem 57 (n = 2, m = 3, p = 0) 
 

Update of B cfv ofv iter 
FAIPA_qN 0.0284597 0.0284596 21 

FAIPA_LS 0.0284598 0.0284596 17 
 

Problem 70 (n = 4, m = 9, p = 0) 
 

Update of B cfv ofv iter 
FAIPA_qN 0.00749877 0.00749864 72 

FAIPA_LS 0.00749847   0.00749864 33 
 

Linear Problem  (n = 4, m = 0, p = 3) 
 

Update of B cfv ofv iter 
FAIPA_qN 3.08149 3110−×  0.0 5 

FAIPA_LS 0.0 0.0 4 

We report here our experience with 4 test 
problems. Three problems compiled by Hock et. 
al. [15] and the last one  problem is a linear 
equality constrained least square (LSE) problem 
described in 
(http://www.netlib.org/lapack/lug/node85.html). 
The LSE problem is  
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The results are summarized in Table 1, where 

n is the number of variables, m the number of 
inequality constrains, p the number of equality 
constrains, iter is the number of iteration;  cfv is 
the computed objective function value, ofv is the 
optimum function value, FAIPA_qN is the quasi-
Newton version of FAIPA and FAIPA_LS, the 
present algorithm. All test problems were solved 
with the same value for the parameter α. This was 
taken: α = 0.7, as in the general version of 
FAIPA. The stop criterion adopted was a 
tolerance on the optimal objective function            
ε  = 10-5. The  initial point, ofv and other 
characteristic of the test problems are described in 
Hock et. al. [15]. 

 
Identification of material parameters: 
 

This example is intended to illustrate the 
application of the described optimization 
techniques to a class of inverse problems, namely 
the identification or estimation of material 
parameters in composite laminated plates made of 
two different materials. The problem consists of 
estimating the elastic properties of the two 
materials that make up the plate by fitting a set of 
experimentally measured undamped eigenvalues 
( iλ

~
) to those obtained through a higher order 

finite element model ( iλ ). 
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The objective function is a weighted least 
squares estimator: 

 

∑
=




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 −
=
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ii
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(40) 

 
where [ ]1,0∈iw  expresses the confidence in the 
experimental data and, in this example it is taken 
as unity. The problem is then formulated as a non 
linear constrained minimization problem, where 
the design variables are non dimensional 
functions of the elastic properties of each material 
and the constraints are imposed in order to keep 
the constitutive matrix positive definite: 
 

( )
( )

ul xxx
0xg    s.t.
0xfmin

≤≤
≤
≥

 
 

(41) 

 
Full details regarding this identification 

technique can be found in Araújo et al. [2,16]. 
The plate in this example is made of 

unidirectional layers of E glass and T300 carbon 
fibres in epoxy matrix. The pre-pregs used to 
build the plate were Structil 200g/m2 VEE220 
R368, for the glass layers and Structil 350g/m2 
CTE235 R367, for the carbon layers. The 
stacking sequence is [ ]SVC

0
3

0
4 0,90  and the 

rectangular plate dimensions and mass are a=191 
mm, b=254 mm, h=3.89 mm and m=289.85g. 

The initial estimates for the elastic properties 
of the glass and carbon layers correspond to the 
properties of typical unidirectional layers of these 
materials for 50% Vf: 
 
E glass: GPaE 451

0 = ; GPaE 5.42
0 = ; 

GPaGGG 7.313
0

23
0

12
0 === ; .28.012

0 =ν  
 

T300 carbon: GPaE 2.1171
0 = ; GPaE 8.82

0 = ; 
GPaGGG 1.313

0
23

0
12

0 === ; .35.012
0 =ν  

 
For the finite element discretisation a regular 

12×16 mesh was used and the problem was 
solved in 17 iterations using the FAIPA (Wolfe 
criterion for line search) and the stopping 
criterion was the reduction of the penalty function 
(less than 1×10-6). Results are presented in Tables 
2 through 4. Residuals irω on the natural 
frequencies were  obtained from measured 

( πλω ii 2
~~ = ) and identified ( π2)x(λω ii = ) 

natural frequencies, using the following 
expression: 
 

100~
~

r
i

ii
i ×−=

ω
ωω

ω  
 

(42) 

 
A good agreement is sought between the 

identified global properties and their available 
strain gauge counterparts and one can conclude 
that the identified properties for each material are 
reasonably within what one could expect for these 
materials, except for the transverse shear modulus 
G13 and G23, because the plate is not thick enough 
for these shear effects to be noticeable, hence any 
results for their identification are not truly reliable 
[2, 16]. Also, the different material densities were 
not taken into account in this example, which 
could in part explain the inability to fit the fifth 
natural frequency with sufficient accuracy. 

 
 

Table 2. Identified global properties and strain 
gauge measurements 

 Identified Strain gauge 

xE [GPa] 17.0   

yE [GPa] 76.9 77.5 

xyG [GPa] 4.0   

xzG [GPa] 1.1   

yzG [GPa] 3.8   

yxν  0.17 0.14-0.20 

 
 
 

Table 3. Identified properties per material 
 E glass T300 carbon 

1E [GPa] 44.6 100.1 

2E [GPa] 4.7 7.7 

12G  [GPa] 3.8 4.0 

13G [GPa] 3.4 3.7 

23G [GPa] 4.0 0.4 

12ν  0.27 0.45 
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Table 4. Experimental frequencies and residuals 
obtained after identification 
i 

iω~ [Hz] irω  [%] 
1 135.75 0.767 
2 253.57 -0.036 
3 373.81 0.147 
4 489.90 0.801 
5 567.68 -1.356 
6 699.55 0.451 
7 787.18 -0.542 
8 809.46 -0.267 
9 1195.0 -0.578 

10 1310.0 0.508 
11 1370.0 0.006 

 
CONCLUSIONS  

The present is a strong an efficient technique 
that extends to constrained problems the 
advantages of Gauss-Newton methods. The 
numerical results studied here show an 
improvement of the computer effort when 
compared with the classical quasi � Newton 
version of FAIPA. 

We note that FAIPA is very robust and 
efficient and it was tested with more than 100 test 
problems in the literature and was applied in 
several practical applications [2, 16]. 
Unfortunately, we didn�t find more Constrained 
Least Squares test problems. 
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ABSTRACT 

This paper presents a new methodology for 
regularizing data-based predictive models.  
Traditional modeling using regression can 
produce unrepeatable, unstable, or noisy 
predictions when the inputs are highly correlated. 
Ridge regression is a regularization technique 
used to deal with those problems. A drawback of 
ridge regression is that it optimizes a single 
regularization parameter while the methodology 
presented in this paper optimizes several local 
regularization parameters that operate 
independently on each component. This method 
allows components with significant predictive 
power to be passed while components with low 
predictive power are damped. The optimal 
combination of regularization parameters are 
computed using an Evolutionary Strategy search 
technique with the objective function being a 
predictive error estimate. Examples are presented 
to demonstrate the advantages of this technique. 

 
NOMENCLATURE 

mnRX ×∈    matrix of predictor variables  
y          response variable 

mRb ∈    vector of regression coefficients 
2σ     noise variance  

( ) T
i VsdiagU ⋅⋅  SVD of X 

2λ      ridge parameter 

iλ      local ridge parameters 
 
INTRODUCTION 

In many predictive modeling engineering 
applications, the predictor data set is collinear. 
For some systems, such as predictive systems 

used to monitor process sensor calibrations, 
collinear predictors are necessary for building 
successful and robust inferential models [1]. Due 
to the presence of collinearity, traditional 
empirical modeling techniques such as ordinary 
least squares, neural network multi-layer 
perceptrons, and others that do not employ 
regularization produce very unstable and 
unrepeatable results [2]. Examples exist in most 
research fields. 

To deal with instabilities due to collinear 
inputs, the method of regularization developed 
first by Tikhonov [3] was adopted in the form of 
ridge regression [4] or a more general class of 
penalized estimators [5]. When applying ordinary 
least squares (OLS) to a data set with collinear 
inputs, the coefficients are usually very large in 
magnitude. These large coefficients are caused by 
overfitting the training data and can amplify noise 
in the predictors and produce useless predictions. 

This problem can be avoided by adding 
additional constraints to the usual sum of squared 
error objective function.  The most common 
method, termed ridge regression, adds a term that 
also minimizes the magnitude of the regression 
coefficients.  In his paper, Hoerl [4] proved that 
regardless of the conditioning, for finite data sets, 
there always exists a ridge estimate that decreases 
the mean squared error of the solution. This 
means that even if the data matrix is not badly ill-
conditioned, one can still improve prediction 
accuracy by exploiting ridge regression rather 
than OLS. Adding the constraint will bias the 
estimate but reduce its variance making it more 
stable so that the probability that the ridge 
estimates falls in a certain vicinity of the true 
parameter value is higher than that of the OLS 
estimate.  
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There are two potential problems encountered 
when using ridge regression. The first problem is 
choosing an optimal ridge parameter and the 
second deals with assumptions inherent in the 
methodology. We will now briefly describe these 
potential problems. 

The proper choice of the ridge parameter 
greatly affects the performance of ridge 
regression. Several methods of choosing a valid 
ridge parameter have found their way into 
engineering practice. The most common methods 
are the Discrepancy Principle (DP) [6]; Mallows’ 
[7] CL, Generalized Cross Validation (GCV) [8], 
and the L-curve method [9]. Unfortunately, every 
parameter choice rule has its pitfalls. The high 
sensitivity of CL and DP to an underestimation of 
the noise level has limited their application to 
cases in which the noise level can be estimated 
with high fidelity [10]. On the other hand, noise-
estimate-free GCV occasionally fails, presumably 
due to the presence of correlated noise [11]. The 
L-curve method is widely used; however, this 
method is nonconvergent [12]. All these methods 
directly or indirectly estimate the mean predictive 
error and select the ridge parameter so as to 
minimize the estimated mean predictive error.  

The second problem deals with inherent 
assumptions of ridge regression. When 
implementing ridge regression, the components 
with associated singular values larger than the 
ridge parameter are considered to contain useful 
predictive information and are passed while 
components with singular values less than the 
regularization parameter are considered to contain 
noise or other useless information and are 
damped. The basic assumption that the 
components are arranged in order of predictive 
importance may not always hold. The 
components are arranged by their amount of 
variation and this may, or may not, lead to 
components arranged with respect to predictive 
ability.  In fact, components can have a high 
variance with large singular values, but contain 
no predictive information. In this case ridge 
regression would needlessly pass this component, 
which results in degraded predictive performance. 
The other case is when a component with low 
variance and small singular value is unnecessarily 
damped. A more optimal technique would be to 
associate a ridge parameter with each component 
so that each component could be passed or 
damped with respect to its predictive capabilities 
rather than its amount of variation. This 
technique, called local ridge or generalized ridge 

regression [4], has found limited use because a 
method of optimizing the vector of local ridge 
parameters has not been found to be practical. 

This paper presents an Evolutionary 
Algorithm method for optimizing the local ridge 
parameters to minimize Mallows' CL.  CL was 
chosen because it has proven to be an unbiased 
estimate of prediction error [7]. The methodology 
section derives the local ridge solution and 
describes the evolutionary programming strategy. 
The developed methodology is then applied to the 
development of two predictive models. These two 
examples show the advantages of local ridge to 
pass components with small variance and high 
predictive capabilities and to damp components 
with high variation and little predictive value.   
 
METHODOLOGY 

This section will describe the methodologies 
used to implement the local ridge regression 
algorithm. It is broken down into two major 
sections: a section on evolutionary algorithms, 
and a section describing the objective function 
selected to be minimized. 
 
Predictive Error Estimator as a Fitness 
Function 

Consider the following linear regression 
problem 
 
 ε+= Xby ,  ( )nIN 2,0~ σε  (1) 
 
where mRb ∈  is the vector of regression 
coefficients to be determined using observed data 
(X,y); ε represents noise in the response y ; 

mXX ,...,1
 are the explanatory variables or 

predictors. The OLS solution or maximum 
likelihood solution is given by 
 
 ( ) yXXXb TT

ols
1ˆ −= , (2) 

 
where olsb̂  is the vector of regression coefficient 
estimates.  The OLS solution is an unbiased 
estimate of the true solution, if such a solution 
exists. However, when the data matrix X is ill-
conditioned, the OLS solution ( olsb̂ ) becomes 
extremely unstable, i.e. it has a very large 
variance. This can be easily seen when the 
solution is written in the terms of a singular value 
decomposition (SVD) of the data matrix 

( ) T
i VsdiagUX ⋅⋅=   
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( ) ( )∑ =
−− ⋅=⋅⋅=

m

i i
T
ii

T
iols vyusyUsdiagVb

1
11ˆ  (3) 

 
where u and v are called left and right 
eigenvectors of X and si are the singular values of 
the data matrix X. 

The ill-conditioned matrix X has near zero last 
singular values. These last singular values usually 
correspond to the noise (or non-informative) 
components in X. When inverted, these near zero 
singular values drastically amplify the 
contribution of the noise components to the 
solution and destroy its predictive accuracy. 
Indeed, the variance-covariance matrix of the 
OLS solution is 
 

( ) ( ) ( ) T
i

T
ols VsdiagVXXbCov ⋅⋅== −− 2212ˆ σσ , (4) 

 
where σ2 is the noise variance in y. Near zero 
singular values result in a large variance of the 
solution, making it statistically insignificant. 

When dealing with collinear data (ill-
conditioned X), one can use ridge regression [4] 
to avoid the problem of instability. The ridge 
solution is obtained as 
 
 ( ) yXIXXb T

m
T 12ˆ −+= λ  (5) 

 
where λ≥0 is the ridge parameter and Im is the 
mxm identity matrix. In terms of the SVD of X, 
the ridge solution can be written as 
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with  

22

2

λ+
=

i

i
i s

sf  (7) 

 
referred to as the filter factors and yuT

ii =ρ  as 
the correlation coefficients.  Notice that for λ=0, 
the ridge solution becomes the OLS solution; for 
λ>0, the solution is different. The filter factors 
determine if the information in the ith component 
is incorporated into the solution or damped. If λ is 
large with respect to a singular value, the filter 
factor dampens the corresponding component 
while if λ is small with respect to a singular 
value, its corresponding component is passed.  

Therefore, a suitably large λ eliminates the 
destroying effect of the near zero singular values 
and makes the solution stable and statistically 
significant. The variance-covariance matrix in this 
case is 
 

( ) ( ) ( )

( ) (8)

ˆ
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When λ → ∞, the variance of the 

corresponding solution goes to zero. 
Unfortunately, the decreasing variance is not the 
only consequence of using ridge regression. 
Shrinkage also introduces a bias into the solution 
which increases with increasing λ. It is shown in 
[4] that there always exists some λopt that 
optimally balances the bias and variance such that 
the mean squared error (MSE) of the solution, 
defined as 
 

 ( ) ( ) ( )






 −−= λλλ bbbbEMSE true

T
true

ˆˆ , (9) 

 
is less than that of the OLS solution. The only 
difficulty in computing such an optimal ridge 
parameter is that the MSE of the solution is not 
computable unless the true solution is known. 
However, one can use the mean predictive error 
(MPE) to select λ, 
 

( ) ( ) ( )






 −−= λλλ bXXbbXXbEMPE true

T
true

ˆˆ , (10) 

 
which can be successfully approximated using 
available observations. To approximate the MPE 
one can use Mallows' [9] CL 
 

( ) ( ) ( ) ( )( )λσλ λλ Htrace
nn

bXybXyCL
T 22ˆˆ

+
−−

= , (11) 

 
where the hat matrix (H(λ)) is defined as  
 
 ( ) ( ) T

m
T XIXXXH

12 −
+= λλ . (12) 

 
In standard ridge regression, (5) and (6), we 

use the same value of the ridge parameter for each 
component. It may be desirable to have an 
individual ridge parameter for each singular value 
(or component) and optimize the values of all 
these individual parameters in an attempt to 
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reduce the MPE further. This can be useful in 
situations when intermediate components are not 
related to the response, but due to a limited 
number of observations and possible random 
correlations, they still contribute to the solution, 
degrading the prediction accuracy. To eliminate a 
particular component from the solution, the 
following form of ridge regression with 
individual ridge parameters can be used 
 

( ) ( )∑
=

−
⋅

+
=+=

m

i
i

T
i

ii

iTT
i

T vyu
s

syXVVXXb
i

1
22

212ˆ
λ

λλ
.(13) 

 
We refer to this variation of ridge regression 

as local ridge regression with λi being the local 
ridge parameters. A large λi with respect to its 
corresponding singular value prevents the 
corresponding component from contributing to 
the solution. As before we can chose λi's to 
minimize the MPE approximated by CL in the 
form 
 

( ) ( ) ( ) ( )( )i

T

i Htrace
nn

bXybXy
CL ii λσλ λλ

22ˆˆ
+

−−
= , (14) 

 
where the hat matrix is defined as  
 
 ( ) ( ) TT

i
T

i XVVXXXH 12 −+= λλ . (15) 
 

Unlike standard ridge regression in which one 
λ is optimized, this problem is a multidimensional 
optimization with a vector of λi's being optimized. 
The number of possible combinations of even a 
moderate number of real-valued ridge parameters 
becomes enormous even with a fairly coarse grid 
of the ridge parameters values. Orr [13] attempted 
to optimize each parameter by itself and repeated 
the optimizations until the solution converged.  
This method is time consuming and may be 
subject to local minima. Evolutionary Algorithm 
(EA) optimization is able to choose an optimal 
subset of regularization parameters that minimize 
CL (14) as the fitness function. 

 
Evolutionary Algorithms to Optimize 
Local Ridge 

Evolutionary Algorithms (EA) have been 
successfully applied to solve complex engineering 
optimization problems.  Arguably the best know 
representatives are Genetic Algorithms (GA) and 
Evolutionary Strategies (ES) [14, 15]. Differential 
Evolution (DE) [16, 17] is a population-based, 

direct-search algorithm for global optimization.  
While originally designed to operate on 
continuous floating point variables DE has 
recently been extended to optimize a mixture of 
integer, discrete, and continuous variables as well 
as multiple linear and non-linear constraints [18]. 

DE has proven to be exceptionally simple 
(less than 30 lines of C-code) and robust for a 
variety of real-world optimization problems [17].  
While the structure of DE is similar to other 
population based search algorithms, like ES and 
GAs, it differs in both its self-referential mutation 
scheme and its selection process.  Here is the 
basic structure of DE. 
 

Initialization. First, we start with an 
objective function f(X) to be optimized, where X 
is a vector of D parameters, X = (x1,…,xD).  Our 
goal is to find the optimal values of the vector X 
that provide a minimum value of f(X). DE 
operates on a population, PG, of candidate 
vectors. The size of the population, NP, remains 
constant for all generations. Each member of the 
population is denoted as Xi,G, where i indexes the 
population and G is the particular generation, PG 
= {X1,G,…,Xi,G,…,XNP,G}, i = 1,2,…NP, G = 
1,…,Gmax. The parameters of X are analogous to 
the chromosomes of an individual i in a 
generation G, Xi,G  = xj,i,G,  i = 1,2,…NP,  
j=1,2,…,D. 
     For most real-world engineering problems, the 
parameters of the objective function will be 
constrained by lower and upper boundary 
conditions xj

(L)
 and xj

(U) where j=1,…,D.  
Typically the initial population, P0, is generated 
by randomly selecting parameter values between 
these lower and upper boundaries. 
 

Mutation and Recombination. While a 
predefined probability distribution function drives 
mutation for most EAs, DE utilizes a self-
referential mutation scheme based on the 
differences of randomly sampled objective 
vectors from the current population. The 
distribution of the differences is consequently 
determined by the distribution of the population 
itself. This means that any bias introduced in the 
way DE attempts to improve the population of 
objective vectors is implicitly driven by the 
objective function or problem being optimized. 

DE uses both mutation and recombination to 
produce a second population of children or trial 
vectors. One “child” vector is created for each 
“parent” in a random manner. When crossover 
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occurs, a parameter of the “child” becomes a 
linear combination of three randomly chosen 
vectors, otherwise that parameter of the “parent” 
is passed along to the “child”. Another portion of 
the code ensures that each “child” vector differs 
from its “parent” in at least one parameter 
(chromosome). This is done for every “parent” 
vector in the current population. Several user 
specified control variables, such as crossover and 
mutation rates, affect the convergence properties 
and robustness of DE and often depend on the 
characteristics of the objective function. 
Guidelines for selecting the parameters are 
provided in [16, 17] and successful selection of 
the parameters can usually be obtained after a few 
trial iterations using differing values. 
 

Selection. The selection scheme utilized by 
DE is also different from other ES and GAs.  
Each successive population, is selected from 
either the current “parent” population, or the 
“child” population. Each individual “child” in the 
trail population is compared with a single 
“parent” in the current population and the 
individual with the lower objective function 
“survives” and passes on into the next generation. 
This means that all the individuals in each 
successive generation are at least as good as their 
“parent” in the current generation. In contrast to 
other EAs, which compare a candidate individual 
to all other individuals in the population, DE only 
compares the candidate individual to a single 
member of the current population. 
 
CASE STUDIES 

This section presents two applications of the 
local ridge algorithm developed in the previous 
section. The first example is a predictive model 
using automobile data that shows unimportant, 
high variance components can be correctly 
damped with local ridge.  The second example is 
a predictive model that estimates the value of a 
process parameter in a fossil power plant that 
demonstrates important, low variance components 
can be passed. 
 
Automobile Example 

The first example uses automobile data that 
can be found at the University of California 
Irvine, Repository of Machine Learning Database 
[18]. The dataset was first used in the 1983 
American Statistical Association Exposition and 
later used by Quinlan [19] to predict automobile 
gas mileage. The data set has information from 

392 automobiles with seven variables of interest 
provided in Table 1. In this example we will use 
the first six variables to predict the seventh 
variable: the car's acceleration.   
 
 

Table 1.  Automobile Data Set 
Variable Type 

1 MPG continuous 
2 Cylinders multi-valued discrete 
3 Displacement continuous 
4 Horsepower continuous 
5 Weight continuous 
6 Year multi-valued discrete 
7 Acceleration continuous 

 
 

Performing a Principal Components Analysis 
(PCA) on the standardized data results in the 
following amounts of variation incorporated in 
each the six Principal Components (PC).  The 
singular values are also listed. 
 
 

Table 2.  Principal Component Analysis 
PC Singular Value % Variation 
1 42.17 77.6 
2 18.34 14.4 
3 9.03 3.5 
4 7.86 2.6 
5 5.41 1.2 
6 3.74 0.6 

 
 
An analysis of the principal components show: 
 
PC#1 is a weighted average of cylinders, 
displacement, power, and weight and negatively 
with MPG.   
PC#2 is weighted towards the year. 
PC#3 is weighted towards MPG. 
PC#4 is a measure of the difference between the 
two variables cylinders and power. 
PC#5 is weighted towards weight. 
PC#6 is likely due to noise. 
 

The condition number of X'X, which is the 
matrix that is inverted when calculating the OLS 
solution, is slightly ill-conditioned with a 
condition number of 130. 

Table 3 presents the results of a correlation 
analysis of the principal components and the 
response variable: acceleration. In this table we 
see that the first component is highly correlated 
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with acceleration and that components 3, 4, and 5 
have slight correlations with acceleration.  This is 
to be expected since component two is year, and 
there were old and new cars with high and low 
accelerations.  We may expect that ridge 
regression will pass the first five components and 
that by passing component two, the predictive 
performance will be slightly degraded.  
 
 

Table 3. Correlation Analysis 
Principal 
Component 

Absolute Correlation 

1 0.5510 
2 0.0013 
3 0.3625 
4 0.3006 
5 0.3014 
6 0.0598 

 
 

We will now evaluate various models using 
Mallow's CL as an estimator of the predictive 
error (eq. 12). Specifically, we will evaluate 
models using OLS, Principal Component 
Regression (PCR) with all and various 
combinations of PCs, and Ridge regression with 
the regularization component optimized to be 
0.8286.  This regularization parameter is optimal 
in the sense that it gives the minimum CL value. 

The results in Table 4 show that the model 
with the minimum CL value (other than Local 
Ridge) is PCR with components 1, 3, 4, and 5. 
This agrees with the results expected from the 
correlation analysis, which expect components 2 
and 6 to be removed.  
 
 

Table 4.  Prediction Results 
Method Estimate of 

Prediction Error 
OLS 2.9746 
All PCs [1 2 3 4 5 6] 2.9746 
One PC [1] 5.3138 
[1 3] 4.3329 
[1 3 5] 3.6546 
[1 3 4 5] 2.9729 
Ridge (alpha 0.8286) 2.9739 
Local Ridge 2.9578 

 
 

Similar results occur when these predictive 
models are used with a validation set.  In that 
case, the odd observations are used for training 
and the even observations are used for calculating 

the validation error.  The predictive error 
corresponds to the estimates given by CL. 

Note that the regularization coefficient of 
0.8286 is significantly smaller than each of the 
singular values, and will therefore pass all of the 
components. This regularization parameter 
reduces the condition number from 130 to 120.  

Table 5 lists the local ridge parameters 
obtained through the evolutionary algorithm 
optimization and their corresponding filter 
factors. We see that the 2nd component (Year) is 
properly damped out, and that the last component 
is partially damped. 
 
 

Table 5.  Principal Component Analysis 
PC Singular 

Values 
Local 
Ridge 
Parameters 

Local 
Ridge 
Filter 
Factors 

1 42.67        2.416 0.9968 
2 18.40 8899.3 0.0000 
3 9.03       0.779 0.9926 
4 7.86       0.819 0.9893 
5 5.41       0.562 0.9893 
6 3.75       2.286 0.7286 

 
 

Figure 1 is a plot of ridge filter factors, local 
ridge filter factors, and correlation coefficients.  
Note the very low correlation of the 2nd 
component (year) with the response variable. 
Standard ridge regression allows that component 
to pass (filter factor near 1) while local ridge 
effectively damps it out of the solution (filter 
factor near 0).  
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Figure 1.  Filter Factors and Correlation 
Coefficients 
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Referring to Table 4, we see that the local 

ridge solution gives the best CL value, which is 
an estimate of predictive error.  Therefore, the 
local ridge outperformed all other linear 
prediction models for the automobile example. 
 
Process Sensor Estimation 

The second example we want to discuss deals 
with the prediction of sensor values in power 
plants.  The safe and economical operation of 
Fossil and Nuclear Power Plants (NPP) requires 
knowledge of the state of the plant, which is 
obtained by measuring critical plant parameters 
with sensors and their instrument chains. 
Traditional approaches used to validate that the 
sensors are operating correctly involve the use of 
redundant sensors coupled with periodic 
instrument calibration. Since few of the sensors 
are actually out of calibration, the end result is 
that many instruments are unnecessarily 
maintained. An alternative condition based 
technique is desirable. 

When implementing condition based 
calibration methods, the instruments are 
calibrated only when they are determined to be 
out of calibration. On-line, real-time sensor 
calibration monitoring identifies faulty sensors 
which permits reduced maintenance efforts and 
increases component reliability. 

Inferential sensing is the prediction of a sensor 
value through the use of correlated plant 
variables. Most calibration monitoring systems 
produce an inferred value and compare it to the 
sensor value to determine the sensor status. There 
are a number of techniques, which were proposed 
for on-line inferential sensing during recent years 
[20].  

All of these methods use related sensors as 
inputs to estimate a model (sets of weights), 
which is subsequently used to infer the sensor's 
value based on the input values. A peculiar 
feature of any on-line sensor validation system is 
that this system should not only accurately infer 
the sensor's value but it should also be robust to 
moderate changes in input values. This means 
that the sensor validation system should resolve a 
subtle compromise between accuracy and 
robustness. Recently, the role of regularization in 
this process was realized [1, 2]. Although 
traditional regularization techniques perform well 
for these types of problems, sensor value 
prediction accuracy can be improved using 
multiple (local) regularization parameters. To 

demonstrate this, we used eighty-two variables, 
recorded at a TVA plant, arranged in a data 
matrix X (1000 x 82), as predictor variables to 
infer the value of a response variable Y, which is 
the sensor under surveillance. One thousand 
initial samples were used as training data and two 
thousand were left as a test set. The prediction 
accuracy was estimated for four techniques: 
ordinary least squares solution, regular ridge 
regression with regularization parameter selected 
to optimize CL, truncated singular value 
decomposition (TSVD) with an optimized 
truncation parameter and local ridge regression 
with local ridge parameters selected with DE 
optimization of CL as the cost function. The 
prediction MSEs for test data set are shown in 
Table 6. 
 
 

Table 6 MSE for Different Techniques 
 OLS Ridge: 

λλλλ= 0.0273 
TSVD 
k=20 

Local 
Ridge 

MSE 0.586 0.579 0.415 0.292 
 
 
As we can see, the prediction MSE is the lowest 
for local ridge regression with regularization 
parameters selected by DE. We should point out 
that DE is a stochastic optimization technique and 
is subject to random fluctuations. Several DE runs 
were performed on the same training data set and 
the result with smallest CL was selected to 
perform local ridge. The filter factors for regular 
and local ridge, along with correlation 
coefficients between response variable and 
components are shown in Fig. 2. 
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It can be seen from Fig.2 that the DE optimized 
filter factors completely removed components 
starting from number 45. They also passed the 
first 10 principal components. However, in 
contrast to regular ridge regression or TSVD, it 
passed and damped middle range components 
selectively. It is important to notice that local 
ridge filters out components with small 
correlation coefficients and passes components 
with relatively significant correlation coefficient. 
In this case, it is also interesting to notice that 
local ridge filter factors either completely pass or 
completely dampen a component, thus 
performing “selective” TSVD. 
 
CONCLUSION 

This paper presented a methodology for 
implementing local ridge regression through 
optimizing Mallows' CL with Differential 
Evolution. Two example implementations of the 
algorithm on actual data show that this method 
provides better values of CL and better predictive 
performance than OLS or standard Ridge 
Regression. The use of Differential Evolution to 
optimize high dimensional local ridge 
optimization problems is both useful and 
practical. 
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ABSTRACT
Cardiovascular diseases are the largest cause

of death in industrialised countries; hence, early
diagnostic of bad conditions in patients can
dramatically increase their chance of survival.
One way of performing such an early detection is
based on a laser system that is introduced into the
patient's coronary so as to excite its inner walls,
and an optical catheter that carries the resulting
radiation to a Raman spectrometer at its other
end. With the spectra obtained it is then possible
to automaticall y diagnose the condition of the
coronary. Here we report on an algorithm to
perform such an automatic diagnosing. The
approach relies on a quantisation of the intensity
levels of the Raman spectra, and on a genetic
algorithm, coupled to an artificial neural network,
that is meant to learn to discriminate between
three conditions of human coronaries: normal,
atheromatous and calcified. While the neural
network is the actual diagnosing system, the
evolutionary algorithm is used to select the
frequencies of the spectra that the neural network
should account for. The best networks obtained
have achieved 100% success rate, a remarkable
result that rivals all i ts forerunners found in the
literature, while preserving a simple solution
scheme.

INTRODUCTION
The largest cause of mortali ty in industrialised

countries are cardiovascular diseases,
arteriosclerosis being the worst of them, as it
affects important arteries that conducts blood to
the heart (the coronaries, in this case) or to the
brain. Healthy arteries are flexible and their cross-
section area are sufficient to allow circulation of
the required amounts of blood to those organs.
However, smoking, stress, colestherol, ageing,
etc, favour lipidic deposition onto the arteries’

inner walls. At a certain point in this process, the
so-called atheroma (or atheromatous  tissue) is
said to have been formed, characterising a
preliminary stage of an unhealthy artery. This
situation may become even worse, as calcification
of the arteries become more likely, making them
stiffer, with consequent loss of their elasticity. As
a consequence of both conditions, arteriosclerosis
has come about, what dramatically hinders the
amount of blood that can circulate through the
arteries.

The traditional procedure for diagnosing the
health stage of an artery – normal, atheromatous
or calcified – would involve histological analyses.
More recently, technological advances gave rise
to a new, faster and less invasive method that
allows the diagnostic to be made in vivo, by
introducing an optical  catheter into the patient´s
artery ([1]), linked to some spectroscopy
technique, so that the diagnostic is obtained out of
the collected spectra. In the case of when Raman
spectroscopy ([2]) is used, the tissue is irradiated
by an 830nm (infrared) laser  beam and, as a
result of the laser-tissue interaction, elastic and
inelastic radiation is scattered. Optic sensors then
capture the radiation (through other fiber optics),
which is then processed, filtering out the elastic
radiation (fluorescence) and noise, leaving only
the signal component due to the inelastic
scattering, which is the so-called Raman
radiation. This signal provides information about
the substances that constitute the target tissues.

This approach relies on a database of spectra
(of the intensities of the Raman radiation at
various frequencies or wavelengths), created out
of an ensemble of coronaries, distributed in the
three conditions mentioned above. With a subset
of the samples classified by a human expert, one
can use them as a reference for the automatic
classification of the others. In the present work,
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the latter consists of learning to identify the
coronary conditions of the classified spectra by
means of artificial neural networks ([3]), together
with using an evolutionary computation approach
([4]) to search for the set of frequencies in the
spectra that, for their relevance, should be taken
into account during the learning and hence, the
diagnostic processes. Our method extends the one
in [5], improving it in various ways, thus
achieving a significant more accurate automatic
classification of human coronaries.

In the next section the method employed is
described in detail, first by presenting the neural
network architecture and general characteristics,
and then, by presenting the genetic algorithm
parameterisation. Subsequently, the results
obtained are reported and discussed, and the last
section provides concluding remarks.

THE METHOD

Preprocessing
Each Raman spectrum is defined by a

distribution of intensity levels of radiation for
various frequencies (or wavelengths); see Figure
2 for some examples. Before presenting these data
to the neural network, each spectrum is first
normalised in respect to the largest intensity value
present in it. Then, the intensity values of the
spectra are quantised; in the present work a
quantisation level of 0.25 was used, meaning that
the quantised spectra would have only five
possible intensity values, from 0 to 1. Such a
quantisation aims at facilitating the neural
network learning, as it dramatically decreases the
amount of data variation the network has to cope
with during learning, even though the amount of
data itself does not change. Naturally, the
quantisation level has to be defined so as to
change the general shape of the spectra, while still
preserving their identity.

In addition to the latter preprocessing of the
intensity values of the spectra, some
preprocessing in the frequency range also takes
place. Firstly, although the raw frequencies
produced by the Raman spectrometer vary
between 600 to 1800 cm-1, only 754 frequencies
are used for the sake of classification; this number
derives from selecting the frequency window of
interest, together with a frequency calibration
procedure ([6]). Naturally, such a size would not
be convenient neither viable to be used for
training the neural network; hence, a frequency
selection is required for rendering training

feasible, which reduces the number of frequencies
used to a value N<754. This is precisely the role
of the genetic algorithm that is associated with
our approach, as will be clear below.

A Neural Network
Neural networks have been used in most

diverse areas of technology, with emphasis on
pattern classification. Feedforward networks ([3])
display an appealing general aspect, with a simple
architecture and well-known training algorithms,
such as the backpropagation algorithm, where a
strong (supervised) learning scheme is employed,
in that input patterns are presented to the network,
together with their correct, corresponding output
patterns. Tolerance to data errors, example-based
learning, and ability for data classification are the
main characteristics that make neural networks a
good candidate for pattern classification
problems.

Figure 1: The neural network architecture.

The neural network architecture used in this
work is shown in Figure 1. It is a feedforward,
completely connected network, with one hidden
layer.

The input layer size depends on the amount of
variables selected by the method utilised to
reduce to complexity of the problem; in the
current case the network  has to process N input
data points, that is, the intensity values associated
with each of the N selected frequencies that form
a spectrum. The notation X = (X1, X2 ... XN-1, XN)
is, therefore, the data vector representing a subset
of a spectrum, which is applied to all N nodes of
the input layer.

The output layer possesses three nodes that
classify the spectrum presented to the neural
network in: Normal, Atheromatous and Calcified.
Sn, Sa and Sc are the three nodes of the output
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layer, representing those three coronary
conditions, respectively.

A convention was established for the output
values of the output nodes, as given by Table 1.
Notice that each condition is defined by +1 in the
corresponding output node, and -1 in the others.

Table 1: Expected values for the outputs.

Sa Sn Sc Tissue
-1 +1 -1 Normal
+1 -1 -1 Atheromatous
-1 -1 +1 Calcified

Configuration. The identification of the
network configuration followed [5], and was
divided in three stages:
- Selection of the appropriate neural paradigm for
the aplication: feedforward network, as a standard
choice, that would allow trying standard
variations of the backpropagation algorithm.
- Determination of the network topology to be
used: a network with one hidden layer, with the
same number of nodes as the input layer  has
yielded good performance and was preserved.
The actual number (N) of input nodes is made fix
during a run; however, various N-values have
been tested.
- Determination of the parameters for the training
algorithm and activation functions. This stage
yields a great impact on the performance of the
resulting system. The chosen activation function
for all the network nodes, differently from [5],
was tansig – the hyperbolic tangent sigmoid
transfer function – which is a faster
implementation of the hyperbolic tangent. This
function came up as a natural choice for the
output nodes, considering the concepts they
should represent are in the range [-1, +1], the
same one for the limit values of the function; also,
the network was verified to provide superior
performance when this function was also used in
the hidden nodes.

Notice that, instead of using three output
nodes for representing the three artery conditions
of interest, only two nodes might have been
sufficient. However, within the convention of
Table 1, a mistaken measurement or a very noisy
one, which should not be classified in any of the
three artery conditions, leaves five alternatives for
error, while there would be only one in the two-
node alternative. Hence, the current choice can be

seen as a safety measure in the diagnosis, as
compared to the other alternative.

Training. A sample of 35 Raman spectra of
human coronaries from real subjects was used,
with the following characteristic distribution: 22
healthy, 5 atheromatous and 8 calcified; for the
sake of simplifying the explanation of the training
process, let us assume that all these spectra have
already undergone the required preprocessing,
including frequency selection (which, by the way,
has not yet been described).

Initialisation of the weights in the network is
randomly made. At this point the network can be
trained; three training algorithms were tried out:
standard and resilient backpropagation, and
Levenberg-Marquardt. The steepest-descent of
the standard backpropagation was too slow and
could not converge; on its part, the Levenberg-
Marquardt algorithm, usually considered quicker,
demanded an excessive large amount of memory,
thus hindering its use. The algorithm that
presented more advantages was resilient
backpropagation, which featured a reasonable
trade-off between memory requirements and
speed of convergence.

Every neural network was trained with the
target of achieving 10-8 of mean square error
between the outputs and the expected values, or
until reaching 600 epochs of training (where each
epoch is defined by the entire training set).
Defining an acceptable error level at training is
crucial for the network to be able to perform
correctly when under test; it was observed that,
for the present problem, a network with an error
of 10-5 does have, in general, a very poor test
performance.

Testing. The next step was testing the
network, so as to determine the network
performance with a data set not previously
subjected to the network. For such, an ensemble
of new 42 Raman spectra of human coronaries
from real subjects was used, with the following
characteristic distribution: 26 healthy, 6
atheromatous and 10 calcified. For best
performance during the test, the intensity levels of
these spectra were also quantised.

In order to measure the test error of a network,
a quadratic error measure was used, as follows.
Let us assume each test spectrum to be
represented by Ti. When testing the i-th spectrum,
its output vector in the network is [oi(a) oi(n)
oi(c)], where the indexes a, n and c, refer to the
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output nodes Sa, Sn and Sc, respectively, and the
three oi’s are the rounded values of the actual
network outputs. On the other hand, the correct
output would be [Oi(a) Oi(n) Oi(c)]. The error
associated with spectrum Ti can then be defined
as εTi = [εi(a) εi(n) εi(c)], which can be rewritten
as εTi = [(oi(a)-Oi(a))2 (oi(n)-Oi(n))2 (oi(c)-Oi(c))2].
Finally, the total error of the entire ensemble of
test spectra becomes ε = Σi (εi(a) + εi(n) + εi(c)),
i=1, 2...,42.

Figure 2: Three coronary spectra  – C: calcified;
N: normal; A: atheromatous – together with the
respective 50 frequencies selected by the genetic

algorithm.

The Genetic Algorithm
Jointly with neural networks, evolutionary

computation techniques – and genetic algorithms,
in particular – have also been utili sed in virtually
any area ([4]). Their robustness and conceptual
simplicity are appealing features for being used a
as a powerful search process. Even in situations in
which a mathematical model is not available, or
in which the associated search surfaces are very
complex for traditional optimisers, evolutionary
algorithms still display good chances of finding
the global maximum.

As mentioned earlier, the role of the genetic
algorithm here is to select the set of frequencies in
the spectra that should be considered relevant for
the neural network to rely on, so that they learn

the patterns that characterise the three coronary
conditions of interest.

Coding. When using a genetic algorithm,
there is the necessity of coding a candidate
solution (a chromosome) for each element of the
population that will undergo the evolutionary
process.  In the present case, every chromosome
represents one possible set of frequencies.
Considering the coding has to represent N
selected frequencies (out of the possible 754)
every chromosome is represented  as a 754-bit
long string, with N positions set to bit 1,
corresponding to each selected frequency; all the
other bits in the chromosome are set to 0. The
chromosome can then be regarded as a mask that
is used onto a spectrum, so as to select the N
frequencies (in fact, their corresponding
intensities) that will be used to train or test a
neural network. In Figure 2, only the listed
frequencies would have the 1-bit in the
corresponding positions of the associated mask,
entail ing that only the corresponding spectrum
intensities would be used by a neural network.

The initial population is randomly generated,
only imposing that each chromosome has to
contain N 1-bits. Subsequent populations are
produced through the usual genetic operators of
mutation, crossover and eliti sm.

Elitism. At each generation, elitism is
employed, that is, some of the best chromosomes
are directly transferred to the next generation,
without alteration.  The use of elitism ensures a
constant growth of the best fitness in the
population, along the generations.  However, as
the network is initialised with random weights at
each new generation, a chromosome with a good
performance that is copied to the next generation
may be evaluated in a different way, since the
neural network would have a new, randomly
generated configuration. Consequently, the
original high fitness of a chromosome may not be
preserved in the subsequent generation. The way
this problem is circumvented is to preserve the
neural networks associated with the best
chromosomes, that is, the chromosomes are kept,
in the next generation, together with their
respective networks, with their weights after
training.

Using such a kind of elit ism, with 10% of the
chromosomes, the best results were obtained.
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Crossover. In order to perform the
crossover, the mating pairs are selected by a
standard fitness-proportional scheme (roulette-
wheel selection).  The mating pairs are then
subjected to crossover at 60% rate. If crossover is
performed, the offspring are transferred to the
new population; otherwise, the mating pair is
simply copied to the new population.

Notice that, with the current  representation
scheme of the chromosomes, if a standard
crossover is performed (by simply swapping parts
between two parents), very likely the offspring
would have a number of 1-bits different of N,
which would impair the predefined mask size
associated with the search. In order to prevent
that, a special crossover operator was devised
which ensures that all offspring have the same
mask size as their parents.

Mutation. The standard mutation rate was
10% of the population, and implemented through
one pairwise random swap of bit positions in the
mask.

It should also be remarked that the elite does
not participate in crossover nor is it subjected to
mutation.

Fitness Function. Each chromosome is
evaluated according to the outcome of a neural
network, when it is tested in the set of non-
classified sample spectra; naturally, different
chomosomes yield distinct fitness evaluations, as
they represent different sets of frequencies that
the neural network should consider during
training and testing. The fitness of each
chromosome is given simply by 1/ε, where ε is
the network’s quadratic error measure, as defined
in the previous section (naturally, preventing
ε=0). As a consequence, in the begining of the
search the population is roughly uniform in
performance and selective pressure is very low,
allowing the exploration of the search space; as
evolution goes on, the creation of better
chromosomes increases selective pressure more
and more, allowing the best individuals to better
exploit their regions of the search space.

Notice that the evaluation scheme used entails
a discretisation of the fitness values. This derives
from the fitness always being the result of sums
of inversions of multiples of 4 (remember, for
instance, that if the network output differs in only
one the three components of the expected output
vector, for one single test spectrum, then
ε=0+0+22=4, thus leading fitness to 0.25).

RESULTS
The algorithm was executed for various neural

network configurations, and variants of genetic
operations. In general, the algorithm is
computationally intensive, but yields significant
performance.

Table 2 synthesises the results obtained. The
first column refers to the use or not of
quantisation in the input data; N is the mask size,
that is, the number of frequencies the genetic
algorithm has to select; the third column refers to
the number of generations the genetic algorithm
was allowed to run; the next column refers to the
use or not of elit ism; and the last column presents
the overall succes rate over the 42 test spectra.

Table 2: Classification results obtained, with 30
chromosomes in the population. When used,

quantisation level is 0.25 and eliti sm rate is 10%.

Quantisation N #Gens. Elitism Success
No 50 –– No 73%
No 50 300 No 80%
Yes 50 300 Yes 100%
Yes 100 100 Yes 100%

The first row corresponds to the situation of
randomly choosing the frequencies and presenting
them directly to the neural network, without
applying the concept of evolutionary
computation.

In the second row, the genetic algorithm is
introduced, using crossover and mutation only,
and with no quantisation of the spectra intensities;
as a consequence, the results improve. The
algorithm configuration used here is a slightly
improved version over the approach in [5].

The third row extends the second case, now
applying elit ism and quantising the intensity
levels for each frequency; as a consequence,
classification of the samples improves, as does
network convergence, thus yielding the excelent
results represented by 100% success rate.  The
last row just shows a variation over the latter, in
that the number of frequencies selected by the
genetic algorithm was increased, but allowing the
algorithm to run for fewer generations; this
combination preserved the excelent performance
already achieved.

A comparison between the results shown in
the second and third rows of Table 2 is made
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more evident in Figure 4, where it becomes clear
the best evolution achieved by the current
method, over its closest predecessor, represented
by [5].

Notice that the 73% success rate in the first
results shown in Table 2 is surprisingly high.
However, this does not mean that the problem at
issue is too simple. First, remember that a neural
network – a classifier per se – is underlying even
the process that yielded those first results.
Second, that supposedly high success rate is not
sufficient in a medical situation like the one the
current problem is related with, where the only
acceptable possibility is close to 100% success
rate. Third, one of the great challenges in the
diagnosis of coronary injuries – even for a human
expert – is the ability to discriminate between
normal and atheromatous tissue spectra, since
both possess overall similar aspects (see Figure
2); so, the tricky part of the diagnosis are really
the subtleties in a spectrum that should provide
the clues to discriminate between those two
conditions.

Notice also that there is clear evidence that the
spectrum quantisation is important for neural
network training. So, by using the spectra without
quantisation, the results get considerably worse,

as the success rate fall from 100% down to about
80%.

Quantisation is also important for training in
that it speeds up the network reaching a minimum
error. For instance, at 0.25 quantisation level the
network reaches the required training error within
approximately 10 times faster than without
quantisation; in other words, while the former
situation requires about 70 epochs, for reaching a
mean squared error of 10-8, in the latter, not even
600 epochs are sufficient. Additionally, at 0.5
quantisation level the network requires 35 epochs.

Increasing the number of selected frequencies
does not necessarily entail fitness build up, as the
100-bit mask size results showed (bottom row of
Table 2).  Also, because no significant fitness
variation was perceived by changing mask size in
the range from 30 to 100 bits, this shows that, in
this range, a certain degree of robustness is
exhibited by the classification procedure.
However, as mask size decreases, a problem
becomes more and more noticeable: the mean
squared error of the neural network ceases to
decrease; in extreme cases, such as with a 10-bit
mask, no network manages to achieve the
imposed 10-8 training error.

CONCLUDING REMARKS
An  algorithm like the one discussed herein is

meant to be the software core of a new, real-time
system for diagnosing arteriosclerosis.  This type
of system would be extremely useful in the
analysis of biological signals, as they require
outstanding reliability of the detection algorithm.

This article did not try to cover all the
possibilities offered by the problem, but only to
consider a new, general and reliable solution.
Alternative solutions can be found in the
literature, similar or not to ours, based upon
neural networks, evolutionary algorithms,
wavelets, discriminant networks, and principal
component analysis  ([5], [6], [7], [8], [9] and
[10]). While the present approach shares various
features with those works – including the usage of
the same data sets – and, to some extent, is a
follow up of them, our results seem more
promising than those obtained by our
predecessors.

A considerable advance of the present
approach was demonstrated by the success in the
identification of all spectra of unknown
classification. But recently, a similar performance
has been reported ([9] and [10]). A key distinction
between the two is their sophisticated wavelet
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preprocessing of the input data, a contrast with
our much simpler preprocessing due to the
spectrum quantisation; also, our approach uses a
more effective evolutionary computation
algorithm, epitomised by the role of elitism, as
well as a more natural and uniform neural
network architecture.

In fact, the major thrust of the approach we
presented is accuracy of classification, together
with conceptual simplicity. The work extends the
approach in [5], mainly by introducing the
quantisation scheme of the spectra, by using
elitism in the genetic algorithm, and by
uniformising the neural network architecture
through the same activation function in all the
nodes.

Although the success of our method was
demonstrated with spectra from real coronary
samples, the spectra utilised were obtained with
an exposure time of the samples to the Raman
spectrometer, of around 0.5 sec. This success is
certainly remarkable in its own sake, and practical
from the medical standpoint; nonetheless, some
medical situations may require about a tenth of
this exposure time, what would produce noisier
spectra. The performance of the current method in
these noisier conditions is yet to be properly
evaluated, as it is yet to be with the competing
approaches.

We believe that quantisation can provide a
simple and effective way to minimise the effect of
noise; after all, a quantised noisy spectrum could
even be identical to its noise-free version.
However, in conditions with higher amounts of
noise, quantisation has to be well supervised,
since a high quantisation level (i.e., various
intensity values) causes the neural network to
learn too slowly; on the other hand, a small
quantisation level causes loss of information from
the spectrum.

No doubt, the winning approach will be the
one with more robustness to handle noisier
spectra, obtained with smaller exposure times.
Lately, our method and the one in [10] have been
probed under those stricter conditions, by
subjecting the algorithms to noise-corrupted
spectra, obtained out of the artificial injection of
noise, at various levels, into the original spectra
we used. Comparing their resulting discrimination
ability, it is already clear to us the superiority of
the approach described herein. However, these
results are still informal and go beyond present
purposes; details of such a new step in comparing
the approaches will be published elsewhere.

The use of artificial neural networks for
learning to correlate Raman spectra with some
human trait abounds in the literature. Typically,
the networks involved undergo a supervised
training procedure not directly with the original
Raman spectra obtained, but with a reduced input
space, obtained out of principal components
analysis; the resulting set of smaller feature
vectors are then used in the supervised training
process of the networks. For instance, [11]
describes how multilayer perceptrons learn to
correlate glucose concentration of the blood, with
Raman spectra of the aqueous humor of the eye,
so as to learn the Bayesian probabilities that
glucose concentration lies in one of 3 ranges of
physiological interest (hypoglycemic, normal or
hyperglycemic). Similarly, in [12], multilayer
perceptrons are trained for performing
classification of skin lesions in 5 different classes,
out of Raman spectra obtained directly from the
lesions. Furthermore, in [13] multilayer
perceptrons are trained with the reduced
dimensionality Raman spectra of a group of
clinical bacterial isolates (the spectra obtained
from the actual whole-organisms!) associated
with urinary tract infection, and manage to
classify unseen samples in one of 5 possible
classes, with slightly more than 80% success rate.
In contrast with [11] and [12] – but, in tune with
the work we report herein – in [13] multilayer
perceptrons and radial-basis function networks
are also used with the full Raman spectra;
however, the results are worse than those with the
reduced spectra. This contrast precisely clarifies
the role of the genetic algorithm in the present
approach: it reduces the dimensionality of the
original spectra, not by transforming it, as
multivariate methods do, but simply by filtering
out those frequency components that should better
not be accounted for in the classification process.

Finally, although one can think of non-
invasive systems related to the consequences of
arteriosclerosis – like the one in [14], used for
hypertension detection – invasive systems like the
one described here are, as far as we are aware of,
still (and unfortunatelly) required, as a way of
detecting the actual presence of arteriosclerotic
lesions.
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ABSRACT 
 The method of numerical solution of nonlinear 
inverse problems of the synthesis theory of 
radiating systems according to the given 
directivity pattern (DP) by power is stated. A 
variational statement of the problem, in which the 
mean square deviation of the prescribed and 
synthesized DP and restrictions on the norm of 
excitation sources is considered. The existence 
theorem of quasi-solutions is proved, the Euler 
equation for their finding is obtained. The 
conditions are determined and convergence of the 
used iterative processes is proved at numerical 
solution of the problem. On the basis of methods 
of branching theory of the nonlinear equations 
solutions it is shown, that for the nonlinear 
synthesis problem the bifurcation of solutions is 
characteristic. The equations for finding the 
bifurcation points are obtained. The quantity and 
characteristic properties in the space of real 
continuous functions, are determined. The 
numerical example of synthesis is given. 
 
INTRODUCTION 
 One of the practically important classes of the 
problems originating on a design stage of audio 
and electrodynamics emanating systems, are the 
inverse problems (problem of synthesis), 
permitting to discover constructive optimal 
solutions [1-5]. The joining beginning of the 
inverse problems of acoustics and 
electrodynamics is the adequacy of mathematical 
models circumscribing various wave processes. 
Abstracting from a concrete type of radiating 
system on the operator level the inverse problem 
of finding the optimal distribution of external 
sources generating the field satisfying the given 
requirements to the characteristic of radiation 

power directivity pattern, is considered. Such 
problems are nonlinear and essentially ill-posed 
one. They are characterized by the nonuniqueness 
of solutions. The least investigated in the given 
class of the problems are the problems of an 
amount of existing solutions and their qualitative 
characteristics. The variational problems on 
search of quasi-solutions with usage of the 
smoothing functionals providing the best mean 
square approximation of DP synthesized to the 
given one are stated. The existence theorems of 
quasi-solutions are proved. Further, the problem 
of search of solutions is reduced to numerical 
solution and research of the Euler equation being 
a nonlinear equation with the operator of 
Hammerstein type. The appropriate iterative 
processes are constructed. The conditions are 
defined and their convergence is proved. By 
example of a linear antenna and linear antenna 
array it is shown, that for the given class of the 
problems bifurcation of solutions is characteristic. 
Their main properties are defined depending on 
the value of the parameter of regularization and 
properties of the prescribed power directivity 
pattern. It allows to localize existing solutions and 
in appropriate way to select initial approximation 
for obtaining solution of that or other type. The 
offered algorithms can be used in the process of 
solving the synthesis problem of various types of 
antennas and antenna arrays, including the mutual 
influence of sources. 
 
STATEMENT OF INVERSE PROBLEM, 
THE EXISTENCE OF QUASI-SOLUTIONS 

 It is known [6], that the problem of 
electromagnetic field excitation in the unbounded 
homogeneous isotropic space (with dielectric 
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permeability ε  and magnetic permeability µ ) by 
external sources of electromagnetic oscillations, 
which are localized in some area ∈V �

3 and vary 
in time according to the law tie ω  (ω is the 
oscillation frequency), is reduced to the system of 
Maxwell equations with respect to E , H  which 
are the vectors of complex amplitudes of voltages 
of electrical and magnetic fields. Asymptotic of 
solutions of this system for ∞→r  in a spherical 
coordinate system has the following form: 

( ) ( ){ }

( ) ( ){ }








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ϕϑ−ϕϑ
π
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eikr

ff
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eir

ikr

ikr
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E
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where ( )ϕϑϑ ,f , ( )ϕϑϕ ,f  are the components of 

vector diagram of directness ϕϕϑϑ += iif ff  of 

radiating system by field. The functions ϑf , ϕf , 
as a rule, are the integrated characteristics of the 
currents (fields) passing in the aperture of 
radiating system; their form and properties 
depend on the type and geometry of radiating 
system. The value  

 ( ) ( ) ( ) ( ) 222 ,,,, ϕϑ+ϕϑ=ϕϑ=ϕϑ ϕϑ ffN f  (2) 

characterizes the angular distribution of density of 
power flow and it is called the directivity pattern 
of radiating system by power.  
 Abstracting from the concrete type of 
radiating system, we present the function ),( ϕϑf  
with the help of the linear operator { }ϕϑ= AAA , : 

If A=   ( )ϕϑ=ν= νν ,,IAf ,     (3) 
which operates from some functional complex 
space IH , to which functions of external currents 
(or fields), belong, into a functional complex 
space [ ]2

fC  to which a set of realized DP belongs.  

  We consider the synthesis problem of the 
prescribed DP ( )ϕϑ,0N  by power. In the 
elementary aspect it may be formulated as the 
problem of solutions determination of the first 
kind nonlinear operational equation  

0
222 NAAA =+≡ ϕϑ III ,    (4) 

where ( )ϕϑ,0N  is a real nonnegative function 
continuous on the compact ∈Ω �

2 (or ∈Ω �
1)  

(thus 
( )

1),(max 0
,

=ϕϑ
Ω∈ϕϑ

N ) which cannot belong 

to the set of values of the nonlinear operator 

2IA . It is known [7, 8], that the problem (4) is 
essentially ill-posed. Thus problem of finding the 
quasi-solutions of the equation (4) in variational 
statement, is considered. 

Let's introduce into consideration the Gilbert 
space [ ] [ ] [ ]VLVLVLH I

222 ⊕⊕=  which is a 
complex space of square integrable vector-valued 
functions defined on the compact V , and 

[ ] [ ]Ω⊕Ω= CCC f
]2[  which is a complex space of 

vector-valued continuous functions on Ω  for real 
arguments, equipped with a scalar product. 

In the space ]2[
fC  alongside with the 

Chebyshev norm 
( )

( )ϕϑ=
Ω∈ϕϑ

,max
,

ff C  , where 

( ) ( )
2/122 ,,),( 





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 ϕϑ+ϕϑ=ϕϑ ϕϑ fff , we shall 

introduce the mean square metric, generated by a 
scalar product and norm: 
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It is supposed, that the set of zeros of operator A 
consists only of zero element, i.e. ( ) θ=AN  The 
problem about the best mean square 
approximation of nonnegative real function 

),(0 ϕϑN , continuous on area Ω , by function 
2),( ϕϑf   ( )(),( ARA ∈=ϕϑ If , 

{ } Izyx HIII ∈= ,,I ) is stated. We formulate it as 
the minimization problem of a smoothing 
functional 

222
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on the space IH , where 0>β  is a real weight 
parameter. 

Theorem 1. Let the linear operator 
]2[: fI CHA →  be quite continuous, ),(0 ϕϑN  is 
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given nonnegative function continuous on Ω , and 
1),(0 =ϕϑ CN . 

Then there exists at least one point of absolute 
minimum of functional )(Iβσ  in IH  and every 
minimizing sequence contains a subsequence that 
weakly converges to one of the points of absolute 
minimum. 
 Since IH  is a reflexive Banach space, to 
prove the theorem it is enough to show [9] the 
fulfilling of the following conditions: 
(i)   )(Iβσ  is a weakly lower semicontinuous 
functional, 
(ii)   +∞=σβ

∞→
)(lim I

I
IH

. 

 
NUMERICAL SOLUTION OF THE 
PROBLEM 
 To find numerically the points of minimum 
and research of their qualitative characteristics we 
use the Euler equation 

( ) 




 ⋅

β
−⋅

β
≡= IIIII AAAANAB 2*

0
* 22)(    (6) 

in the space IH . The equation (6) is the 
nonlinear equation containing in the right part 
(except for linear) the nonlinear Hammerstein 
type operator. 
 Applying operator A  to both sides of the 
equation (6) and taking into account, that 

θ=)(AN , we obtain an equation for the 

synthesized DP in space ]2[
fC  that is equivalent to 

(6): 

( ) 




 ⋅

β
−⋅

β
≡= fffff 2*

0
* 22)( AANAAD .  (7) 

 Corollary 1. Since the functional βσ  is 

Gateaux differentiable on IH , has at least one 
valley and posses the −m property (valley is an 
interior point of some convex set, belonging to 

IH ), the equation (6) in the space IH  and 

equation (7) in the space ]2[
fC  have, at least, one 

solution each. 
 Lemma 1. Under the conditions of theorem 1, 
for limited values of parameter β   ( )0 +∞<β<  

( ) 




 ⋅

β
−⋅

β
= ffff 2*

0
* 22)( AANAAD    (8) 

 is a completely continuous operator in the space 
]2[

fC . 

From lemma 1 it follows, that for limited 
values of parameter β  the operator )( fD  maps 
each limited set into relatively compact set in the 
space ]2[

fC . Since for elements of the relatively 

compact subset of the normalized space, the 
strong convergence and weak one coincide [10], 
from the theorem 1 and lemma 1 follows 
 Corollary 2. If { }nI  is a minimizing sequence 
of functional )(Iβσ  which weakly converges to a 

point of minimum ∗I , then sequence  

{ } ]2[
fnn CA ∈= If  converges uniformly to 

∗∗ = If A  in ]2[
fC .  

 At the beginning we consider an iterative 
process that calculates the solutions of equation 
(6) for the function of excitation sources 
distribution [ ] [ ] [ ]VLVLVLH I

222 ⊕⊕=∈I . The 
equation (6) we rewrite as 


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where II HHE →:  is an identity operator. If 

ANA 0
*2>β , there exists an inverse operator 

[11] 
1

0
*2

−
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

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

β
− ANAE . Using this operator the 

equation (9) takes the form 
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 Let us show, that the solution of equation (10) 
may be obtained as a limit of successive 
approximations of the following iterative process 
[12] 

)(~)1(1 nnn B III ϑ−+ϑ=+  
,...)2,1,0( =n ,    (11) 

where ( )1,0∈ϑ . 
Since the Gilbert space IH  is the Banach 

strictly convex space, then to prove the 
convergence of iterative process (11) it is enough 
to show [12], that )(~ IB  is quite continuous and 
non-expanding operator satisfying the condition 

rr SSB ⊂)(~ , where 
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     ( β=µ /2 ).      (12) 
The proof of the named properties of the operator 

)(~ IB  follows from the lemmas given below. 
 Lemma 2. Let )(: Ω→ CHA I  is a linear 

completely continuous operator, ANA 0
*2>β . 

Then )(~ IB  is a non-expanding operator on 

Ir HS ⊂ , i.e. for any rS∈21, II  the inequality 

22
2121 )(~)(~

LL
BB IIII −≤−  holds. 

 Lemma 3. Let )(: Ω→ CHA I  is a linear 

completely continuous operator, ANA 0
*2>β . 

Then II HHB →:)(~ I  is a  completely 
continuous operator satisfying the condition 

rr SSB ⊂)(~ . 
We notice, that the successive approximations 

(11), depending on the choice of initial 
approximation, may converge to various solutions 
of the equation (10). 
 
RESEARCH OF SOLUTIONS STRUCTURE 

Nonlinear operational equations (6), (7) have 
nonunique solution. Let's consider the structure of 
the solution of the equation (7) by an example of 
the linear radiator synthesis problem. It is known 
[6], that DP of linear radiator of length a2 , 
directed along an axis OZ  and placed in 
unbounded isotropic and homogeneous space 
with exactness to constant multiplier is described 
by the formula 

∫
−

π≡=
1

1
2 )()( dzezIAIsf iczsc ,   (13) 

where αϑ′= sin/sins  is generalized angular 
coordinate, α= sinkac  is the real dimensionless 
parameter describing the electrical length of 
radiator, λπ= 2k  is the wave number in 
vacuum, λ  is length of a wave, α2  is the corner, 
in which it is necessary to direct the maximal 
portion of irradiating  power. It is assumed, that 

a>>λ , and the corners αϑ′,  are counted from a 
plane XOY . The DP by power is determined by 

the expression 22 )()( sfAIsN ≡= .  
The formula (13) is considered also as 

mapping from the complex space of square 
integrable functions [ ]1,12 −= LH I  into the 
complex space [ ]1,1−C  of continuous functions 

for real argument, which is carried out by the 
linear completely continuous integrated operator 
A .  

 The conjugate operator ∗A  we find from 
equality ( ) ( )IfAAIf ,, ∗= : 

∫
−

−
π

∗ ≡
1

1
2 )( dsesffA iczsc  

Taking into account the form of operators A , ∗A , 
we get the developed form of equations (6), (7) in 
corresponding spaces: 
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The equation (15) is easier, than the equation 
(14), since while its determination it is possible to 
lead integration (16) in an obvious form. 
Therefore its solutions are investigated. 

Let's consider the solutions structure of the 
equation (15), depending on value of parameter 
β . For this purpose, we replace the equation (15) 
by equivalent system, using the equality 

)()()( sivsusf += : 
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We show the two important properties of 
system solutions (17), which are directly checked:  
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1o. If ( ) ( )svsu ∗∗ ,  is the solution of system, 

then 
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 is also 

its solution, where γ  is any real constant, i.e. the 
system (12) has one-parametrical families of 
solutions. 

2o. When the prescribed function )(0 sN  is 
even one, the integrated operators 21, BB  of  the 
system (17), map the even functions ( ) ( )svsu ,  to 
even ones. This property allows to determine 
invariant sets in space [ ]1,1−C  and thus to locate 
the existing solutions. 
 It is obvious, that at any 0>β  one of the 
solutions of system (17) is the trivial solution: 

0)( ≡su , 0)( ≡sv . 
 At the beginning, the system (17) is 
considered for 1)(0 ≡sN  in real space. In this 
case it transforms to one equation of a form 

 ∫∫
−−

µ−µ=
1

1

3
1

1
)(),,()(),,()( dttuctsKdttuctsKsu , (18) 

where β=µ 2 . The problem on determination 
such values of parameter nn β=µ 2  
( ,...)2,1,0=n  and all continuous, different from 
trivial solutions )(snω , satisfying the condition 

[ ]
0)(max

1,1
→ω

−∈
sn

s
   when   0→µ−µ=η n , 

is considered. According to [13] the values of 

spectral parameter 
2

1 n

n
n

β=
µ

=λ  ( ),...2,1,0=n , 

which are eigenvalues of linear homogeneous 
equation 

   ∫
−

ϕ
−π
−=λϕ

1

1
)(

)(
)(sin)( dtt

ts
tscs ,  (19) 

can be the branch points of equation (18). 
  The eigenfunctions of equation (19) are the 
extended spheroidal wave functions 

),()( 0 scSs nn =ϕ  ( ),...2,1,0=n  of zero order 
[14]. They form the complete orthogonal system 
in an interval [ ]1,1− . Since the kernel ( )ctsK ,,  is 
the symmetric and positive one, the eigenvalues 

nλ  of equation (19) are real and positive. They 
monotonously decrease with the growth of :n  

...210 >λ>λ>λ . A sequence of values of 
parameter nn λ=β 2 , as possible bifurcation 
points of equation (18), also forms the sequence, 

monotonously decreasing and aspiring to zero: 
...210 >β>β>β . 

 The regular case, when µ~  does not coincide 
with one of characteristic values of equation (19), 
is considered. It is shown, that in this case the 
nonlinear equation (18) has only trivial solution. 

When nµ  is the characteristic values of 
equation (19) (multipleness of characteristic value 
is equal to unit), the case of one-dimensional 
branching of solutions take place. Assuming 

η+µ=µ n , and using the methods of branching 
theory of nonlinear equations solutions we obtain, 
that in points nnn µ=λ=β 22  ( ),...2,1,0=n  
under condition 0>η  the two real solutions of 
equation (18), branch off from trivial one, which 
in the  first approximation have the form: 
 )(),(2)( 2/12/1)(

2,1 η+ηβ±= oscSsu onn
n . (20) 

Since the functions ),(0 scS n  are even when n  is 
even and they are odd when n  is odd, the 
branched off solutions possess (at the first 
approximation) the same property. 

The function ),(00 scS  has the maximal 
concentration of power in an interval of visibility 
and it is the least jet function in a class aW  [6]. In 
particular, ),(00 scS  is the least jet total DP, and 
odd function ),(01 scS  is the difference DP. From 
this follows, that while synthesizing DP close to 
total one the parameter β  in functional (5) should 
be chosen from the condition 00 2λ=β≥β , and 
while synthesizing the difference DP this 
condition has a form 11 2λ=β≥β . 
 Since the system (17) is symmetric with 
respect to unknown functions vu, , the similar 
results are obtained for function )(sv  in class of 
only imaginary functions. 

Let's consider the case, when the given DP 
1)(0 ≠sN . The problem of determining the 

bifurcation points of solutions is reduced to 
solving of linear equation 

 ∫
−

ϕµ=ϕ
1

1
0 )(),,()()( dttctsKtNs . (21) 

It is shown that eigenvalues of equation are real 
and positive, and they form a monotonously 
decreasing sequence, and eigenfunctions are 
orthogonal. They are defined by a numerical way, 
using both the mechanical quadrature and the 
Danylevsky method [15].  
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It is shown, that the solutions of nonlinear 
equation  

∫∫
−−

µ−µ=
1

1

3
1

1
0 )(),,()(),,()()( dttuctsKdttuctsKtNsu  (22) 

in the bifurcation points have a form (at the first 
approximation) analogous to (20).  
 For even functions )(0 sN  eigenfunctions 

)(snϕ  of the equation (21) are even when n  is 
even and they are odd when n  is odd. Hence, the 
characteristic properties of the branching off 
nontrivial solutions in the points nn λ=β 2  are 
analogous to above mentioned ones for 

1)(0 =sN . 
The general structure of the real solutions for 

any even DP can be schematically represented by 
solutions "tree" (fig. 1). Its "trunk" corresponds to 
the trivial solution, and branches correspond to 
branching off solutions. From figure it is seen 

(horizontal straight line 1), that for a choice of 
parameter β  in functional )(Iβσ  it is expedient 
to find eigenvalues of the equation (21) and to put 

02λ≈β . In this case the solution of the nonlinear 
equation (22) includes the first eigenfunctions of 
the corresponding to it linear equation (21), which 
have the least jet factor. For small values β  
(horizontal straight line 2) the solution of the 
nonlinear equation (22) can be presented only 
through eigenfunctions )(snϕ  with a high index, 
which are quickly oscillation ones. 
 The analogous results are received for the 
synthesis problem of the linear equidistant 
antenna array, DP of which is the Fourier discrete 
transformation. 

 Consider a numerical example of two lobe DP 
synthesis )sin()(0 ssN π= . The prescribed 
amplitude pattern and synthesized DP adequate to 
the solutions with various types of functions 
parity of )(su , )(sv  are shown in fig. 2.  
The current amplitude distributions, creating these 
DP are given in fig. 3. Let's pay attention to the 
solution with number 1. From a fig. 3 it is seen, 
that the amplitude distribution of a current is 
nonsymmetrical with respect to the antenna 
center. However, corresponding to it DP by 
power is symmetrical. 
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Fig. 1. A tree of the solutions  
of the equation (22)  
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CONCLUSION 
The supposed method of numerical solution of the 
synthesis problems is also applicable to the 
solving of the synthesis problems of various types 
of radiating systems. For this purpose it is 
necessary to determine a form of the operator A  
for concrete type of radiating system and, using 
the equality ),(),( fAIfAI ∗= , to find the form 

of conjugated operator ∗A . 
 It is simply to be convinced that the operators 

∗AA  for many types of radiating systems, having 
a symmetrical radiating aperture posses the 
property preservation of parity for the even 
prescribed DP 0N . This property allows to locate 
the solutions and to choose by corresponding way 
the initial approximation to obtain the solution of 
this or that type. 
  The stated technique can be also used for 
synthesis of antenna arrays using various by 
exactness mathematical models for the solving the 
direct problem. In this case currents I  on the 
radiators are connected with stimulating them 
external voltages U  by system of the linear 
equations UZI = , where Z  is a matrix or 
matrix-integral operator. If there exists a stable 
solution of this system, then having put 

UZI 1−=  and having presented DP of arrays as 
UZf 1−= A , analogously to stated above it is 

possible to solve the problems of constructive 
synthesis. 
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ABSTRACT 

In this paper two improved versions of 
Genetic Clustering (GC) algorithm [1] are 
described. GC is a parallel global optimization 
algorithm that was designed in order to solve such 
parameter inverse problems in which an 
approximation of certain level sets (central parts 
of basins of attractions of local minimizers) is 
required. The approximation of these sets can be 
useful when some additional criteria of 
optimization are considered after main results of 
parameter identification are obtained. In spite of 
some good properties of GC, tests have shown 
that GC is not effective for problems with more 
than 4 dimensions. 

Two modifications of GC are proposed in 
order to overcome the dimensionality limitation. 
In the first modification clusters are remembered 
as ellipsoids. The second modification is based on 
the idea of cluster recognition with the use of 
Kohonen Self Organizing Maps (SOM) neural 
networks [2].  

 
INTRODUCTION 

One of sources of difficulties that are 
encountered in parameter inverse problems – 
apart of bad conditioning – is the existence of 
many solutions. The both mentioned properties 
make such problems to be ill posed. The paper 
focuses on parameter inverse problems that are 
formulated as global optimization tasks. 
Moreover, the algorithms that are considered are 
especially suitable for problems, in which an 
approximation of certain level sets (central parts 
of basins of attractions of local minimizers) is 
required. The approximation of these sets can be 
useful when some additional criteria of 
optimization are considered after main results of 
parameter identification are obtained. Such 
criteria can express in some way for instance the 

availability and/or the cost of materials. When 
one knows approximations of central parts of the 
basins he can give an approximate answer to the 
question: how much one can change the value of 
a parameter with “not too high“ change of the 
objective. 

A hybrid genetic parallel algorithm called GC 
(Genetic Clustering) was proposed in [1] in order 
to solve such problems. 

The GC strategy is inspired with clustering 
methods in global optimization [3], [4], [5] and 
genetic algorithms [6]. GC finds local minimizers 
and also gives additional information – central 
parts of basins of attraction of local minimizers 
can be approximated.  
 
PARALLEL GENETIC CLUSTERING (GC) 

The aim of original version of GC algorithm is 
to find all local minima that have adequately large 
basins of attraction with a sufficiently large 
objective variability. The algorithm also gives 
rough information about the basins. The basins 
(or their central parts) are approximated by sets of 
hypercubes – these sets will be called clusters. 
Additionally, the algorithm deals with large 
differences between values of local minima and 
also with large plateaus.  

An outline of a version of the GC algorithm is 
recalled below. Some asymptotic properties of the 
algorithm have been derived from the Markov 
theory of the Simple Genetic Algorithm [7]. The 
stop criterion has been justified in [8]. 

 
The genetic approach to clustering consists in 

implementing Simple Genetic Algorithm (SGA) 
in the global phase [3]. The idea of sampling by 
running SGA follows from the observation that 
genetic algorithms transform measures in a 
regular way so they deliver information about sets 
rather than about isolated points. In its nature 
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Genetic Algorithm constitutes a dynamical 
system that transforms measures. This fact allows 
us to expect good properties of genetic clustering, 
because density of measure contains information 
that is useful in clusters recognition. 

GC consists in four operations that are 
executed consecutively: genetic sampling, 
subclusters’ recognition, subclusters’ aggregation 
and fitness modification. These operations are 
performed in a loop until the global stop criterion 
is satisfied. 

 
The outline of the GC is as follows: 

1. Divide the feasible set D into p subdomains 
(each subdomain is divided into small 
hypercubes that constitute the grid). 

2. Set all subdomains to be "active". 
3. REPEAT 
Parallel in "active" subdomains: 

3.1 Generate initial population from uniform 
distribution. 

3.2 Evaluate fitness function f outside 
recognized clusters. 

3.3 Modify fitness function (f ← MAX on 
clusters).  

3.4 Steps of simple genetic algorithm (SGA) 
- evaluate new generations until the 
complex stop criterion is satisfied:  
a) subclusters can be recognized, or  
b) GA recognizes plateau outside 

known clusters (then the subdomain 
is set to be "passive").      

Subclusters are parts of clusters that can 
be recognized after point 3.4. 

3.5 Subclusters recognition. (output: new 
information about clusters and new 
"passive" subdomains). The seed of a 
subcluster is this cell (hypercube) of the 
grid that contains “the best” individual. 
All neighbor cells that contain more 
individuals than a certain threshold are 
added to the subcluster. One local 
method is started in each subcluster. 

3.6 Join “proper” subclusters into clusters. 
UNTIL all subdomains are "passive" OR 
satisfactory set of clusters is found. 

The Simple Genetic Algorith (SGA) was 
chosen in the genetic phase of GC, because it 
allowed us to obtain some theoretical results 
concerning stop criterion and asymptotic behavior 
of GC. 

The fitness modification results in repelling 
individuals from clusters (subclusters) that are 
already known. A single basin of attraction can be 
recognized in one or several steps of the loop. The 
domain D is divided into hypercubes of a volume 
θ . After the SGA is stopped, new subclusters can 
be detected by the analysis of density of 
individuals in the hypercubes. The hypercube that 
contains the best individual is selected as the seed 
of a new subcluster. Neighbor hypercubes, with 
the density of individuals tρρ >  ( tρ  is an 
arbitrary constant), are attached to the cluster. A 
rough local optimization method is started in each 
new subcluster and the result of this optimization 
is retained. If the local method that starts from a 
new subcluster ends in the already recognized 
cluster, then the subcluster is attached to the 
cluster. 

The stop criterion distinguishes two basic 
kinds of SGA behavior. The first one is that SGA 
“finds” clusters after few generations. The second 
one is that SGA converges to the uniform 
distribution of individuals. This corresponds to 
the recognition of a plateau (or areas where 
fitness has small variability) outside of the 
already known clusters. Other cases are treated as 
the situation when SGA does not fit to the 
particular problem and a refinement of SGA 
parameters is suggested. 
 
The stopping strategy is as follows: 

Check stagnation of a sequence of some estimator 
of probabilistic distribution density. If this 
criterion is satisfied, then check if an arbitrary 
number of hypercubes has the density of 
individuals below an arbitrary threshold tρ . If so, 
then begin clustering procedure, otherwise, check 
if individuals are uniformly distributed in D. 

In original version of GC each subdomain is 
divided into hypercubes that constitute a static 
grid. Each cell of the grid that belongs to some 
cluster “remembers” the number of the cluster. 
 
PROPERTIES OF GC 

Each population with a finite number of 
binary coded individuals can be identified with a 
vector which i-th coordinate stands for the 
occurrence frequency of the i-th individual in the 
population. Lets by r denote the length of an 
individual. The frequency vector belongs to the 
unit simplex Λ in ℜr-1. All possible populations of 
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the size n correspond to the finite subset Sn in Λ 
[6]. 

The finite population SGA constitutes a 
stationary Markov chain with states from Sn. By 
non-zero mutation it is ergodic, and there exists a 
weak limit 

n

w

k

k
n ππ →

∞→
 (1)   

of probability distributions k
nπ  on Sn in k-th 

generation [6]. 
In the case of an infinite population n=∝  SGA 

is a deterministic dynamic system with states in Λ 
governed by the genetic search operator Γ:Λ→Λ. 
The sequence of the limit probability distributions 

nπ  has a weak limit distribution *π  when the size 
of population goes to infinity n→∝. Moreover if 
Γ is focused, and K is its set of fixed points then 

1)(* =Kπ  [6]. 
Let  εF  the ε-envelope of the set K 

{ }εε <∈∃Λ∈= ),(;; yxdKyxF  (2)  

where d stands for the distance function in ℜr-1. 
 
Lemma [8]: 000 >∃>∀>∀ Nςε  such that  

)(nGNn ∃>∀  and )(nGk >∀  ( ) ςπ ε −> 1Fk
n . 

It means, that if the population is sufficiently 
large and a sufficiently large number of 
generations were performed, then the population 
is arbitrary close to the fixed one with the 
arbitrary large probability. 
 

It is assumed here that SGA parameters are so 
chosen that Γ is focused. In particular small but 
non-zero mutation is assumed. The desired form 
of the fixed points set is the finite collection of 
isolated points in Λ. Moreover each local 
minimizer of the fitness function is represented in 
K. It corresponds to the population highly 
concentrated on its neighborhood. 
Conjecture: only minimizers that have 
sufficiently large attractors (larger than the cell 
size) with the sufficiently high fitness variation 
can be found. 
 

Algorithm detects situation in which the 
population is sufficiently concentrated in 
attractors so that the density cluster recognition is 
possible. The state in which arbitrary rate of grid 
cells contain the assumed number (less than the 

average) of individuals can be handled as the 
local stop criterion. By Lemma the above 
situation is asymptotically highly probable if there 
exists at least one attractor out of the cluster 
union. 

The chart of modified fitness function 
becomes sufficiently flat at the end of 
computations. It corresponds to the unique fixed 
point of Γ at the center of Λ. 

If the sufficiently large population that starts 
from the center of Λ (uniform distribution of 
individuals) does not leave its neighborhood 
sufficiently long this implies that the center of Λ 
is the fixed point of Γ (with the arbitrary large 
probability). It corresponds to the situation, that 
the probability of finding new local minimizers is 
arbitrary small. 

One can say, that there is an analogy 
between the way in which mutation and crossover 
rates in SGA imply GC algorithm and the way in 
which the reduction phase implies DC and SL 
clustering algorithms described in [4], [5]. Both 
factors cause that some minima can be 
undetected. However, unlike the DC and SL with 
the reduction phase, the GA constitutes a filter 
that eliminates local minima with small fitness 
variability and shallow basins of attraction. GA 
strategy is also less sensitive on fitness values in 
local minimizers. Such filtering property can be 
useful in some cases. Another interesting feature 
of GC is such that it should be especially 
convenient for functions with large areas of small 
variability (areas “similar to” plateaus) which can 
be difficult for other methods. 

 
Genetic clustering offers some interesting 

properties like: 

• Approximation of basins for all “remarkable” 
local minimizers, 

• Filtering local minima with sufficiently small 
and “shallow” attractors, 

• Good time complexity in cases of objectives 
with large plateaus. 

• The global stop criterion of this strategy can 
be mathematically justified; this is rarely met 
in the case of strategies based on  evolutio-
nary algorithms. 

 
Tests described in [1], [8] have shown that GC 
can be effective in solving some inverse problems 
including for instance the problem of optimal 
pretraction design of a network structure made of 
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elastic unconnected fibers fastened at their ends to 
a square rigid frame.  

However, GC is not effective for problems 
with more than 4 dimensions. This follows from 
the representation of clusters – they are 
remembered as unions of small hypercubes that 
constitute a regular mesh in the domain of 
searches. 

In order to overcome the above limitation 
three modifications to the GC algorithm are 
proposed. They will be described in following 
sections. 
 
CLUSTERS REPRESENTATION WITH THE 
USE OF ELLIPSOIDS 

One of methods that can be proposed to 
overcome the problem with high dimensionality is 
to represent clusters by ellipsoids. The similar 
approach to clusters in global optimization is 
known in so called Density Clustering (DC) rule 
described in [3]. Some good properties of this 
version of DC are proven in [5]. The version of 
DC proposed by Rinnooy Kan and Timmer 
assumes that the reduction phase is applied, that 
means the initial sample is drawn from the 
uniform distribution over D and all sample points 
where the value of the objective function is below 
certain threshold are rejected [5]. A key 
assumption is that the objective function is well 
approximated by a quadratic function in 
neighborhoods of local minimizers. This implies 
that level sets (and clusters) are approximated by 
ellipsoids. Clusters are recognized iteratively in 
the following way: the seed point x  of a cluster is 
the result of local optimization started from the 
unclustered best point of the reduced sample (the 
unclustered point with the smallest value of the 
objective function). Lets by T0 denote the set { x } 
with the seed of the cluster. In consecutive steps 
next points of the sample are joined to the cluster. 
These points belong to subsets Ti of D, i=1,2,…, 

,...2,1,1 =⊂ + iTT ii . These subsets correspond to 

certain level sets. When 2Cf ∈ we can 
approximate level sets by  

( ) ( )( ){ }2| is
T

i rxxxHxxDxT ≤−−∈= , 
where H denotes hessian. 

All points that are within Ti which is 
described by a critical distance ( )xri  of the seed 
are joined to the cluster. The distance ( )21 , xxd  is 
defined as follows: for points 21 , xx  from a 
neighborhood of x   

( ) ( ) ( )( )[ ]2
1

212121 , xxxHxxxxd T −−= ,  
(an approximation of hessian can be 

obtained as a byproduct of quasi-Newton local 
methods). The parameter ( )xri  is increased 
stepwisely (with increasing i) until there is no 
unclustered point from the reduced sample within 

( )xri . Rinnooy Kan and Timmer gave the formula 
for the critical distance: 

( )

( ) ( )( ) ( )
d

kN
kN

DmxHi

xr

d

i
1

2
1

2
1 log

det1 2 �
�

�
�
�

� +Γ

=

− σπ
, (3)  

where �  is the Gamma function, m denotes 
the Lebesgue measure, N is the sample size and 
σ  is a constant. The whole process of sampling, 
reduction and clusters recognition is repeated (k 
denotes the number of the iteration) until a global 
stop criterion is satisfied. The formula (3) assures 
that the probability of erroneous termination of 
the cluster recognition procedure (the procedure is 
terminated too early, see [5] for details) in step i 
decreases polynomially fast with increasing k.  

This version of DC has also other advantages: 
• It has the property of asymptotic correctness 

in the sense that it finds global minimum 
with the probability 1 as k increases to 
infinity. 

• It is possible (and relatively easy) to apply 
bayesian stopping rules [3], [5]. 

The main drawbacks are obvious: 
• The success of the method depends on how 

well the assumed approximation is. 
• In fact each recognized cluster can contain 

more than one minimizer. 
 
Applying similar approach to GC can 

diminish disadvantages that are caused by high 
dimensionality. Clusters are parametrized by the 
central point and radiuses. Each point generated 
by SGA can be classified as belonging to some 
cluster or not, so the idea of fitness modification 
can be almost unchanged. 

The Bayesian stopping rules derived for DC 
cannot be applied directly to GC, because these 
rules assume uniform distribution of sample 
points. Also such good properties of DC as 
mentioned above cannot be directly attributed to 
GC. Analogous estimations for GC are still open 
problems, because it is difficult to predict and 
calculate the exact distribution of points after 
some genetic epochs.  
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Introducing such cluster representation to GC 
causes also that stopping strategy from GC should 
be modified. Under the assumption that clusters 
cannot intersect, the criterion “all subdomains are 
passive” in real cases should be removed. 

The critical distance ( )xri  has not the same 
meaning as in DC, but it can be probed as if the 
concentration of points would be caused by the 
reduction phase with sample points distributed 
uniformly. 
 
CLUSTERS RECOGNITION AND REPRE-
SENTATION WITH THE USE OF NEURAL 
NETWORKS  

Clustering methods are known also as 
methods that help in constructing categories or 
taxonomies. Special kind of neural networks – so 
called self-organizing maps SOM ([2] and 
bibliography cited there, [9]) were proposed as 
tools for exploratory data analysis, in particular 
for visualization of high dimensional data items. 

We propose to join GC with the mechanism 
analogous to SOM in order to recognize and 
remember clusters. Additionally the method can 
visualize clusters in some way. 

SOM is a special kind of neural network with 
competitive learning. Competitive learning is an 
adaptive process in which the neurons gradually 
became sensitive to different input categories [2], 
for instance clusters of points. After the process 
of learning is finished, neurons become 
specialized – they “represent” different categories 
(clusters). The mechanism which allows neurons 
to specialize bases on a competition among them. 
After an input data x arrives, this neuron wins 
which better “represents” the data. Moreover 
neurons can “learn data” (it will be described 
below). 

In SOM neurons are located on a discrete 
lattice that constitute the “self-organizing map”. 
During the learning process the winning neuron 
and its neighbors on the lattice are allowed to 
learn.  

The input data is represented in neurons by a 
vector wi (reference vector), whose components 
correspond to synaptic weights. Neurons can be 
indexed with k. The winner neuron is determined 
from the formula: 

( ) { }2
minarg i
i

wxxkk −==  (4) 

That means the winner is this neuron, whose 
reference vector is closest to the input data x. This 

neuron and its neighbors modify their reference 
vectors according do the formula (5).  

( ) ( ) ( ) ( ) ( )[ ]twtxthtwtw ikiii −+=+1  (5) 

Neighbors are determined by so called 
neighborhood kernel function kih . 

In the simplest case the neighborhood function 
can be defined as follows: 
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where ri and rj are vectors that represent 
location of neurons in the lattice, t  denotes time 
and λ is a constant. 

In general the neighborhood function can also 
be variable in time – “wide” at the beginning of 
the learning process and decreasing slowly during 
learning.  

In such approach clusters can be represented 
as reference vectors of neurons. The number of 
clusters does not need to be estimated in advance, 
the maximum number is equal to number of 
neurons. Learned neurons can categorize any 
further sample points to clusters. 

Additionally a method of visualization of 
clusters was proposed by Kohonen [9]. The 
distances between the reference vectors of 
neighbor neurons can visualize the clusters 
structure on a two dimensional map. Details can 
be found in [2]. 

 
TESTS 

The modified version of the GC in which 
clusters were represented as ellipsoids was tested 
on the same problems as the original version of 
GC (see [1], [8]). 

The representative results of these tests will be 
presented for the 8-dimensional global optimiza-
tion problem given by formula (9). Also the 16-
dimensional version was tested. The original 
version of GC was tested on the 2-dimensional 
case of this problem (see [1]). A parameter 
inverse problem with a similar cost function and 
analogous complexity was presented in [1]. It was 
optimal pretraction design of a network structure 
made of elastic unconnected fibers fastened at 
their ends to a square rigid frame. 
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The linearized and homogenized governing 
equation (see [1]): 

�
	



Ω=
Ω=−

∂
σ

on                      0
,in         )(div

w

qDw
 (8) 

 
delivers the relationship between the compliance 
w(x), pretraction tensor  

( ))(),()( 1221 xxdiagx σσσ = , and the transversal 
loading density q(x) on the frame area Ω. 

Given q try to find ( )2* )(Ω∈ ∞Lσ  such that 

)()( FF * σσ ≤  for all ( )2
)(Ω∈ ∞Lσ , and 

)(1
0* Ω∈ Hwσ  satisfies the state equation (8).  

The cost functional )(P)(E)(F σσσ += , where 

�Ω= dxDw
2

)(E σσσ  is the stored energy of the 

network, and )(σP  denotes a penalty that forces 
pretractions suitable for an available assortment 
of fibers. )(P σ  is a multimodal, nonnegative 
function which reaches zero for many admissible 
pretractions.  

Moreover, the following constraints are 
defined: Λ≤≤< 21 ,0 σσλ  in Ω, 

( )�Ω =+ Sdx21 σσ  with [ ]Λ∈ 2,2λS . 

 
 

Figure 1. Schema of the fiber construction 
 
 
The case of a balanced loading �Ω = 0qdx  was 

considered. It is proved that under above 
assumptions there is more than one minimizer 

*σ .  
 

The adequate test global optimization problem 
can be as follows (see [1]): 
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(9) 

 
where RRf →8: , ix , i=1,…8 stand for the 
components of x. The formula 
( )..., =<> jbxANDax jj  stands for one, if the 

condition in brackets is true for all given j, 
otherwise it stands for zero.  

The constant c for 8-dimensional problem was 
equal to 0.00024. The domain of searches was a 
hypercube given by 

100100 <<− ix , i=1,…,8 (10) 
The function f has two distinct “deep” local 

minima and many “shallow” local minima. One 
of the deep minima is the global minimum. Two-
dimensional version of f is presented on Figure 1.  

It is assumed that clusters are well approxima-
ted by spheres. For the 8-dimensional case the 
population of SGA was 500. Each time twenty 
generations were processed before clustering was 
applied. Only two distinct “deep” minima were 
discovered and two clusters were located.  

 
 

Table 1. Results for 8-dim. problem 
 minimum 1 

f(x)=5.11 
minimum 2 

f(x)=2.61 
component 

of x 
value value 

1 -50,0 70,0 
2 -70,0 70,0 
3 -50,0 70,0 
4 -69,7 69,9 
5 -49,9 69,7 
6 -66,5 69,8 
7 -49,9 69,5 
8 -66,6 69,5 

x2

x1

σ 2(x1)

σ 1(x2)

q
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Figure 1. Two dimensional version of the 8-

dimensional test function. 
 
 

The scalar version of the algorithm was 
applied (without the division of the domain). 

The results are presented in Table 1. The 
radius of the cluster 1 (minimum 1) was 32.2, the 
radius for the cluster 2 (minimum 2) was 8.37. 
The number of function calls in local searches 
(MIGRAD method from the CERN ROOT-
Minuit package) was 1752 (968 for cluster 1 and 
784 for cluster 2). 

These results are much better than for original 
version of GC in which a great number of cells 
must be considered (this number depends of the 
chosen resolution). 

However, clusters are not recognized so 
precisely as in GC. They do not contain whole 
basins of attraction of local minima. Moreover, 
they also include parts of the domain that should 
not be included. A modification is required when 
one would like to use points from clusters. For 
each such point the value of the objective function 
should be calculated (in tests the maximum value 
of the objective function was also remembered for 
each cluster).  

When one wants to recognize clusters more 
precisely he or she can apply the original version 
of GC with the smaller domain that includes 
recognized cluster/clusters. 

Tests showed, that the proposed algorithm 
maintains the filter property.  

The maximum 16-dimensional case was tested 
successfully, however this is not the largest 
possible dimension. It seams, that problems can 
occur with the local strategies when the 
dimension is bigger than several tens. 

 
The version with neural network 

representation of clusters is being tested now.  
First tests made for two-dimensional case of 

the presented problem have shown that this 
method of clustering data in GC is costly in time 
and its superiority could be seen for problems 
with not too low dimensionality. One of ways to 
accelerate computations is to parallelize algorithm 
that simulates neural networks, another is to 
construct a hardware neural network. 
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¦�¾)¾ÀÈh¤�Ò�±	¤�­�©�«)¸4¤(Õg¦4­	§¿Ë�¤º©�°�¦4¾À¾�²�³(­�¯�¤�­�¯%³�·�¨ª©�¤<¾À¸(¤<©
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°6¤<²�M�«®­6Â%´�³(¨�¦]²�³(­�©�¤<Ä0·6¤�­�²�¤V³4´9ï ? � ð µ�È+¯�°6¤�Á³(¨�¤<¹ _	Æ ? Õ0­	¦4¹Q¤�¾)È�¯�°	¦�¯&¯�°6¤^¾)«)­�¤<¦4¨&§6¤�²�¨�¤<¦(©�¤%²�³(­6Á§6«)¯�«)³(­ ï A ? ð «®©g©ª¦�¯�«)©�Í	¤�§%¦4¯M¤<¦(²
°%«À¯�¤<¨ª¦�¯�«)³(­%´�³�¨M©�³(¹Q¤Ö¶©ª¹ ¦�¾)¾À¤�¨É¯ª°�¦4­ ?!\ A Æ Là´�¯�°�«)© ¯�¤<©�¯É´�¦4«À¾®©<Õ�¯�°6¤�­kS J�b xy«)©¬¹Ê·6¾)¯�«®±6¾)«À¤�§3µ�È ©�³�¹+¤ H V ? Õ0¦4­�§�¯�°6¤ ì ¯�°º«)¯�¤�¨�¦�Á¯�«)³(­Ê«)© ±u¤<¨�´�³(¨ª¹+¤�§,¦�Â�¦�«®­LÆ&Ld­Ê¯�°6¤&«®¹ ±6¾À¤�¹Q¤<­�¯�¦4¯�«)³(­
³�´�¯�°6«®©?¦4¾ÀÂ(³(¨�«À¯ª°�¹Ý·�©�¤<§Q«®­ ©�¤�²�¯�«)³(­ ��Õ4¯�°�¤:©�¤�²�·�¨�«)¯�È
´�¦4²�¯�³(¨ SØË&¦4©,«)­6«)¯�«®¦�¾)«)Ã�¤<§o¯�³ ? ¦�¯+¯�°6¤!µ	¤<Â4«®­�­6«®­6Â³�´:¤�¦4²
°o«À¯�¤<¨ª¦�¯�«)³(­MÕ?µ�·6¯ ³4¯ª°6¤<¨Q©�¯�¨ª¦�¯�¤<Â4«)¤<©Q²�¦(­oµu¤
²�³�­�©�«®§6¤�¨�¤�§LÆ
£ °�¤<­ ³�­6¾)È ô ï êKJ4ð ¦4­	§ � ô ï êKJ�ð ¦(¨�¤¥²�³(¹ ±�·6Á¯�¦4¯�«)³(­�¦4¾À¾)È¼¦z¸�¦�«)¾®¦4µ6¾)¤4Õ�¯�°6¤¥²�³(©�¯º«®­�²�·�¨ª¨�¤<§ µ�Èo¯�°�¤

²�³�¹Q±	·6¯�¦4¯�«)³(­¶³�´ íIJ] «®©,¯ª°�¦�¯Ê¨�¤<Ä0·6«®¨�¤<§¥¯�³»¤<¸z¦4¾)·6Á
¦�¯�¤3ï�¤�Ò�¦4²�¯�¾ÀÈ(Õ�³(¨%¦4±�±�¨�³zÒ6«)¹ ¦4¯�¤�¾)È�µ(È!Íu­�«À¯�¤Q§6«	��¤<¨�Á
¤<­�²�¤<© ð ¯�°�¤�¯�Ë¬³¥§6«)¨�¤<²�¯�«)³(­�¦4¾?§6¤�¨�«)¸�¦�¯�«)¸4¤�© � J ¦(­�§� J ³4´�¯�°6¤Ê´�³(¨�Ë�¦(¨�§�¹Q³6§6¤�¾ î`«)­�¯ª°6¤+©ª¦4¹Q¤Ê§�«)¨�¤<²�Á¯�«)³(­ ë�J ïY¯�Ë¬³ ¤<¸z¦4¾)·	¦�¯�«)³(­	©¬³4´ î ð Æ
£ °�¤<­ ô ï ê�J4ð ¦4­�§!¯ª°6¤��(¦(²�³�µ6«)¦(­ � J õ�öà÷× î + ï êKJ(ð¦4¨�¤H¦z¸�¦�«)¾)¦(µ6¾À¤(Õ4¯ª°6¤<­ � J ²�¦(­�µ	¤b²�³(¹ ±�·�¯�¤<§3µ(ÈQ¯�°�¤¹ ¦�¯�¨�«ÀÒQ±�¨�³6§�·�²�¯*� Jzë�J Õ0©�³]¯ª°6¤V³(­�¾ÀÈQ²�³(©�¯�«®­�²�·�¨ª¨�¤<§µ�È í J] «®©É¯ª°�¦�¯ ³4´�¯�°6¤&¤�¸�¦4¾)·�¦4¯�«)³(­]³4´ � J ï�³�­6¤¬¤<¸�¦�¾ÀÁ·�¦�¯�«À³�­3³4´ î ð Æ
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ABSTRACT 
A methodology has been developed to 

evaluate suitable gains for the α−β−γ filter 
algorithm presently implemented in the rocket 
tracking system of the brazillian center of rocket 
launching at Alcântara (CLA) for rockets with no 
complete previous flight data such as the VLS 
rocket – the brazillian satellite launcher vehicle. 
The methodology is based on a minimization 
criterion of the standard deviation of the error 
between nominal and estimated values of selected 
parameters. The analysis has also the objective to 
show that the selection of the most suitable 
division of the entire flight in only two phases (2-
phase filter), as is the case for the present filter 
algorithm, may depend on several factors which 
makes this task very difficult. The results for a 
multiple phase α−β−γ filter (N-phase filter) show 
that the use of this filter basically eliminates the 
just mentioned problem with the 2-phase filter.  
 
INTRODUCTION 

One of the main concerns in Flight Safety 
during rocket tracking is the ability to follow the 
trajectory of the rocket hit location  at the earth’s 
surface (impact point) assuming a rocket balistic 
flight at every time instant. The mission should be 
aborted always when this trajectory indicates that 
the impact point is about to cross the boundaries 
of a previously defined safety region. 

Considering that the radars can only measure 
the rocket position, the impact point is an 
estimated variable since it is calculated from the 
estimated rocket position and velocity. This 
estimation can be accomplished by employing 
filtering techniques to the radar noisy 
measurement signals. 

This work’s main motivation was to establish 
a computational methodology of the filter gains 

for the ADOUR and ATLAS radar signals of the 
rocket tracking system of the brazilian center of 
rocket launching at Alcântara (CLA). The 
methodology should be able to calculate 
appropriate filter gains not only for already 
available previous rocket flight data but also, and 
more importantly, for rockets which do not have 
yet a previous complete flight data set as is the 
case for the brazillian satellite launcher vehicle 
(VLS). Previous flight data of other rockets such 
as VS30 and VS30-ORION have been used for 
establishing the methodology.   

The ADOUR and ATLAS radars of the CLA 
tracking system are located about 6 and 30 
kilometers for from the launching ramp, 
respectively. Although the ATLAS radar is more 
precise than the ADOUR one, the latter is 
important at the beginning of flight due to its 
proximity to the ramp and also because the 
ATLAS radar can only see the target a few 
seconds after the rocket take off because of 
natural barriers between this radar and the rocket 
during the first instants of flight. A complete 
description of the CLA rocket tracking system is 
presented in References 1 and 2. 

The filter presently implemented in the rocket 
tracking system at CLA is of the α−β−γ type with 
constant gains for each flight phase and the 
additional characteristics of a total of only two 
phases for the entire flight (2-phase filter) and the 
same filter gains for all the three spatial 
coordinates, where flight phases are previously 
selected time intervals of the entire flight. The 
computational methodology and most of the 
results presented herein consider these filter 
limitations although a brief analysis of the 
possible improvement in parameter estimation is 
also investigated if a N-phase filter is used. 
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In this work are briefly described the most 
important characteristics of the α−β−γ filter and 
also the computer tools used to analyze the data 
and the results. A fair description of the available 
data and of the filter gain computational 
methodology analyses is presented. Also, a 
typical VLS rocket flight has been selected to 
illustrate the application of the present 
computational methodology. 
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THE α−β−γ FILTER 
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The recursion formula for the estimate of the 
current state vector at instant  is given by kt  

where vs, and  are the rocket coordinate 
position, velocity and acceleration, respectively, 
and T is the radar data sampling time. In this 
model the white process noise 

a

(k)µ  is the 
acceleration increment during the -th sampling 
period and is assumed to be a zero-mean white 
sequence – the acceleration is a discrete time 
Wiener process. 

 
(ˆ)1(ˆ +=+ kk pxx  

                  [ ])1(ˆ)1()1( +−+++ kzkzk pW ,        (1) 
 k

where:  
)1+

)1+

)1+
)1+

)1+

)

(ˆ kx  = state vector estimate update, 
(ˆ kpx  = predicted state vector estimate, 

The target position measurement model at a 
specific coordinate is given by (kW   = filter gain vector estimate, 

(kz  = measured target coordinate position, 
and 

 
)()()()( kwkkkz += xH ,                                  (6) 

(ˆ kz p  = predicted measured target coordinate 
position. 

 
where 

 For target motion in several coordinates, it is 
costumary to use kinematics models assumed 
independent across coordinates leading, therefore, 
to decoupled filtering. Thus, the following filter 
description will be presented for a single 
coordinate and assumed valid for all target motion 
coordinates. 

[ ]001)( =kH                                               (7) 
 
and  represents the measurement noises. )(kw

The predicted state vector, , is 
calculated as a function of the last updated 
estimate of the state vector, , using the 
equation 

)1( +kˆ px

(x̂

ˆ px

)kThe discrete stochastic target kinematics 
model adopted for the present filter algorithms 
implemented in the rocket tracking system at 
CLA is a Wiener process acceleration model [3] 
which can be written as 

 
)(ˆ)1(ˆ kkp xFx =+ ,                                           (8) 

  
whereas the predicted measurement value, 

, is calculated as function of the 
predicted state vector, , using the 
equation 
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The vector gain of α−β−γ filter presents the 
following notation  
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where α, β/T e γ/2T2 are the filter gains for the 
target position, velocity and acceleration 
coordinate variables, respectively, and α, β  and γ 
are the constants to be calculated. Hereafter, 
although in not a very precise manner, the 
parameters α, β and γ will be occasionally named 
filter gains for the sake of clarity. 

This set of equations, i.e., Eqs. (14a) through  
(15c), is the one to be solved for estimating the 
state vector variables for a specific coordinate. 

The present complete filter algorithm 
implemented at CLA considers identical filter 
gains for all coordinates (x, y and z) and only two 
sets of filter gains for the entire rocket flight, one 
for each flight phase, no matters the number of 
rocket propulsion stages. 

Defining 
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FILTER GAIN COMPUTATIONAL 
METHODOLOGY 

In this section is presented the methodology 
adopted for the calculation of the filter gains for 
the algorithm presently implemented at CLA. The 
criterion of minimization of standard deviation of 
the errors between estimated and nominal values 
of a specific parameter is used to select the best 
set of filter gains. For this purpose, a computer 
code has been developed [4] for the calculation of 
standard deviations of the errors between 
estimated (filtered) and nominal parameters such 
as position and velocity coordinates, distance and 
impact point of the rocket, for each flight phase 
and specific set of filter gains. The overall 
algorithm utilizes the golden search method [5] 
for the calculation of the set of filter gains that 
minimizes the chosen parameter for the selected 
flight phase. In general, due to its great 
importance in flight safety, the rocket impact 
point is chosen as the parameter to be minimized. 
With the purpose of reducing the number of 
independent variables, namely, α, β and γ, it can 
be shown [3,6] that the state estimation 
covariance matrix converges to a steady-state 
value and explicit expression relating the steady-
state filter gains can be obtained such as 
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and using the F  and H  matrices given by Eqs. 
(4) and (7), respectively, the following 
relationships can be obtained from Eqs. (1) 
through (9)  
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ααβ −−−= 14)2(2                                    (16) Also, the following updated state vector 
estimate equations, for a specific coordinate, can 
be obtained using Eqs. (1) and (10)  

 
and 
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For instance, if α is known, the other two 
parametes can be readly calculated from these 
equations.  

 
and 
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Since the best filter gain magnitudes can be 
quite differents if the rocket is in a propulsed or 
balistic flight phase, the division of the flight in 
specific time intervals (phases) should be such 
that each phase of the flight is at least 
predominantly propulsed or balistic [1]. 
Therefore, for rockets with previous flight data 
record already available, the filter gains to be 
used in future missions should be the ones, which 
satisfy the just described criterion, using these 
data. In the oother hand, for rocket flights with no 
previous flight data record available, SAGADA 
data for the specific flight are used insteady of the 
real ones. In a very simplistic way, it can be said 
that SAGADA data are the ones obtained from 
the radars when they are forced to follow a 
fictious target with the same nominal trajectory as 
the real rocket. In this case, firstly a comparison 
between the results obtained with real flight and 
SAGADA data of other rocket flights with 
acceleration profiles as close as possible to the 
one to be calculated is performed. Then the 
results of these comparisons for predominantly 
propulsed and balistic phases are taken into 
account for the filter gain calculations using the 
SAGADA data of the rocket flight to be analyzed. 
For instance, in order to estimate the filter gains 
for the VLS rocket, for which there is no 
complete previous flight data record, two 
previous real flight data will be used to provide a 
comparison between real flight and SAGADA 
data. One set of data came from a VS30 rocket 
flight and the other from a VS30-ORION rocket 
flight. Besides, since there is only a single set of 
previous flight data available for the VS30-
ORION rocket up to now, the analysis that 
follows will also be used for tunning up the filters 
for future missions of this type of rocket.  

  

Figure 1 shows the nominal longitudinal 
rocket accelerations for a VS30 and a VS30-
ORION flight. The VS30 rocket is a single-stage 
rocket whereas the VS30-ORION is a two-stage 
one with the two propulsion stages separated by a 
short balistic period. The VS30-ORION rocket is 
basically a VS30 with an additional stage. As can 
be seen in Figure 2, the VS30 and VS30-ORION 
rocket flights take about 6 and 9 minutes duration, 
respectively, therefore, both flights have very 
long balistic phases after the propulsion phase. 

As already mentioned, the present algorithm 
implemented at the CLA rocket tracking system 
permits the division of the entire flight in two 
phases only. Therefore, for the VS30 rocket flight 
one phase was taken for the duration of the 

propulsion of the rocket (from 0 to 31 seconds) 
and the other phase for the remaining balistic part 
of the flight. 
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Figure 1 Rocket relative longitudinal acceleration. 
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Figure 2. The z-coordinate rocket position for the 

VS30 and VS30-ORION rockets. 
 
Although for the VS30-ORION flight is not so 
straightforward the choice of the phase intervals 
as for the VS30 rocket, taking into account that 
the balistic time interval between both propulsion 
stages is short and the fact that the accuracy of 
estimating the rocket fall location at the end of the 
flight is also important, the best flight division 
was to take one phase from the beginning of flight 
up to the end of the second stage (from 0 to 65 
seconds) and the other phase from this time on 
which is only a balistic part of the flight. In order 
to illustrate the usual behavior of the standard 
deviation of the errors between nominal and 
estimated impact point as a function of filter 
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gains, Figure 3 shows the results for the first 
phase of the VS30 flight for the ATLAS radar. 
Tables 1 and 2 show the calculated α filter gain, 
which minimizes the standard deviations of the 
error in the impact point, for both phases of each 
flight for the ATLAS and ADOUR radars, 
respectively. Also shown in this table is the 
relative error between the α gains calculated with 
the real flight and SAGADA data. 
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Figure 3. A typical variation of the impact point 
error standard deviation with respect to the filter 

gains. 
 

Table 1: Values of the best α filter gain for Real 
and SAGADA data and the associated relative 

error for the ATLAS radar. 
  ATLAS radar 
  VS30-

ORION 
VS30 

 Real 0.251 0.135 
Phase-1 SAGADA 0.251 0.135 

 Error (%) 0 0 
 REAL 0.059 0.085 

Phase-2 SAGADA 0.059 0.076 
 Error (%) 0 +12 

 
The associated errors presented in Table 1 and 

2 indicate the consistency of the results for both 
flights. For the ATLAS radar, the results also 
show that there is basically no need to make any 
corrections to the α filter gain calculated with 
SAGADA data. For the ADOUR radar by its turn 
,the results show that for both flight phases the 
gain calculated with SAGADA data should be 
reduced for a better estimation. Since radars 
undergo maintainance frequently and the VS30-

ORION data are the most recent ones, the 
corrections indicated by this flight data will be 
used to estimate best filter gains, for the ADOUR 
radar, for future flights with no previous flight 
data record available. It is important to mention 
that these correction factors should be revaluated 
whenever new flight data become available. 

 
Table 2: Values of the best α filter gain for 

Real and SAGADA data and the associated 
relative error for the ATLAS radar. 

  ADOUR radar 
  VS30-

ORION 
VS30 

 Real 0.115 0.105 
Phase-1 SAGADA 0.167 0.124 

 Error (%) -30 -17 
 REAL 0.040 0.052 

Phase-2 SAGADA 0.044 0.077 
 Error (%) -10 -35 

 
Figure 4.a and 4.b show the evolution of the 

absolute error between filtered and nominal 
impact point during the first phase of the VS30-
ORION flight for the best selected set of gains 
compared to arbitrary ones with lower and higher 
values of α gain, respectively. The value 0.251 is 
the best-calculated α gain for the specific flight 
phase. The results shown in this figure emphasize 
the importance of obtaining accurate estimates for 
the best set of filter gains. The wrong choice of 
the filter gains may yield such a poor impact point 
estimate that even a normal mission could be 
aborted for safety reasons. Another way to 
compare the results for different sets of gains is 
through the visualization of the evolution in time 
of the rocket impact point trajectory in a monitor 
screen in a very close way the Flight Safety staff 
does during real flights. For this purpose, a 
computer code has been developed such that in 
the monitor screen can be seen the contour of the 
world map around the launching ramp, the 
boundaries of a safety region, and the evolution in 
time of the nominal and estimated rocket and 
impact point trajectories. The kind of plot shown 
in Figure 4 is very helpful to quantify the error in 
the impact point estimate whereas the simulation 
in the monitor screen is very important to check 
the distance of the estimated impact point from 
the boundaries of the safety region as well as to 
verify if the peaks seen in the plot of Figure 4, for 
instance, are because the estimated impact point 
trajectory is getting far from the nominal one or is 
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simply delayed or advanced compared to the 
nominal values. Therefore, these are two very 
important tools in the analysis of the best filter 
gains. For instance, even within a flight phase, a 
certain part of the flight can be more importante 
than others. Since the best set of gains is 
calculated considering the entire flight phase 
duration, this may not be the most appropriate for 
that specific part of the flight. In such a case, the 
described tools are very helpful to visualize the 
difference between the nominal and estimated 
trajectories and also to quantify it. 
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Figure 4. Comparison of the mpact point absolute 

error evolution in time for the VS30-ORION 
rocket calculated with the ATLAS radar data for 

different sets of filter gains. 
As can be seen in Figure 5, the estimated 

rocket impact point calculated with the ATLAS 
radar data is, in general, much more accurate than 
the one calculated with the ADOUR ones. This 
makes the ATLAS radar the most important for 
rocket tracking at CLA. As mentioned before, 
althoug the ADOUR radar is less precise than the 

ATLAS radar, the former is closer to the 
launching ramp, thus the ADOUR radar usually 
yields better results during the first instants of 
flight as can also be seen in this figure. Therefore, 
this radar is very important for rocket tracking at 
the beginning of flight and also serves as a 
backup radar for the remainig of the flight. 
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Figure 5. A comparison of the impact point error 
evolution in time calculated with both radar data 

for the first phase of the VS30-ORION flight. 
 
 

RESULTS OF THE METHODOLOGY 
APPLICATION 

The VLS rocket flight will be used to illustrate 
the application of the described filter gain 
computational methodology for rockets which 
does not have yet complete previous flight data 
record. As already mentioned, the VLS rocket is a 
satellite launcher vehicle, therefore, differently 
from the other rockets, the VLS does not fall on 
earth but stays in a earth orbit by the end of the 
flight. As can be seen in Figure 6, this rocket has 
three consecutive propulsion stages up to 193 
seconds of flight followed by a long balistic 
period up to 500 seconds of flight when the fourth 
and last propulsion stage starts. Basically, by the 
end of the fourth propulsion stage the rocket 
should be already in its expected orbit. By 
inspection of the rocket nominal acceleration in 
Figure 6 and considering all that have been 
discussed in the methodology description, a 
reasonable way to divide the flight in only two 
phases should be to choose the first phase as the 
time interval consisted of the three first 
propulsion stages, that is up to 193 seconds, and 
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the remaining of the flight as the second phase. 
As can be seen in Figure 6, the second phase 
contains a long balistic flight followed by the 
fourth propulsion stage.  
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Figure 6. The VLS rocket longitudinal nominal 

acceleration. 
 

  

 
Tables 3 and 4 present the calculated α-gain 

for the SAGADA data from the ATLAS and 
ADOUR radars, respectively, for 2, 5 and 15-
phase filters. Also shown in the last column of 
these tables are the impact point error standard 
deviations for each phase of the 15-phase filter. 
For the 5-phase filter, each propulsion stage is a 
single flight phase and the balistic period is 
another one. For the 15-phase filter, each phase in 
the 5-phase filter is divided into three equally 
spaced intervals to yield the 15 phases. Tables 3 
and 4 show that for the duration of the the first 
three propulsion stages not much improvement in 
the impact point estimates is obtained by 
considering each propulsion stage as a flight 
phase because all the three stages have very close 
values of calculated gains. When the propulsion 
stages are further divided as for the 15-phase 
filter, it can be seen that the calculated gains are 
quite different even within the same propulsion 
stage. For instance, considering the beginning of 
the flight up to 45 seconds, which is a critical part 
of the flight because the impact point trajectory is 
still very close to the boundaries of the safety 
region, the 2-phase filter has α=0.106 whereas the 
calculation for the 15-phase filter suggest 
α~0.050 as the best gain for that period of flight. 
Another important point noticed from the data in 

these tables is that, in the second phase of the 2-
phase filter, the estimate in the last 24 seconds 
(last phase of the 15-phase filter) has a huge 
weight in the calculation of filter gain, as can be 
seen by its standard deviation value, although at 
that time the impact point estimate is not so 
important since the rocket should be basically in 
orbit already. Therofore, for the 2-phase filter like 
the one implemented at CLA, the best choice of 
the flight phases and the decision about which 
data is really important for the analysis is not a 
straighforward task. The Flight Safety staff 
certainly has a very important role in taking these 
decisions since they can provide helpful 
additional information. Clearly, these problems 
could be attenuated if the use of a N-phase filter 
was possible. Neverthless, considering the above 
discussion, Table 5 presents some possible sets of 
a 2-phase filter gain for the VLS rocket calculated 
with the suggested methodology. In this table, the 
gains are already corrected by the factors 
indicated in Tables 1 and 2. The corresponding β 
and γ parameters should be calculated from Eqs. 
(16) and (17). 
 
 
Table 3. Filter gains calculated for three different 
number of phase filters using SAGADA data of 

the ATLAS radar for a VLS flight. 
ATLAS Radar 

α Final 
Instant 

(s) 2 
Phase 
Filter 

5 
Phase 
Filter 

15 
Phase 
Filter 

σ (m) 

22   0.044 113
45  0.118 0.052 279
68   0.125 1456
86   0.073 490
105 0.106 0.092 0.050 471
124   0.113 1764
147   0.090 2854
170  0.111 0.066 1640
193   0.116 10861
295   0.049 7119
397  0.036 0.016 1089
499 0.091  0.011 892
522   0.037 4301
545  0.098 0.041 6480
569   0.102 81962
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Table 4. Filter gains calculated for three different 
number of phase filters using SAGADA data of 

the ADOUR radar for a VLS flight. 
ADOUR Radar 

α Final 
Instant 

(s) 2 
Phase 
Filter 

5 
Phase 
Filter 

15 
Phase 
Filter 

σ (m) 

22   0.052 106
45  0.112 0.044 248
68   0.115 1450
86   0.064 653
105 0.116 0.101 0.046 292
124   0.114 1723
147   0.090 2794
170  0.125 0.047 1570
193   0.127 11579
295   0.039 4423
397  0.027 0.010 909
499 0.085  0.010 1175
522   0.034 5631
545  0.094 0.038 10778
569   0.100 101505

 
 

Case-1 refers to the conventional flight 
division whereas Case-2 through Case-4 take into 
account information from the 15-phase filter 
results to divide flight into only two phases. 
 
Table 5. Possible values of the α gain for a VLS 

rocket flight for both radars. 
Case Phase final 

instant (s) 
ATLAS 

radar 
ADOUR 

radar 
193 0.106 0.081 1 
569 0.091 0.078 

    
193 0.106 0.081 2 
500 0.033 0.023 

    
50 0.058 0.047 3 
569 0.090 0.073 

    
50 0.058 0.047 4 
500 0.061 0.051 

 
 

COMMENTS  
A methodology for the calculation of suitable 

sets of filter gains for the tracking of rockets with 
and without previous flight data record has been 
presented. The most difficult task in the use of 

such a methodology, for filter algorithms which 
permit only a reduced number of phases, is the 
choice of the most appropriate flight division. A 
N-phase filter algorithm eliminates completely 
this difficulty. Besides, this type of filter requires 
very few changes to the present algorithm, 
therefore it is been considered for implementation 
at CLA. For the α−β−γ filter type, in order to 
assure good efficiency, the entire mission should 
be normal, it no matters how many flight phases 
are considered, since the filter gains are set before 
the flight. So, a possible improvement to the 
filtering system should be to implement a filter 
algorithm, such as the Kalman filter [3,6], which 
revaluate the filter gains every time instant 
according to the flight evolution  
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ABSTRACT
We propose here a mathematical model

for the forest impact phenomenon. By this
phenomenon it is mean the raising or the
lowering of the groundwater table under
the areas felled or recovered by the trees.
Our formulation includes a boundary-value
problem with contact and free boundary
conditions. We offer a variational formu-
lation of this problem, which is a quasi-
variational inequality and prove its equiv-
alence to the original problem. We de-
scribe a numerical algorithm for solution
of the forest impact problem. Consider-
ing the free-contact boundary problem as a
shape optimization problem we perform its
boundary elements discretization. Taking
the state variable and free boundary vari-
able as independent variables, we treat the
discretized problem as a nonlinear mathe-
matical program and apply interior point
algorithm to solve it. Numerical results
for an illustrative 2D test problem are dis-
cussed.

INTRODUCTION
Various studies on the groundwater flow

realized during last two centuries show in-
creasing interest in the problem by virtue
of the importance of water recurses man-
agement for the future of humanity. In
the present paper we deal with the phe-
nomenon of the forest impact on aquifers,
the problem that in different forms appears

in various fields of activity such as agricul-
ture, civil engineering, etc.

By the forest impact on aquifers we
meant the effect of raising or lowering
of the groundwater table under the areas
felled or recovered by the trees, see Fig. 1.
From the hydromechanical point of view
this is a problem of unconfined flow in
porous media with possible fluid discharge
through the water table owing to the tree
roots suction. Mathematically, the water
table can be considered as a free boundary,
so this is a free boundary problem, see [1],
[2]. The location of the water table under
the forest suction effect, the flow character-
istics as well as the region of the contact of
the aquifer with the tree roots system are
the unknowns of this problem, see [3].

To study the forest impact phenomenon
the use of experimental methods and em-
pirical formulas is common, see [3], [4], for
example. The experiments consist in real
time and real scaled monitoring of the wa-
ter table response under a forest area and
can take many years to obtain consistent
details. To predict the groundwater level
reduction, water balance models are ap-
plied, see [4].

Two dimensional model for the forest
impact phenomenon proposed in this paper
includes a boundary-value problem with
a contact conditions which substitute for
a part of the free boundary conditions.
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We use a Baiocchi-like transformation of
the problem variables and obtain a qua-
sivariational inequality associated to the
boundary-value problem. We prove that
this inequality is equivalent to the original
boundary-value problem.

Our numerical technique to solve the for-
est impact problem is based on the shape
optimization approach. We transform the
free-contact boundary problem into a least
squares like shape optimization problem.
The objective functional contains one of
the free boundary conditions, whereas the
state equation together with the rest of the
boundary conditions become the problem
constraints. It is sought for the minimum
of objective with respect to the shape of
water table. This approach for classical
seepage problem was used in [5] with fi-
nite elements descretization and in [6] us-
ing boundary elements method. The nu-
merical example of the forest impact prob-
lem is shown and compared with different
situations including the classical seepage
problem.

THE CLASSICAL SEEPAGE PROBLEM
In the classical case of the unconfined

flow through a porous media, the un-
knowns of the problem are the character-
istics of the flow, like velocity potential
u(x, y), and the flow region (aquifer) Ω it-
self, see [1]. A part of the aquifer bound-
ary Γλ, called the water table, is unknown
a priori and has to be located, see Fig. 2.

In this paper we consider two dimen-
sional steady flow through homogeneous
and isotropic porous media with the per-
meability coefficient k = 1 and assume
that the external pressure is equal to zero.
Let R be an open and, for the sake of
convenience, rectangular domain occupied
by the porous media, h1 and h2 the fluid
piezometric levels in the left and in the
right sides of R respectively, Γ◦ the imper-
meable bottom and Γσ the seepage line.
The classical case does not suppose any
evaporation (or infiltration) effects on the
water table.

Then, the classical problem of the un-
confined flow through a porous media can
be formulated as a free boundary problem:

PROBLEM 1. Find potential u(x, y) and

decreasing function ϕ(x) that defines the
location of the water table Γλ, satisfying





∆u = 0 in Ω,
u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ ∪ Γλ,
q = 0 on Γ◦ ∪ Γλ,

where q ≡ ∂u/∂n and n is the outward nor-
mal to Γ◦ ∪ Γλ.

In the unknown part Γλ of the bound-
ary the function u(x, y) has to fulfill two
boundary conditions (free boundary con-
ditions) u = y and q = 0. Thus, the
water table is considered as a free bound-
ary. Problem 1 admits an unique solu-
tion pair {ϕ, u}, where ϕ(x) is smooth and
u ∈ H1(Ω) ∩ C◦(Ω), see [7].

Performing the Baiocchi transformation

[7], that is w(x, y) =
∫ ϕ(x)

y
(u(x, t)− t)dt, a

variational inequality equivalent to Prob-
lem 1 can be obtained:

∫

R
(wx(v − w)x + wy(v − w)y)dxdy ≥

−
∫

R
(v − w)dxdy, w,∀v ∈ K.

Here K = {v ∈ H1(R) | v ≥ 0 in R, v =
g on ∂R}, the subscript x (or y) denotes
the derivative with respect to x (or y) and
function g is defined by using values of h1,
h2 and l.

FOREST IMPACT PROBLEM
The difference between forest impact

problem and classical seepage problem is
in the possibility of the flow flux through
the water table, which can appear when the
aquifer attains the tree roots system. Let
R be domain occupied by the porous media
and S the tree roots system of the deepness
d > 0, see Fig. 3. We suppose that at the
part of the water table that reaches the tree
roots system bottom S◦ there is the suction
flux with given rate ε(x). The left wall Γw
of S is assumed impermeable. The contact
area between aquifer and tree roots system
is a priori unknown and can be defined to-
gether with the location of the rest of the
water table Γλ, seepage Γσ and the veloc-
ity potential u in Ω. We suppose also that
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the function ϕ(x) that defines the portion
Γλ \S◦ of the water table is decreasing and
denote h◦ ≡ h1 − d.

For the forest impact problem we de-
fine at the parts Γ1, Γ2,Γ◦ and Γσ of the
boundary ∂Ω the same conditions as for
the classical seepage problem. The part of
the water table that does not contact S re-
mains to be the free boundary and we put
here conditions u = y and q = 0. When
Γλ ∩ S◦ 6= ∅ we have the flow with given
rate ε(x) through this part of the water ta-
ble Γλ toward the interior of S. Thus, we
obtain the following mathematical formu-
lation for the forest impact problem:

PROBLEM 2. Find potential u(x, y) and
decreasing function ϕ(x) that defines the
portion of the water table Γλ without con-
tact with S, satisfying





∆u = 0 in Ω,
u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ ∪ (Γλ \ S◦),
q = 0 on Γ◦ ∪ (Γλ \ S◦),
q = −ε(x) on Γλ ∩ S◦,

where q ≡ ∂u/∂n and n is the outward nor-
mal to Γ◦ ∪ Γλ.

At the water table we have conditions
that take the form of free or contact bound-
ary conditions. We call its ”free-contact”
boundary conditions. We obtain here
a variational reformulation of this free-
contact problem.

Let us consider in Ω the transformation:

w(x, y) =
∫ ψ(x)

y
(u(x, t)−t)dt+w◦(x), (1)

where ψ(x) a function that describe the
whole water table Γλ and the function
w◦(x) is defined in the following form:

w◦ ∈ C1[0, l], w◦(0) = d2/2, w◦(l) = 0,

w′′◦(x) = −ε(x) on [0, l◦),

w′′◦(x) = 0 on (l◦, l].

(2)

Here the interval [0, l◦) corresponds to the
contact part of the water table and (l◦, l]

to the free one. Let g(x, y) be a function
of class C1(R) such that g = w on ∂R and
K a nonempty, convex and closed subset of
H1(R):

K = {v ∈ H1(R) |v ≥ w◦ in R
and v = g on ∂R}.

(3)

Then, we have the following result:

THEOREM 1. Let {ϕ, u} be a solution of
Problem 2, ϕ(x) is smooth, u ∈ H1(Ω) ∩
C◦(Ω), w is given by formula (1), w◦(x) is
defined by conditions (2), w◦(x, y) ≡ w◦(x)
for (x, y) ∈ R and

w(x, y) =

{
w(x, y), (x, y) ∈ Ω,

w◦(x, y), (x, y) ∈ R \ Ω.

Then w satisfies:
∫
R(wx(v − w)x + wy(v − w)y)dxdy ≥

− ∫
R(v − w)dxdy, w,∀v ∈ K,

(4)

where K is defined by (3). 2

By the definition of function w◦, the
subset K depends implicitly on the flow
through the contact part of Γλ. This part
is unknown a priori and is defined by the
function w. Hence, inequality (4) is a
quasivariational one. The next theorem
shows that if the solution w of quasivari-
ational inequality (4) exists then the func-
tion u = y − wy together with the curve
ϕ(x) that separates two regions of R where
w = w◦ and w > w◦, satisfy Problem 2.

Let be u := y − wy and the function ϕ(x)
is defined as

ϕ(x) = inf{y|(x, y) ∈ R \ Ω}, l◦ < x < l,

ϕ(l◦) = lim
x→l+◦

ϕ(x), ϕ(l) = lim
x→l−

ϕ(x). (5)

THEOREM 2. Let w ∈ W 2,p(R) ∩ C1(R)
with 1 ≤ p < ∞ be a solution of (4). Let be
Ω = {(x, y) ∈ R | w(x, y) > w◦(x, y)} and
assume ε′(x) ≥ 0. Let us consider u :=
y − wy in Ω and define ϕ(x) by formula
(5). Then the pair {u, ϕ} is the solution of
Problem 2. 2
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SHAPE OPTIMIZATION PROBLEM
An equivalent formulation of Problem

2 can be given in terms of shape opti-
mization for the system governed by the
Laplace equation. Let Φ be a set of all fea-
sible shapes of the water table, formed by
smooth curves. The optimization problem
consists in finding ψ ∈ Φ and u such that:




min
ψ∈Φ

(q)2
Γλ\S◦

where q = ∂u/∂n and u(x, y)
is a solution of problem:





∆u = 0 in Ω,
u = h1 on Γ1,
u = h2 on Γ2,
u = y on Γσ ∪ (Γλ \ S◦),
q = 0 on Γ◦,
q = −ε(x) on Γλ ∩ S◦,

(6)

The objective functional contains the
square of the flux along the free part of
the water table. The choice of the optimal
water table location forces the objective to
be zero and vice versa.

In two-dimensional case for the problem
governed by the Laplace equation the val-
ues of flux and potential verify on the fron-
tier Γ ≡ ∂Ω the integral equation, [8]:

0.5u(ξ) +
∫
Γ q∗(ξ, χ)u(χ)dΓ =

∫
Γ u∗(ξ, χ)q(χ)dΓ,

where χ ≡ (x, y) ∈ Γ, u∗(ξ, χ) is the fun-
damental solution of the Laplace equation,
q∗(ξ, χ) its normal derivative, and ξ ∈ Γ
is the collocation point.

In this way, to define the location of the
water table we have the problem:




min
ψ∈Φ

F (u, q),

where q and u verify at Γ:

0.5u(ξ) +
∫

Γ
q∗(ξ, χ)u(χ)dΓ =

∫

Γ
u∗(ξ, χ)q(χ)dΓ,

(7)

where F (u, q) = (q)2
Γλ\S◦

and the bound-

ary values are defined as in (6).

B.E.M. DISCRETIZATION
Formulation (7) furnishes an oppor-

tunity to apply the boundary elements
discretization. We assume that the x-
coordinates of the nodes at Γλ \ S◦ and
the y-coordinates of the nodes at Γ ∪ S◦
are fixed. Thus only the y-coordinates de-
fine the location of the nodes belonging to
seepage and free part of the water table
and x-coordinates define the nodes of the
contact part of the water table.

For the discrete analog of (7) we con-
sider as independent variables the flux at
the boundary elements of Γ1, the potential
at the boundary elements of Γ◦, the flux at
the boundary elements of Γ2, Γσ and Γλ \
S◦, the the potential at the boundary ele-
ments of Γλ∪S◦, y-coordinates of the seep-
age surface nodes, y- and x-coordinates of
the water table nodes.

Performing this kind of discretization we
obtain a nonlinear mathematical program-
ming problem. To solve it we use Her-
skovits’ interior point algorithm, [9]. We
find the y-coordinates of free part of the
water table and seepage surface nodes as
well as x-coordinates of the contact part of
the water table and values of potential and
flux at the corresponding segments of the
boundary.

NUMERICAL TESTS
For the test problem we choose: h1 =

6.3014, h2 = 1.2359, ` = 6.1592 and
d = 1.3014 (h◦ = 5.0). This data is taken
in order to compare the solution of the for-
est impact problem with the seepage one,
considered in [6]. The suction flux is taken
as ε = 1.

Our discretization includes 26 boundary
elements, see Fig. 4. We are looking for
the y-coordinates of ten nodes at the free
part of the water table W − M and the
x-coordinates of three nodes at the con-
tact part of the water table B − W . The
position of the node 24 defines the loca-
tion of the contact point of the water table
(point W ). The coordinates of the rest of
the nodes are fixed. The water table initial
position, used at the first iteration of the
algorithm, is given by the line B−W◦−M◦
in Fig.4.

The mathematical program have 39 vari-
ables, 26 nonlinear equality constraints, 12
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Fig. 4 B.E.M. Discretization 
 

 
 

Fig. 5 Water Table Location. Numerical Results 
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”box” constraints and 2 linear inequality
constrains. We adopt the algorithm stop-
ping criterion with precision 10E−6 (see
Herskovits [9] for details). With the dif-
ferent initial data, the convergence of the
algorithm was obtained in no more than 20
iterations.

Fig. 4 shows the location of the water
table (continuous line B−W−M) and cor-
responding nodes (14-26) positions calcu-
lated numerically as well as boundary data,
i.e. flux at the segments A−B, D−T and
T−M and potential for the segments A−D
and B −W .

We compare the location of the water
table in the forest impact problem with
the solution of another unconfined prob-
lems, considered for the same geometrical
and piezometric parameters. The results
are presented in Fig. 5. Here line (1) de-
fines the location of the water table for the
classical seepage problem, line (2) gives the
location of the water table for the seepage
problem with vertical impermeable wall Γw
only (see Fig. 3), line (3) is the water ta-
ble in the case of impermeable bottom S◦,
line (4) is the solution of the forest impact
problem with constant suction rate ε = 1.

CONCLUSIONS
We introduce the forest impact model at

the form of ”free-contact” boundary prob-
lem and obtain its equivalent variational
formulation as a quasivariational inequal-
ity. This inequality seems for us to be more
adequate that the free-contact formulation
to study the properties of our model, such
that existence and uniqueness of the solu-
tion and its regularity.

The numerical simulation shows that
even for our model of forest impact, that
takes into account only some principal
characteristics of this phenomenon, the wa-
ter table lowering owing to the forest suc-
tion is significative enough to be consid-
ered as an effective means for the control
of groundwater.

ACKNOWLEDGEMENTS:
The authors gratefully acknowledge the

support provided by CNPq (Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tec-
nológico, Brazil), FAPERJ (Fundação da
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ABSTRACT 

The inverse problem for spatial reconstruction 
of the absorption and scattering coefficients is 
modeled in the context of the stationary one 
velocity linear transport boundary value problem. 
The first and the second order variational 
formulations for these problems are presented. 
The second order variational principle is used for 
the derivation of a second order form of the 
inverse transport equation adopted by the source 
detector methodology. The reconstruction 
problem is then stated as an study of the influx to 
the outflux mapping similar to the Dirichlet to 
Neumann mapping. 

 
NOMENCLATURE 

3ℜ  three dimensional euclidian space 

}1w  that   suchw{S 32 =ℜ∈=  is the 

surface of the unit sphere. 
Ω  convex domain. 

( ts, ) rotate coordinate. 
+ℜ  non-negative real numbers. 

T unitary mapping 
∇  gradient 
div divergent 

iγ  trace on interfaces 

ta σσ ,  absorption (total) coefficients 

(cross section) 

sσ  scattering coefficients (cross 

section) 

)(Ω∞L  the vector space of all functions 
that are essentially bounded on 
Ω  

)( 22 SL ×Ω  the vector spaces  of all functions 
that are square integrable on 

2S×Ω  

)( 22 SL ×Γ−  same for 2S×Γ− with weight 

wnx.  

}0:),{( 2 <×Ω∈=Γ− wnSwx x  is the 

influx, outflux surface 
),( wxφ  the angular flux. 

K the scattering operator. 
G= tσ  (I-K) the removal operator. 

R=
tσ

1
 (I-K )-1 inverse of the removal operator 

Pl Legendre polynomials of grade l. 
f phase function. 
Lw the Leakage operator. 

)}0(0.:{ ><Ω∂∈=Γ wnx xw
∓  is in the influx 

(outflux)  boundary for the 
direction w. 

U the operator for invertion of 
direction. 

P=(I+U)/2 the projection operator. 

out
in

φ  influx (outflux) data. 

σΛ  influx to outflux mapping. 

Lw,2 second order differential operator. 
±φ  even (odd) parity angular flux. 

)( 22 SL ×Ω±  even (odd) parity subspace of 

)( 22 SL ×Ω . 

)( 21 xSH Ω+ = ∈φ{ )( 22 xSL Ω+ : 

div(w φ ) )( 22 xSL Ω∈ − } 
F1, F2 first (second) order functional 
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F∂  variation of F . 
ijij GR ∆∆ ,  difference between the operator 

for coefficients values j. 

σQ  minimum value for the second 

order functional. 

2Ψ  solution for the second order 
problem. 

Sign(x) =1 if x>0,=0 if x=0,=-1 if x<0. 
 
INTRODUCTION 

The radiative and particle transport can be 
modeled by a one group transport equation whose 
domain is the five-dimensional phase space 

23 S×ℜ . The ray propagates thorough a 
mediu m which is the union of a finite number of 

contiguous sub-domains. ∪ne

e
eÙÙ

1=

= with 

internal boundary '

1
' ee

ne

e
ee ΩΩ=Γ

=

∩∪  and an 

external boundary Ω∂=Γ . The position of a 
photon or a particle such as a neutron and the 
direction in which it is propagating is 

characterized by the pair 23),( Swx ×ℜ∈  

where 3ℜ  is the usual Euclidian space and 

}1 such that   ,{ 32 =ℜ∈= wwS  is the 

surface of the unit sphere. As the ray propagates , 
its direction w introduces in the Euclidian plane 
an orthogonal parallel projection 

23: ℜ→ℜΠ w  of the domain Ω  in a plane 

through the origin and perpendicular to w, 
xt wΠ=  and a line through the trace t that 

crosses the domain Ω  following the direction 

},{, ∞<<−∞+Ω=Π sswtwt ∩ . The ray 

direction and the respective plane induce in 3ℜ  a 
rotated coordinate system that is the natural place 
for the formulation of the transport equation for 
all rays with the same direction. This rotated 
coordinate system is characterized by the 
mapping 
 

2323: SST ×ℜ×ℜ→×ℜ  
)',,(),(),( wtswxTwx =→  

with        s=x.w 
t=x-(x.w)w 

w’=w 
which is one-to–one, continuous and continuous 
differentiable and has jacobian equal to one. Its 

inverse is )','(),(),,(1 wwtwxwtsT +==−  
Since the one group angular flux (photons or 

particles/area time) 
 

+ℜ→×ℜ 23: Sφ  
 

is characterized by a function which has  
different regularities properties for spatial 
variations in directions parallel and perpendicular 
to the direction of ray propagation . This means 
that in a plane that crosses Ω  and is 
perpendicular to w, we have a section of the 
angular intensity flux that we expect to be an L2 
function. In the direction of propagation of the 
radiation we have an attenuation or creation 
process which is proportional to directional 
derivatives, and so is an H1 function. In order to 
write derivatives in the correct way we can use 
the mapping T to rotate the coordinate system, in 
this way: 
 

+ℜ→×Ω∀ 2: Sφ  

),()),,((),,)(,( 1 wxwtsTwtsT φφφ == −  (1) 
and 

s
wtsT

wxwdiv

wxw

∂
∂

==

∇
)',,(

)),((

),(.
φ

φ

φ
    (1b) 

 
Since we also have internal boundaries 

'eei Γ=Γ , the ray of direction w may have traces 

iγ  in these interfaces, where these traces are 

spatial values for the rotated coordinate s, indexed 
by 0 ≤ i ≤ I(t,w), ),(0 wtIi γγγ <<  and obviously 

 

∪
),(

1
1, },{

wtI

i
iiwt sswt

=
− ≤+=Π γγ  

 
Inside of each one of the sub domains eΩ , 

the medium usually offers different properties for 
absorption and scattering, which  are the process 
consider in this work. The functions absorption 
(or total) coefficients  
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+ℜ→Ω:, ta σσ  

and the scattering coefficient 
 

+ℜ→−×Ω ]1,1[:sσ  

 

are expected to be ∞L  functions, most frequently 
constants by parts Lebesgue simple functions. 
 
THE DIRECT PROBLEM 
The one velocity stationary linear transport 
problems can be stated as: 
 

Find )(),( 22 SLwx ×Ω∈φ  such that 
 

),()()),(( wxxwxwdiv t φσφ +  

∫ =−
2

),(')',()'.,(
s

s wxqdwwxwwx φσ  

2),( Swx ×Ω∈∀       (2a) 
 
Subject to the boundary conditions 
 

)(),(),( 22 SLwxwx in ×Γ∈= −φφ  for 
−Γ∈),( wx       (2b) 

 
),( wswt +φ  continuous in Ω  even for  

2),( Swx i ×Γ∈         (2c) 

 where the influx surface is  
 

}0:),{( 2 <×Ω∈=Γ− wnSwx x  

 

and the ∞L  removal and scattering cross sections, 

as well the )( 22 SL ×Ω  source term q(x,w) are 
given data. 
In operator form we express this equation as 
 

qKIL tt =−+ φσσ )(     (3) 

 
Where I is the identity operator, K is the 
scattering operator, 
 

)()(: 2222 SLSLK ×Ω→×Ω  
 

),)((),( wxKwx ΨΨ a  

      ∫=
2

')',(
)(

)',(

s t

s dwwx
x
wwx

φ
σ

σ
 

                               2),( Swx ×Ω∈∀  
 

K is self-adjoint, 10 <≤ βK . In this situation 

the removal )( KIG t −= σ  has a unique 

inverse operator 1)(
1 −−= KIR

tσ
. This 

operator is given by 
 

)()(: 2222 SLSLR ×Ω→×Ω  

),(),)(( wxwxR Ψ=Ψ  

                    ∫ Ψ+
2

')',()',(
S

dwwxwwxr  

Where 
 

=)',( wwxr  

   ∑
∞

= −
+

0

)'.(
)()()(

)()(
4

12

l
l

est

es wwP
xfxx

xfxl
σσ

σ
π

 

 
This is an absolutely and uniformly convergent 
series. Here Pl is the Legendre polynomial of 
order l and fl is the l-coefficient of the Legendre 
expansion of the phase function f. We note that 
the phase function   
 

)(
)',(

')',(
)',(

)',(

2

x
wwx

dwwwx
wwx

wwxf
s

s

S

s

s

σ
σ

σ
σ

==
∫

 
is normalized to one. 

The Leakage operator is an unbounded 
differential operator 
 

)()(: 2222 SLSLLw ×Ω→×Ω  

),(),(),( wxwxLwx w Ψ∇=ΩΨΨ a  

s
T

Twxwdiv
∂

Ψ∂
=Ψ= −1)),((  

 
which has as  its domain the set of functions for 
which T Ψ  is absolutely continuous on every 

compact subset of the closure of wt,Π , i.e., 
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)(),,( ,wtCwtT Π∈Ψ o  and 

)(
),,( 221 SL

s
wtT

T ×Ω∈
∂

∂− oφ
 .We will call 

this set )( 21 SH ×Ω  and note that it is dense in 

)( 22 SL ×Ω  and has a range 

)()( 22 SLLR ×Ω⊂ . Since we have a complete 
set of directions in S2, for every Leakage operator 
Lw given by a direction w, for which the influx 
boundary is to be prescribed, there is an operator 
L-w with reverse direction -w , and for which the 

influx boundary is +−
− Γ=Γ ww , where 

}0.:{ >Ω∂∈=Γ+ wnx xw . 

The set of unbounded leakage operators 
 

{Lw  ; w ∈S2} 
 
forms a symmetric system which has self-adjoint 
properties. 
The operator for inversion of direction used 
before  
 

)()(: 2222 SLSLU ×Ω→×Ω  

),(),)((),( wxwxwx −Ψ=ΨΨ ∪a  

 
is unitary, self adjoint and isometric. We can use 
this operator to form the parity projection 
operator 
 

)()(: 2222 SLSLP ×Ω→×Ω  

)],(),([
2
1

),)(( wxwxwxP −Ψ+Ψ=ΨΨ a
 
That is, P=[I+U]/2. P  is bounded, linear, idem 

potent, self-adjoint and decomposes )( 22 SL ×Ω  
into complementary linear manifolds: one is the 
even parity manifold which is its range and the 
other is the odd parity manifold which is its null 
subspace. As a classical lemma, we have that 

every function in )( 22 SL ×Ω  has a unique 
representation with one component in each one of 
these manifolds. 
 
THE INVERSE PROBLEM 

The stationary one velocity linear transport 
boundary value problem for a prescribed removal 
operator and source–intensity is a well-solved 

problem which has a unique inverse [1].  If we 
choose spatial positions on the outgoing surface 
 

}0.;),{( 2 >×Ω∂∈=Γ+
xnwSwx  

and make experimental measures related with the 
outgoing radiation intensity 
 

),(),( wxwx outφφ = , +Γ∈),( wx  
 
we can use this excess of information to make 
inference about the removal operator. Such is the 
situation occurring in the classical transmission 
tomography, in which the scattering part of the 
operator is neglected and only the total extinction 
cross section is spatially reconstructed, and in the 
emission tomography in which we reconstruct the 
source q . In the present work we are dealing with 
the problem of parameter identification related to 
the removal operator R. The complete set of 
parameters related to the scattering and absorption 
process is to be spatially reconstructed. We have a 
situation which is analogous to that investigated 
by Calderon, [11], Sylvester and Ulmann[7] and 
we ask for the definition of a function 
 

+− Γ→ΓΛ :σ  

)( inoutin ΨΛ=ΨΨ σa          (4) 

 
which will be called the influx to the outflux 
mapping for the transport equation.  
 
Heuristic Counting of degrees of freedom 

Let us estimate the minimum dimension for 
the inverse transport problem by formulating the 
problem in an n-dimensional space and making 
the counting of degrees of freedom. Since in this 

case inφ  is a function from +−− ℜ→ℜ×ℜ 11 nn , 

the domain of inφ  has 2(n-1) degrees of freedom. 

The same can be said about outφ . Then we have a 
total of 4(n-1) degrees of freedom. In the most 
general problem, we are interested in the 

reconstruction of the function aσ  ( tσ ) from 
+ℜ→ℜn , whose domain has n degree of 

freedoms and the function sσ  from 
+ℜ→−×ℜ ]1,1[n  whose domain has n+1 

degrees. Since the number of degrees of freedom 
in the data must exceed that of the variables, we 
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must have 4(n+1) ≥  2n +1 and n≥ 2.5 is the 
minimal dimension. In general we will not expect 
good results for n=2, unless we have the special 
situation of isotropic scattering, in which we have 
4(n+1) ≥  2n .and n ≥ 2. For n=3 we will not 
have problem of this nature. Another way to see 
the problem is to compare it to the case of 
transmission tomography, in which only the non 
scattered part of a collimated ray injected into the 
influx boundary is collected by the detector in the 
antipode position on the outflux boundary. If we 
suppose that for the same set of data used in this 
transmission tomography we also collect rays in 
other directions, we see that we have plenty of 
measures to be used in the reconstruction. This 
has been numerically exploited in [4] and the 
main problem that we have to solve there was the 
difference in the magnitudes of the transmitted 
and of the scattered rays. A numerical experiment 
shows  that it can be of at least three orders of 
magnitude. If we don’t take the appropriate care 
in separating the transmitted from the scattered 
radiation, the last numerically disappears as noise 
in the first. With this reasoning, we are motivated 
for the spatial two–dimensional reconstruction of 
the scattering cross section, at least in the 
isotropic case. 
 
SECOND ORDER FORMULATION OF THE 
DIRECT PROBLEM 
 
Since we are interested in the study of the outflux 
to influx mapping, we will briefly introduce the 
second order formulation for this problem. The 
unbounded second order differential operator is  
 

www RLLL −=2,  

 
and has domain inside the domain of the operator 

wL  with the additional restriction that 

))(( Ψwwdivdiv ∈ )( 22 xSL Ω . With this we 
can formulate the second order problem as: 
Find  
 

Ψ ∈ )( 22 xSL Ω    (5) 
 
such that  
 

( )( )tLRL I Kσ− + − q=Ψ  on )( 2xSΩ
  
 

( ))( RLnwsignI x⋅+ sΨ=Ψ  on 
2xSΓ

       (5a) 

where sΨ




>⋅−Ψ
<⋅Ψ

=
0),(
0),(

k
in

k
in

nwifwx
nwifwx

 

    (5.b) 
2L ( 2xSΓ ) is the symmetrized influx boundary 

condition. In the internal interfaces iΓ  we also 

have that ΓΨ ( ),, wt⋅  is essentially continuous 

and ΨΓRL ( ),, wt⋅  is naturally continuous. 

 
VARIATIONAL FORMULATION OF THE 
DIRECT PROBLEM 
We can use the projection operator to decompose  

)( 22 xSL Ω  in a complementary pair of 
manifolds  
 

)( 22 xSL Ω+ = ∈φ{ )( 22 xSL Ω : P(φ )= }φ  

)( 22 xSL Ω− = ∈φ{ )( 22 xSL Ω  : P(φ )= }0  
 

Every function in )( 22 xSL Ω  has unique 
representation  
 

−+ += φφφ  
 

with ∈+φ  2
+L  and ∈−φ  2

−L . The variational 

formulation is posed in the subspace of 2
+L  and 

2
−L , the spaces  

 

)( 21 xSH Ω+ = ∈φ{ )( 22 xSL Ω+  :  

div(w φ ) )( 22 xSL Ω∈ −  
 

)( 21 xSH Ω− = ∈φ{ )( 22 xSL Ω−  :  

div(w φ ) )}( 22 xSL Ω∈ +  
 

The first order variational formu lation has been 
proposed by Pitkaranta in [3] and is given by the 
functional problem: 

Find 1
+

+ ∈ Hφ  and 1
−

− ∈ Hφ  extremes for the 
functional 
 

],[1
−+ φφF = −∫ ∫Ω

−+
2

)({
2
1

S
wdiv φφ  
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      ]}[][)( −−+++− −+ φφφφφφ RRwdiv  

+ ∫ ∫ Ω∂

−++ ⋅−⋅
2

))({
2
1 2

S xx nwnw φφφ  

 }2 sxnw φφ +⋅−    (6) 

 
The first variation with respect even (odd) 

parity radiation intensity is a minimum 
(maximum) and gives the parity form of (3) for 
q=0, 
 

0][. =+∇ +− φφ Gw  

0][. =+∇ −+ φφ Gw  2),( Swx ×Ω∈∀  
 
with the respective boundary condition  
 

sxnwsign φφφ =− −+ ).(  2),( Swx ×Γ∈∀  

 
The variational principle for the second order 
theory can be obtained from the first order 
formulation [12] and is written as:  

Find 1
+

+ ∈ Hφ  that minimizes the functional 
 

][2
+φF = ∫ ∫Ω

++++ +
2

]}[][][{
2
1

S
GLRL φφφφ  

+ ∫ ∫ Ω∂

++ Ψ−⋅
2

}2{
2
1

2
2

S xnw φφ   (7) 

 
where  
 

1
+H ={ )( 22 xSL Ω∈Ψ +  : 

),(),(
2

1
ΨΨ+ΨΨ=Ψ LL < ∞ } 

 

we note that 
2

1
 is equivalent to the energy 

norm of the second order self adjoint application   
GLRLA +−= . 

 
SOME COMMENTS ON THE INFLUX TO 
THE OUTFLUX MAPPING 
We have defined in (4) the operator σΛ  which 

maps the influx to the outflux. Given that the one-
speed transport equation in fixed as a model, this 
mapping is characterized by the operator G. The 
related question here is: 

(1) if the knowledge of the mapping σΛ  is 

sufficient to characterize the coefficients  in 
the definition of operator G 

(2) if the product of )( 22 xSL Ω  solutions to the 

direct problem is dense in )( 21 xSL Ω , and 
also, if the product of gradient of 

)( 21 xSH Ω solution the direct problem is 

dense in )( 21 xSL Ω  
 These are important mathematical question for 
the scattering tomography formulated in the 
context of the transport theory. Based on the 
conjecture that these questions have a positive 
answer we established a methodology for the 
reconstruction of these coefficients. The fact is 
that the transport equation is  a symmetric system 
in the sense o Friedrichs and has adjoint 
properties that permit us to deduce an inverse 
integral equation from both the first order and the 
second order variational formulation. This can be 
done also directly from the weak form of the 
direct problem formulated in (2). 
To deduce these inverse transport equations for 
the determination of the coefficients we must 
choose variations with satisfy adjoint problems 
with prescribed absorption and scattering 
coefficients. The reference cross sections are 
expected to be as close as possible to the 
reconstructed one. Since the transport equations 
are not self-adjoint, the product of solutions to be 
considered in (2) is the solution for direct 
problems with streaming operator wL  and wL− , 

respectively. 
 
THE SOURCE-DETECTOR 
METHODOLOGY 
Since we are more interested in the parallelism 
between the transport model for scattering 
tomography and the electrical impedance 
tomography, we will proceed to the deduction of 
the inverse transport equation in the context of the 
second order theory 
Let ns source problems  be given with data 

∈Ψ ),( wxin
i )( 22 xSL −Γ , i=1,ns 

Let nd detectors problems be given with data 

∈Ψ ),( wxin
i )( 22 xSL −Γ , i=1,nd 

 
The detectors problems are taken with 

=Ψ ),( wxj ),( wxout
j −Ψ  on 1xS−Γ  
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and with no internal source, that is, q=0.  
The two types  of problems have the same 

variational formulation: 

Find )( 21 xSH Ω∈Ψ that minimizes  
 

[ ]Ψ2F = ( ΨΨ LRL , ) + ( ΨΨ− ,)( KItσ ) 

∫ ×Γ
⋅+ 2S xnw { sΨ−Ψ 2 } ΩΓΨ dd  (8a) 

The first variation of this functional is given by 
 

),( Ψ∂ΨFδ =( ΨΨ δLRL , ) +( ), ΨΨ δG  

∫ ×Γ
⋅+

2S xnw { ΨΨ−ΨΨ δδ s2 } (8b) 

We write this functional for the ns source 
problems and for the nd detector problems with 
prescribed reference cross sections. 

Since the boundary conditions in this 
formulation are natural and all variations are in 

the same space )( 21 SH ×Ω , we can take 

),( wxiΨδ = ),( wxj −Ψ  

),( wxjΨδ = ),( wxiΨ     
 
 Adopting a detector solution as variation for a 
source problem and a direct problem solution as 
the variation to the detector problem, after some 
manipulations we obtain: 
 

( jiij LLR ΨΨ∆ ],[ )+( jiijG φφ ],[∆  

= ∫ ×Γ
⋅2S xnw { ji

s
ij

s ΨΨ−ΨΨ }(9a) 
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(9c) 
 
As has already been pointed out before the 
coefficient values with index i are to represent 
estimated cross section values and those with 

index j are reference values used in the detector 
equations. We can note that the right hand side of 
(9.a) is just the difference due to violation of the 
reciprocity relation and is a consequence of the 
use of different values for the cross sections of 
source and detector problems. 
So we may call this term a defect from the 
reciprocity. The systems (9) represent the second 
order inverse transport equation. There we can see 
that the odd Legendre expression coefficients are 
multiplied by the product of gradients (the 
current, in neutronic terminology) and the even 
coefficients by the angular flux, which are a 
magnitude greater than the current. 
 
THE INVERSE SECOND ORDER 
TRANSPORT PROBLEM 

It consists of the study of various properties of 
the map 
                                     Φ  

σσ Λ→  

 
that associates the set cross sections coefficients 
with the influx to outflux mapping. These 
properties include the continuity, injectivity and 
range. Following Calderon´s approach for the 
inverse conductivity problem [11], the functional 
(8a) is some kind of measure of the power 
necessary to maintain the flux (potential) on the 
boundary. The polarization of this quadratic form 
is the bilinear form (8a) that has been used to 
derive the inverse transport equation. 

For 
 

),,,(inf),( 2
)( 21 inst

SH
in FQ ΨΨ=ΨΨ

×Ω∈Ψ
σσσ

 (10a) 
 
we obtain 
 

ωσ ddwnQ s

S

xin ΓΨΨ=ΨΨ ∫
×Γ

22
22

1
),(  

     (10b) 
where ),( wxsΨ   is given by (5b) and 2Ψ  is 

solution that minimizes the functional. 
Noting that on Γ  

 
),().(),(),( 22 wxRLnwsignwxwx xs Ψ−Ψ=Ψ

  
we find that  
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ωσ ddRLwnQ ss

S

x ΓΨΨ+Ψ−= ∫
×Γ

)(
2
1

2
2

2

 

(10c) 
 

Results (10a) and (10c ) are similar to the 
equations (0.2) and (0.4) found in the reference 

[13]. The functional σQ is a quantity which can 

be determined by measurements at the boundary 
of Ω  and as a consequence of (10b) is that the 
unique self-adjoint operator associated to the 

quadratic form σQ  is the influx to outflux 

mapping  
                                     Φ  

σσ Λ→  

 CONCLUSIONS 
The inverse problem for the transport problem 

in which the scattering process is not negligible  
can be analyzed in a context that is analogous to 
that of the inverse conductivity problem. Since in 
the transport problem we have variables defined 
in the phase space, we face a problem with more 
degrees of freedom. 

The theory can be formulated in two levels of  
variational formulation, that is, a first order theory 
which is comparable with the usual transmission 
tomography when the scattering is neglected and 
a second order theory, which as has been point 
before, is comparable to the inverse problem for 
elliptic system of differential equation. This 
research is now conducted in a numerical 
experimental level, with utilizes synthetic data, 
and in a mathematical analysis level. A new 
concept, parallel to the Dirichlet-to-Neumann 
mapping, (sometimes refereed to as  the Liouville-
Steklov mapping), the influx to the outflux 
mapping has been presented. 
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ABSTRACT
The Conjugate Gradient Method (CGM) with

adjoint equations are applied to an inverse force
vibration problem to estimate the unknown time-
dependent stiffness coefficients (or spring
constants) simultaneously in a multiple-degree-of-
freedom system by using the simulated measured
system displacement.

The numerical experiments are performed to
show the validity of the present algorithm by
using different types of stiffness coefficients and
measurement errors. Results show that the
excellent estimations on the time-dependent
spring constants can be obtained simultaneously
with any arbitrary initial guesses within a very
short CPU time at Pentium III-500 MHz PC.

1. INTRODUCTION
The objective of the direct solutions for the

force vibration problems is to calculate the system
displacements, velocity and acceleration with
time t when the initial conditions, external forces
and time-dependent stiffness coefficients and
damping coefficients are specified. In contrast,
the inverse vibration problems that we are going
to discussed here involve the estimation of the
time-dependent stiffness coefficients
simultaneously from the knowledge of the
simulated measured system displacement at
different time t.

The inverse heat conduction problems in
estimating thermal properties for both linear and
non-linear problems can be found in the
literatures. For instant, Huang and Ozisik [1] have
used the direct integration method together with
the Levenberg-Marquardt method in estimating
the temperature-dependent thermal conductivity
and heat capacity. Huang et al. [2] used a very
powerful inverse algorithm, i.e. Conjugate

Gradient Method (CGM), to estimate the
temperature-dependent thermal conductivity.
Huang and Yan [3] estimated the temperature-
dependent thermal conductivity and heat capacity
simultaneously by using the CGM. Recently,
Huang and Chin [4] extended the CGM to a two-
dimensional inverse problem in estimating
unknown thermal conductivity for the non-
homogeneous material.

Many papers regarding the estimation of  the
damping and stiffness matrices in for the inverse
vibration problems can also be found in the
literatures. For example, Gladwell [5] has solved
the inverse vibration problems in determining
constant stiffness matrices for undamped system
modeled by tridiagonal matrices. Lancaster and
Maroulas [6] have solved the inverse vibration
problem in estimating constant damping and
stiffness matrices by means of the spectral theory
of matrix polynomials.

In all the above references the system
damping and stiffness matrices are all assumed
constant and independent of time. Recently,
Huang [7] used CGM as well as adjoint equation
in the inverse force vibration problems in
estimating the time-dependent stiffness
coefficients for a single-degree-of-freedom
problem and obtained good estimation.

The purpose of the present study is to extend
the previous work by Huang [7] to a multiple-
degree-of-freedom inverse vibration problem in
estimating simultaneously the time-dependent
stiffness coefficients. It is obvious that this should
be more difficult than what have been done by
Huang [7] previously.

2. THE DIRECT PROBLEM
The initial displacement and velocity

conditions of the damped force vibration system
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are xi(0)=0.0 and dxi(0)/dt = yi(0) = 0.0,
respectively. When t > 0, the time-dependent
external forces fi(t) and time-dependent damping
coefficients Ci(t) are given, moreover the time-
dependent stiffness coefficients Ki(t) are also
assumed known.

The system under consideration here is
shown in Figure 1 and the mathematical
formulation of this multiple-degree-of-freedom
problem is given by:
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with the initial conditions

xi(0) = 0.0 and dxi(0)/dt = yi(0) = 0.0 ,  i = 1 to I (2)
Here Mi represents the mass of the

subsystem. There exists no exact solution for
equation (1) for any arbitrary function of Ki(t),
Ci(t) and fi(t). For this reason the numerical
solution with the technique of the fourth-order
Runge-Kutta method will be applied to solve
equation (1) by reducing it into (2 × I) coupled
first-order ordinary differential equations as
shown below:

dt
)t(dx1 = y1(t) ,    t > 0                                  (3-1a)
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dt
)t(dx i = yi(t) ,   t > 0, i = 2 to I-1               (3-ia)
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dt
)t(dx I = yI(t) ,     t > 0                                (3-Ia)
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The direct problem considered here is
concerned with the determination of the system
displacement xi(t) and velocity yi(t) when the
initial conditions, the time-dependent external
forces fi(t), the damping coefficients Ci(t) and
stiffness coefficients Ki(t) are all given.

Here the fourth-order Runge-Kutta method
is used to solve the system of equation (3).

3. THE INVERSE PROBLEM
For the inverse problem, the time-

dependent stiffness coefficients Ki(t) are regarded
as being unknown, but everything else in equation
(3) is known. In addition, system displacements
measured at some appropriate time are considered
available.

Let the  measured  system  displacement
with time be denoted by Xi(t), here t = 0 to tf, and
tf represents the final time of the measurements.
Then the inverse problem can be stated as follows:
by utilizing the above mentioned measured
system displacement data, Xi(t), to estimate the
unknown time-dependent stiffness coefficients
Ki(t).

In the present study, we haven’t used real
displacement measurements, rather, we used the
exact time-dependent stiffness coefficients Ki(t)
to generate the simulated values of Xi(t), then try
to retrieve the time-dependent stiffness
coefficients by using Xi(t) and initial guesses of
stiffness coefficients K0

i(t).
The solution of the present inverse

vibration problem is to be obtained in such a way
that the following functional is minimized:

[ ] ∫ ∑ −=
= =

ft

0t

I

1i

2
ii dt)]t(X)t(x[ )t( J K                  (4)
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here, x(t) are the estimated or computed
displacements at time t. These quantities are
determined from the solution of the direct
problem given previously by using an estimated

)t(K̂i for the exact Ki(t). Here the hat " ^ "
denotes the estimated quantities.

4. CONJUGATE GRADIENT METHOD FOR
MINIMIZATION

The following iterative process based on
the conjugate gradient method is now used for the
estimation of time-dependent stiffness
coefficients Ki(t) by minimizing the functional
J[K(t)]

)t(P)t(K̂)t(K̂ n
i

n
i

n
i

1n
i β−=+      for  i = 1 to I

and n = 0,1,2,........                                            (5a)

or in vector form

)t()t(ˆ)t(ˆ nnn1n PKK β−=+                           (5b)

where n
iβ are the search step sizes in going from

iteration n to iteration n+1, and Pi

n
(t) are the

directions of descent (i.e. search directions) given
by

)t(P)t('J)t(P 1n
i

n
i

n
i

n
i

−γ+=                       (6a)

or in vector form

)t()t(')t( 1nnn1n −+ −= PJP γ                      (6b)
which are a conjugation of the gradient directions

 )t('J n
i  at iteration n and the directions of

descent Pi

n-1
(t) at iteration n-1. The conjugate

coefficients are determined from

∫ ∫=γ
= =

−Jt

0t

Jt

0t

21n
i

2n
i

n
i dt)'J( /dt)'J(

 with γ
i

0 = 0 and i = 1 to I                                 (7)

We note that when 0n
i =γ  for any n, in

equation (7), the directions of descent Pi

n
(t)

become the gradient direction, i.e. the "Steepest
descent" method is obtained.

To perform the iterations according to
equation (5), we need to compute the step sizes

n
iβ  and the gradient of the functional  )t('J n

i .
In order to develop expressions for the
determination of these two quantities, a
"sensitivity problem" and an "adjoint problem"
are constructed as described below.

4-1.SENSITIVITY PROBLEM AND SEARCH
STEP SIZE

Since the problem involves I unknown
time-dependent stiffness coefficients K(t) = Ki(tn)
= {K1(tn),…, KI(t n)}, n = 1 to N. In order to derive
the sensitivity problem for each unknown
function, we should perturb one unknown
stiffness coefficient at a time.

It is assumed that when Ki(t) undergoes a
variation ∆Ki(t)δ(i-j), where )(•δ  is the Dirac-
delta function and j = 1 to I, xi(t) and yi(t) are
perturbed by ∆xi,j(t) and ∆yi,j(t). Then replacing in
the direct problem Ki(t) by Ki(t)+∆Κi(t)δ(i-j), xi(t)
by xi(t)+ ∆xi,j(t) and yi(t) by yi(t)+ ∆yi,j(t),
subtracting from the resulting expressions the
direct problem and neglecting the second-order
terms, we obtained the following I sensitivity
problems, (i.e. j = 1 to I), for the sensitivity
functions ∆xi,j(t) and ∆yi,j(t).

dt
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= ∆yi,j(t) ,   t > 0 , i = 2 to I-1       (8-ia)
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dt

)t(xd j,I∆
= ∆yI,j(t) ,   t > 0                           (8-Ia)
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with the initial conditions

∆xi,j(0) = 0.0 and  ∆yi,j(0) = 0.0 ,
 i = 1 to I and j = 1 to I      (9)

The technique of fourth-order Runge-Kutta
method is used to solve these sensitivity problems.

The functional )ˆJ( 1n +K  for iteration n+1
is obtained by rewriting equation (4) as
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                , i = 1 to I                                      (10)

where we replaced (t)ˆ 1n +K  by the expression
given by equation (5). If estimated displacements
xi is linearized by a Taylor expansion, equation
(10) takes the form
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where )ˆ(x n
i K  are the solutions of the direct

problem by using estimate (t)ˆ nK  for exact K(t)
at time t. The sensitivity functions

  )(Px n
jji,∆ are taken as the solutions of problem

(8) at time t by letting  (t)(t) nPK =∆ in equation
(8) [7].

Equation (11) is differentiated with respect

to  n
jβ and equating them equal to zero. Finally I

equations can be solved for I step sizes  n
jβ .

4-2. ADJOINT PROBLEM AND GRADIENT
EQUATION

To obtain the adjoint problems, equations
(3-ia) and (3-ib) are multiplied by the Lagrange
multipliers (or adjoint functions) λi,j(t) and ψi,j(t),
respectively. The resulting expression is
integrated over the correspondent time domain,
then the result is added to the right hand side of
equation (4) to yield the following expression for
the functional J[K(t)]:
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It is assumed that when Ki(t) undergoes a

variation ∆Ki(t)δ(i-j), i = 1 to I, where )(•δ  is the
Dirac-delta function and j = 1 to I, xi(t) and yi(t)
are perturbed by ∆xi,j(t) and ∆yi,j(t). Then
replacing in the direct problem Ki(t) by
Ki(t)+∆Ki(t)δ(i-j), xi(t) by xi(t)+ ∆xi,j(t) and yi(t)
by yi(t)+ ∆yi,j(t), subtracting from the resulting
expressions the direct problem and neglecting the
second-order terms. We thus find
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 (13)

In equation (13), the integral terms containing
first derivative of time are integrated by parts; the
initial conditions of the sensitivity problem are
utilized. Finally we found that the equations for
adjoint problems are identical for j = 1 to I. For
this reason the subscript j can be neglected and
we obtained the following adjoint problems λi(t)
and ψi(t):
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with the final conditions

λi(tf) = 0.0 and  ψi(tf) = 0.0 ,  i = 1 to I      (15)
The adjoint problems are different from

the standard initial value problems in that the final
time conditions at time t = tf is specified instead
of the customary initial condition. However, this
problem can be transformed to an initial value
problem by the transformation of the time
variables as τ = tf - t. Then the standard
techniques of fourth-order Runge-Kutta method
can be used to solve the above adjoint problems.

Finally, the following integral terms are
left
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From definition [13],  the functional
increment can be presented as
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A comparison of equations (16) and (17)
leads to the following expression for the gradient
of functional  'Ji :
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We note that )]t(K['Ji  is always equal to
zero at t = 0 and tf since xi(0) = 0.0 and ψi(tf) = 0.0,
therefore the estimated values of  Ki(t) will
deviate from exact values near both initial and
final time. For this reason some estimated values
of Ki(t) near t = 0 and tf  should be discarded.

4-3. STOPPING CRITERION
If the problem contains no measurement

errors, the traditional check condition is specified
as

ε<+   )]t(ˆ[ J 1nK                                                   (19)
where ε is a small-specified number. However,
the measured displacements may contain
measurement errors. Therefore, we do not expect
the functional equation (4) to be equal to zero at
the final iteration step. Here we use the
discrepancy principle as the stopping criterion, i.e.
we assume that the residuals for the displacement
and velocity may be approximated by

iii  )t(X)t(x σ≈−  , i = 1 to I                          (20)
where σi are the standard deviation of the
displacement measurements, which are assumed
to be a constant. Substituting equation (20) into
equation (4), the following expression is obtained
for stopping criteria ε:



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

f
I

1i

2
i t)(  ∑ σ=ε

=
                                                (21)

Then, the stopping criterion is given by
equation (19) with ε determined from equation
(21).

5. RESULTS AND DISCUSSIONS
The objective of this work is to show the

validity of the CGM in estimating simultaneously
the stiffness coefficients Ki(t) in the inverse force
vibration problems with no prior information on
the functional form of the unknown quantities.

To illustrate the accuracy of the conjugate
gradient method in predicting stiffness
coefficients Ki(t) in a damped vibration problem
from the knowledge of transient displacement
recordings, one specific example having different
form of stiffness coefficients are considered here.

In order to compare the results for
situations involving random measurement errors,
we assume normally distributed uncorrelated
errors with zero mean and constant standard
deviation. The simulated inexact measurement
displacement data Xi(t) can be expressed as
Xi(t) = Xi,exact(t) + ωi(t)σI                               (22)
where Xi,exact(t) are the solution of the direct
vibration problem with an exact stiffness
coefficients Ki(t);  σi  are the standard deviation of
the measured displacements and ωi(t) are the
random variables that are generated by subroutine
DRNNOR of the IMSL [8] and will be within -
2.576 to 2.576 for a 99% confidence bound.

One of the advantages of using the
conjugate gradient method to solve the inverse
problems is that the initial guesses of the
unknown quantities can be chosen arbitrarily. In
all the test cases considered here the initial
guesses of )t(K̂ i  is taken as )t(K̂ i initial = 0.0.

We now present below the numerical
experiments in determining Ki(t) simultaneously
by the inverse analysis using the CGM in a two-
degree-of-freedom problem, i.e. I = 2. The initial
conditions for displacement and velocity are both
assumed zero, i.e. xi(0) = 0 and yi(0) = 0.
Moreover, due to the singularity at t = 0 and tf
that was discussed previously, we thus neglect the
first and last ten estimated values of stiffness
coefficients in the present study

The parameters that used in the present test
case are taken as:
M1 = 1.0, M2 = 3.0, f1(t) = 50.0, f2(t) = 60.0,

C1(t) = 8.0 and C2(t) = 5.0.
Time interval is chosen as 36 and a time

step ∆t = 0.3 is used, therefore a total of 240
unknown discretized stiffness coefficients are to
be determined in the present study. However we
have discarded the first and last ten estimated
values for K1(t) and K2(t), respectively, thus only
200 estimated values are reported here. The
number of measured displacements for system 1
and 2 are both 120.

The unknown transient stiffness
coefficients K1(t) and K2(t) are assumed as:
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The inverse analysis is first performed by
using the exact displacement measurements, i.e.
assuming no measurement errors (σ1 = σ2 = 0.0).
When the stopping criteria is set as ε = 0.4, after
78 iterations the inverse solutions are converged,
J is calculated as 0.39 and CPU time at Pentium
III-500 MHz PC is about 8 seconds. The exact
and estimated stiffness coefficients K1(t) and K2(t)
are shown in Figure 2 while Figure 3 shows the
measured and estimated displacement, Xi(t) and
xi(t).

The average errors for the estimated
stiffness coefficients and displacements are ERR1
=  1.01 % and ERR2 =  0.59 %, respectively,
where the definition for ERR1 and ERR2 is given
as

%100)]20N(I[

)t(K
)t(K̂)t(K

=% ERR1
10N

10n ni

niniI

1i

×−×÷











∑

−
∑

−

==        (24a)

%100)]20N(I[

)t(X
)t(x)t(X

=% ERR2
10N

10n ni

niniI

1i

×−×÷











∑

−
∑

−

==        (24b)

Where n is the index for time and N
represents the total number of discreted time.
From those figures we concluded that the present
algorithm has been applied successfully in the
inverse vibration problem in estimating stiffness
coefficients Ki(t) since the estimated results are
very accurate.

Next, let us discuss the influence of the
measurement errors on the inverse solutions.
When the measurement error for the
displacements measured by sensors for subsystem
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1 and 2 are taken as σ1 = 0.06 (about 1 % of the
average measured displacement for subsystem 1)
and  σ2 = 0.14 (about 1 % of the average
measured displacement for subsystem 2), then the
stopping criteria ε can be calculated from
equation (21). After 68 iterations (CPU time is
about 7 seconds), the inverse solutions can be
obtained and plotted in Figure 4 for the exact and
estimated stiffness coefficients and in Figure 5 for
the measured and estimated displacements. The
average errors for the estimated stiffness
coefficients and displacements are ERR1 =  2.73
% and ERR2 =  0.88 %, respectively.

Then, the measurement error is increased
to σ1 = 0.3 (about 5 % of the average measured
displacement for subsystem 1) and  σ2 = 0.7
(about 5 % of the average measured displacement
for subsystem 2).  After 14 iterations (CPU time
is about 2 seconds), the inverse solutions can be
obtained. In Figure 6 the exact and estimated
stiffness coefficients are shown. The average
errors for the estimated external forces and
displacements are ERR1 =  5.09 % and ERR2 =
4.61 %, respectively.

From the above Figures and data we
learned that reliable inverse solutions can still be
obtained when the large measurement errors are
considered

6. CONCLUSIONS
The Conjugate Gradient Method (CGM) was

successfully applied for the solution of the inverse
force vibration problem in a multiple-degree-of-
freedom system to determine simultaneously the
unknown transient stiffness coefficients by
utilizing simulated displacement measurements.
Several test cases involving different system
parameters, measurement errors and stiffness
coefficients were considered. The results show
that the inverse solutions obtained by CGM are
still reliable as the measurement errors are
increased. Moreover the CPU time needed in the
inverse calculations is very short and the initial
guesses for external forces can be arbitrarily
chosen as zero.
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                                  MI

            KI(t)        fI(t)             ------  CI(t)

                                 Mi

           Ki(t)         fi(t)             ------ Ci(t)

                                  M1

          K1(t)          f1(t)            ------ C1(t)    x

Figure 1. A multiple-degree-of-freedom nonlinear
force vibration system for the present study.

Figure 2. The exact and estimated stiffness
coefficients using displacement measurements
with σ1 = σ2 = 0.0.

Figure 3. The measured  and estimated
displacements with σ1 = σ2 = 0.0

.

Figure 4. The exact and estimated stiffness
coefficients using displacement measurements
with σ1 = 0.06 and σ2 =0.14.

Figure 5. The measured  and estimated
displacements with  σ1 = 0.06 and σ2 = 0.14.

Figure 6. The exact and estimated stiffness
coefficients using displacement measurements
with σ1 = 0.3 and σ2 =0.7.
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ABSTRACT  
The paper is focused on the application of the 

response surface method (RSM) for the solution 
of structural identification problems. The 
approximating functions are obtained from the 
data of deterministic numerical experiment. The 
numerical experiment is performed in the sample 
points of experimental design. A minimal mean 
squared distance Latin hypercube (MMSDLH) 
design is used in the present paper. A local 
approximation method is employed for building 
the response surfaces. An example of the 
application of the response surface method and 
experimental design for the identification of 
elastic properties of a laminated composite 
material is discussed. The elastic properties of 
carbon/epoxy laminate are determined employing 
experimentally measured eigenfrequencies of 
composite plates. The identification functional 
represents differences between experimentally 
measured and numerically calculated frequencies, 
which are dependent on variables to be identified. 
The parameters to be identified are the five elastic 
constants of the material. The elastic constants 
identified from the vibration test have been 
compared with the values obtained from an 
independent static test. A good agreement of the 
results is observed. 
 
INTRODUCTION  

In structural optimization and identification, 
some problems require too much computational 
time when conventional methods of minimization 
are used. For example, it takes several hours of 
computer time for one variant of the finite 
element solution to be calculated. For complex 
optimum design problems it is necessary to 
perform calculations of several thousand variants. 
Similarly, the solution of some identification 
problems can also require large computational 

efforts. In order to reduce computational efforts, 
methods based on approximation concepts can be 
used. Nowadays these methods take a dominant 
position in structural optimization [1]. 
Approximation methods also are employed to 
solve identification problems [2]. The 
development of approximation functions has 
become a separate problem in optimum structural 
design. The approximating models can be built in 
different ways. Empirical model building theory 
is discussed in [3]. To construct a more general 
model of the original function, the method of 
experimental design [4,5] can be employed 
together with approximate model building [6-8]. 
A simplified model, called “metamodel”, is built 
using the results of a numerical experiment in the 
points of experimental design. Response analysis 
using the simplified model is computationally 
much less expensive than a solution using the 
original model. Although there is a wide literature 
about experimental designs and the building of 
approximating functions, it should be noted that 
there are some special features present in the 
experimental design that are not present in the 
physical experiment. The main features are as 
follows. 
 1) The results obtained in the numerical 
experiment are deterministic and without 
statistical errors. Repetition of the results is 
100%. This means that there is no statistical 
dispersion of the model parameters. However, 
computer models produce numerical noise as a 
result of the incomplete convergence of iterative 
processes, round-off errors, and the discrete 
representation of continuous physical phenomena 
when a different number of calculation steps or a 
different finite element grid is generated [9]. In 
deterministic computer experiments, replication at 
a sample point is meaningless, therefore the 
points should be chosen to fill the design space. 
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2) The mathematical model of the object is 
unknown, i.e., the form of the regression equation 
is not known. Therefore, well-known criteria for 
experimental design optimality, for example, D-
optimality, cannot be used. Such criteria can be 
used only in the case when the form of the 
regression equation is known. 

There is a wide literature about the different 
methods of experimental design. Among the 
methods, the space filling designs can specifically 
be emphasized. The first space filling design for a 
computer experiment was proposed in [4]. In this 
work, the designs in which the number of levels 
for each variable is equal to the total number of 
runs were first proposed. In [4], the space filling 
criterion based on a function similar to potential 
energy of gravity was first used. Later, the same 
kind of experimental designs was proposed as a 
Monte Carlo integration technique by McKay et 
al. [10], and the name “Latin hypercube 
samplings” was introduced. Numerous space 
filling experimental designs have been developed 
in an effort to provide more efficient and effective 
means for sampling deterministic computer 
experiments based on Latin hypercubes. Different 
space filling criteria for Latin hypercube designs 
was proposed by many authors: Maximin Latin 
hypercubes [11], Minimal Integrated Mean 
Square Error designs [12], Orthogonal array-
based Latin hypercube designs [13], Orthogonal 
Latin hypercubes [14], Integrated Mean Square 
Error (IMSE) optimal Latin hypercubes [15].  

Employing the approach of experimental 
design and approximation proposed by Eglais 
[4,6], good results for the problems based on 
numerical experiment can be obtained. This 
approach based on global approximation was used 
in [2] for solution of optimal design and 
identification problems. However, sometimes the 
results of the approximation are not satisfactory. 
Therefore, in the present paper a minimal Mean 
Square Distance Latin hypercube (MMSDLH) 
design and local approximation method are 
employed to solve an identification problem 
similar to that described in [2]. Thus the accuracy 
of the solution can be improved. 

In the past few years, the so-called non-
parametric approximation methods have been 
widely used for the design and analysis of 
computer experiments: local polynomial 
approximation [16,17], Kriging [18]. Finally, 
other statistical techniques such as Multivariate 
Adaptive Regression Splines [19] and Radial 
Basis Functions [20-22] are beginning to draw the 

attention of many researchers. However, these 
methods are computationally expensive not only 
for metamodel building, but also in the case of 
using the metamodels for prediction. In the 
present paper, a local approximation method with 
weight functions is employed for the solution of 
the identification problem considered. 
 
EXPERIMENTAL FREQUENCIES 

Experiments have been performed on 
unidirectional carbon/epoxy laminate (see Figure 
1). Plates were tested for vibrations in order to 
measure eigenfrequencies and corresponding 
modes. Experiments were performed with free-
free boundary conditions on all edges of the plate, 
in order to exclude the influence of boundary 
conditions on the results of the identification. The 
plate dimensions are as follows: a=b=207.5 mm; 
h=2.0 mm. Density of the material ρ=1535 kg/m3. 
Experimental eigenfrequencies exp

if  are 
presented in the third column of Table 1. Since 
not all of the frequencies were observed 
experimentally, frequencies were ranged 
according to the finite element solution. In the 
second column, the frequencies FEM

if  obtained 
by FEM using the identified elastic constants (see 
section Results and verification) are presented. 
Other quantities presented in Table 1 are 
explained in the section Results and verification 
(see below).  
 

3

1 2

h

a b

 
 

FIGURE 1   Laminated composite plate. 
 
 

It can be seen that in the range of the first 17 
numerical frequencies only 12 experimental 
frequencies were observed. It should be noted that 
frequencies are identified through mode shapes 
and for numerical and experimental frequencies 
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the same modes were observed. These 
experimental frequencies were employed for 
identification. 
 

TABLE 1 Experimental frequencies. 

No. FEM
if , 

Hz 

exp
if , 

Hz 

∆i, % ∆fi, % 

1 97.9 97 +0.92 11.15 

2 124.3 123 +1.06 6.94 

3 235.7 237 -0.55 9.39 

4 342.3 341 +0.38 6.89 

5 455.3 458 -0.79 8.12 

6 502.2 502 +0.04 1.43 

7 539.4 541 -0.29 2.69 

8 651.1 653 -0.29 5.07 

9 676.5 - - - 

10 779.7 - - - 

11 860.8 - - - 

12 1113 - - - 

13 1169 1168 +0.08 7.96 

14 1215 - - - 

15 1376 1381 -0.36 1.52 

16 1407 1413 -0.42 2.05 

17 1503 1512 -0.59 3.04 
 
 
IDENTIFICATION FUNCTIONAL AND 
APPROXIMATION 

The parameters x to be identified are five 
elastic constants of the transversally isotropic 
material of the plate 

 

1 2 5 1 2 12 23 12( , ,..., ) ( , , , , )x x x x E E G G ν= =  (1)  
 
Here E1 and E2 are Young’s modulus in the fiber 
and transverse direction, respectively, G12 is the 
in-plane shear modulus, G23 is the transverse 
shear modulus and ν12 is Poisson’s ratio. 
Directions of the material axes, which are also the 
plate axes, are denoted 1-2-3, where 1 is the fiber 
direction and 2, 3 are the transverse directions. 

       In [2] it was assumed that the functional to be 
minimized describes the deviation between the 
experimentally measured exp

if  and the 
numerically calculated )(xf i  frequencies 
 

exp 2
2

exp 2
1

[ ( )]( )
( )

I
i i

i i i
i ii

f f xx k k
f

ε
=

−Φ = =∑ ∑  (2) 

 
Here εi is the relative discrepancy or residual and 
ki are the weighting coefficients for the selected 
frequencies. In (2) the integer I is the number of 
all frequencies used in the analysis. It is possible 
to assign non-negative weights to each residual. 
For simplicity, only unity values are used. The 
estimation can be based on any set of frequencies 
by assigning weights of zeros and ones as 
appropriate. 
      The numerical frequencies fi(x) are functions 
of elastic constants. These functions are obtained 
as approximation of the finite element solution, 
which is performed in the sample points of the 
experimental design. The frequencies and 
corresponding vibration modes (eigenvectors) are 
obtained by solving an eigenvalue equation 
 

( ) ( ) 0ix xλ− =K U MU  (3) 
 
Here K  is the plate stiffness matrix, which 
depends on x, M is the mass matrix, U is the 
displacement vector (eigenvector) and 2

ii ωλ =  is 
the eigenvalue and ωi=2πfi is the circular 
frequency (rad/s). 
        For identification, the functional (2) can be 
used, but it is more appropriate to employ the 
eigenvalues instead of frequencies 
  

exp 2 2

exp 2 2
1

[(2 ) ( )]( )
[(2 ) ]

I
i i

i
i i

f xx k
f

π λ
π=

−Φ =∑  (4) 

 
The functionals (2) and (4) were employed for 
identification in [2], where, instead of the original 
functions )(xiλ , the approximating functions 

)(ˆ xiλ were used. Thus, in [2] the approximations 
were performed for each frequency. Employing 
the same functional (4) procedure of identification 
can be modified so that the approximation is 
performed not for each frequency but for the 
whole functional Φ(x). Thus, the function to be 
approximated and minimized is as follows. 
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Here )( j

i xλ  is the i-th eigenvalue calculated by 
the finite element method in a sample point 

),,,,( 12231321
jjjjjj GGEEx ν=  of a 5-dimensional 

space of identification parameters, j is the number 
of the sample point (run) in the experimental 
design (j=1,2,...N), N is the total number of 
sample points (number of runs) in the 
experimental design (see below), p=1, 1/2,1/4 or 
1/8. The value of p is chosen to improve the 
quality of approximation. The best results were 
obtained (see below) with p=1/2 and 1. Note that 
hereafter the upper index for the variable x 
denotes the number of the point in the 
experimental design, but the lower index denotes 
the component of variable x.  
      The functional Φ is minimized employing 
local approximation: 
 

5 5 5

0
1 1

ˆ ( ) i i ik i k
i i k i

Φ x x x xβ β β
= = =

= + +∑ ∑∑  (6) 

 
Here the lower index is used for the component of 
variable x (i=1,2,.., 5), but the upper index (see 
expression (5)) is employed to indicate the 
number of sample point in the experimental 
design (j=1,2,...N). In approximation (6) 
coefficients are calculated by 
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where 0, ,i ikβ β β  are coefficients of the local 
quadratic approximation (dependent on x), NX is 
the set of numbers of the nearest neighbors  of the 
point x. In the case when the Gaussian weight 

function 
2

( ) exp( )j jw x x G x x− = − −  is 

used in (7), all points of experimental design are 
considered as neighbors NX ={1,2,...,N}. Here 

jxx −  is the Euclidean distance between x and 

xj, G is the coefficient of the Gaussian function. If 
G=0, then the conventional least squares method 
is obtained (without weighting coefficients and 
without division by Φj in (7)). Usually G=0.75 
was used. 
 
 
MINIMAL MEAN SQUARE DISTANCE 
DESIGN 

For the computer experiment, the Minimal 
Mean Squared Distance (MMSD) experimental 
designs were employed. These designs were 
proposed in [23]. The MMSD designs are space 
filling designs that give minimal Mean Squared 
Distance (MSD) between the mesh points in 
design space Rm and the nearest point from 
experimental design D 
 

( )2

1,...,1 1

1 min
n m

v u
i iu Nv i

MSD w x
n == =

  = −      
∑ ∑  (8) 

 
where vw are points from a large sample in design 
space Rm (v=1,..., n), N is the number of points of 
the experimental design and n is the number of 
mesh points. Approximately n=1000000 
equidistant mesh points for low dimensions 
(m=2,3) are employed and a 100000-point Latin 
hypercube sample for large-scale designs (m>3) is 
used. These designs give points uniformly 
distributed in the design space and tend to 
minimize the expected mean squared error of the 
local quadratic approximation [23]. Fang and 
Wang [24] introduced a similar criterion, named 
Mean Squared Error. In [23], a quick search 
algorithm for the minimization of the MSD 
criterion for Latin hypercube designs in the unit 
cube [-1,1]m as well as for designs with 
unconstrained level values and numbers in unit 
cubes or m-dimensional spherical regions was 
proposed.  

For the purpose of comparing with other 
designs, the distances and other characteristics of 
experimental designs are computed after the 
designs are scaled into the unit cube [0, 1]m, 
although the designs are mostly constructed in an 
m-dimensional cube [-1, 1]m. 

For comparing with other space filling 
designs, four additional criterions have been used. 
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1. Eglais’ criterion [4], later proposed also by 
Morris and Mitchell in a more general form [25] 
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          (9) 

 
2. The MINDIST criterion, which seeks to 

maximize the minimum distance between any pair 
of points in the data collection plan [11] 
 

( )2

, 1,..., 1
MINDIST min

m
u v
i iu v N i

x x
= =
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3. The entropy criterion first proposed by 

Shewry and Wynn (1987) [26] and then adopted 
by Currin et al. (1991) [27]. The entropy criterion 
for designs in unit cube [0,1]m is equivalent to the 
minimization of Clog− , where C is the NN ×  
covariance matrix of the design with elements  
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where  i, j=1,…,N. Throughout this paper the 
value q = 2 is selected thus that the correlation 
between two points is a function of their 
Euclidean distance L2, and Θ  is set equal to 2. 

4. The discrepancy criterion, which averages 
the squared difference in the cumulative density 
function [28] 
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Table 2 shows a comparison of three 16-run 
designs of 7 variables for all five criterions. 

MMSDLH stands for Minimal MSD Latin 
hypercube design; ULH stands for Uniform 
Design Based On Centered L2 Discrepancy Un 
(ns) [29] and MBLH is a Minimum Bias Latin 
hypercube [28]. It can be seen that the MMSDLH 
plan performs better than the others according to 
all five criterions. 

For the identification problem formulated in 
the present paper, an MMSDLH-type design with 
101 runs and 5 factors is employed. For this 
design the values of criterions are as follows: 
MSD=0.2051, Φ2 =89.0740, MINDIST=0.3808, 
Entropy=69.7806, DC =0.0453. 

 

TABLE 2 Comparison of 16-point designs for 7 
variables  

Design MMSDLH ULH MBLH 

MSD 0.3942 0.4006 0.3947 

Φ2 9.5196 9.5449 9.5281 

MINDIST 0.8869 0.8353 0.8000 

Entropy 0.2900 0.3123 0.3147 

DC 0.2464 0.2289 0.2468 

 
 
MINIMIZATION  

Unlike the parametric quadratic 
approximation commonly used in the response 
surface method, the minimization of a locally 
approximated function is more difficult. 
Generally, any method of non-linear 
programming can be used.  However, using the 
derivatives is not appropriate because the 
approximating function cannot be smooth enough 
and may have a lot of local extremes. Two 
methods are employed in order to obtain a global 
minimum of the locally approximated function of 
interest. 

The first method is iterations. A randomly 
selected point in the design space is taken as a 
starting point. Subsequently, a local 
approximation is built in this point and the 
coefficients β are found according to (7). Then the 
minimum point of the approximating function is 
calculated with fixed values of coefficients β. 
This is a simple problem, which requires the 
solution of a system of only five linear algebraic 
equations. Afterwards in this new point a local 
approximation is built and the search is continued. 
We should be convinced that the true minimum 
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was found. In the case when the process 
converges (and converges to the same point from 
all starting points), there is a high probability that 
the actual minimum was found. From experience 
it can be concluded that in this case the physical 
parameters of the plate are correctly identified. 

Unfortunately, two alternative cases are 
found to be more common. First, the process can 
converge to a point outside of the region in which 
the experimental design was planned. In this case 
the center of the experimental design (for FEM 
calculations) should be moved or the bounds 
should be shifted.  

In the worst case, when the iterative 
procedure diverges or gives a lot of local 
extremes, the second method, a global search, is 
used [30]. Approximately 100000 points from the 
randomly selected Latin hypercube type sample 
are tested and the best point is selected. Then the 
search domain is reduced around this point and a 
new random search is performed until an 
acceptable accuracy of the extreme values is 
obtained. 

This is a computationally more expensive 
way than the iterative search, since one 
calculation of the approximating function needs to 
solve the system of 21 linear equations (the 
Cholesky decomposition method has been used). 
The entire process requires about one to two 
minutes of calculation time on a Pentium 800 
MHz processor, but compared with the time of 
the FEM simulation this time is negligible. 

After the minimum of the approximating 
function of interest is found, Na confirmation 
points near the optimal values should be 
calculated to verify the accuracy of identification. 
These points can be used as additional points and 
optimization may be recalculated employing 
N+Na design points in order to improve the 
accuracy of the solution. Note that when the 
optimum of the locally approximated function is 
found, the true value of the function is verified by 
FEM in any case. 
 
RESULTS AND VERIFICATION  

To build the local approximations, an 
MMSDLH type design with N=101 sample points 
in five dimensions is used. These sample points 
are distributed in the domain of interest, which is 
formed by the lower and upper bounds of 
variables. The initial guess values of these bounds 
can be chosen employing the elastic constants of a 
similar material. If the identified values are 
outside of the region, the bounds should be 

shifted and the procedure of identification should 
be repeated. Thus, the domain of interest is 
corrected in few stages of identification. For the 
present example, in the first stage the domain of 
interest was chosen as follows 
 

1

2

12

23

12

168 174
9.5 11.5
5.2 7.2
4 8
0.2 0.45

E
E
G

G
ν

≤ ≤
≤ ≤
≤ ≤

≤ ≤
≤ ≤

 (12) 

 
Here the Young’s and shear modulus are given in 
GPa, but Poisson’s ratio is a non-dimensional 
quantity. In sample points (j=1,2,…,N), the 
equation (3) was solved and eigenvalues λi(xj) 
were obtained. These eigenvalues are treated as 
original function. Approximations )(ˆ xΦ  of the 
original function (5) were obtained using the local 
approximation method described above. 

Twelve experimentally measured frequencies, 
which are presented in Table 1, can be used in 
identification in any combination. First, all 12 
experimental frequencies were used in 
identification by minimizing the functional (5). 
Then, only the first six frequencies were 
employed in identification. In this case of 
minimizing the functional (5), the following 
elastic constants were obtained 
 

* (170.7,10.4,6.2,5.6,0.34)x =  (13) 
 
Practically the same results were obtained 
employing all 12 experimental frequencies in 
minimization of the functional (5). It should be 
noted that, employing the global approximations, 
the results (13) for the first four constants are 
approximately the same. The exception is 
Poisson’s ratio, which can be reliably determined 
only by using the local approximations. 

The verification of the results was performed 
by calculating with FEM the original function in 
the point of optimum (13). Then the numerical 
values were compared with the experimental 
frequencies. Residuals were calculated by the 
expression 
 

exp

exp

( *) 100
FEM

i i
i

i

f x f
f

−∆ =  (14) 
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The results are shown in Table 1. It can be seen 
that the differences between the experimental and 
numerical frequencies are very small. Mostly the 
residuals do not exceed 1%, even for those six 
frequencies which were not used in identification 
(frequencies i=7,8,13,15,16,17). However, since 
higher frequencies are less sensitive to elastic 
constants that lower frequencies, in addition to the 
residuals ∆i the range of each frequency in the 
space of the experimental design should be 
compared. In the last column of Table 1 the 
relative amplitude of each frequency ∆fi  in the 
experimental design space is presented. The 
relative amplitude is calculated by the expression 
 

max min

exp 100i i
i

i

f ff
f
−∆ =  (15) 

 
Here 
 

max minmax ( ), min ( )
jj

j j
i i i i

xx
f f x f f x= =  

 
In Table 1 it can be seen that lower frequencies 
are more sensitive to the elastic constants.  
However, the amplitude in the design space for 
the 8th and 13th frequency is also considerable. 

 

TABLE 3   Comparison of elastic constants 
obtained from vibration and static tests. 

Static test Elastic 
constant 

Vibration 
test 

RTU IAI DLR 

E1, GPa 170.7 176 
(143) 

165 
(175) 

192 
(147) 

E2, GPa 10.4 8.9 
(9.6) 

9.2 
(11.8) 

10.6 
(9.7) 

G12, GPa 6.2 5.2 5.4 6.1 

G23, GPa 5.6 - - - 

ν12, GPa 0.34 0.34 - 0.31 
(0.34) 

 
 
       In order to validate results, it is necessary to 
compare the properties obtained from the 
vibration tests through identification with those 
obtained from an independent test. Conventional 

static test was selected as the independent test. 
Static tests were performed according to ASTM 
guidelines (RTU-Riga Technical University and 
IAI-Israel Aircraft Industry LTD) and DIN 
standards (DLR-German Aerospace Center). 
Results are presented in Table 3. The values 
obtained by the compression test are given in 
parenthesis. Generally, a good agreement of the 
results is observed. 
 
 
CONCLUSIONS  

The elastic constants of an unidirectionally 
reinforced laminate have been determined 
employing the identification procedure based on 
the experimental design and response surface 
method. For this, minimal Mean Square Distance 
Latin Hypercube (MMSDLH) designs and local 
approximations were used. It was shown that the 
elastic constants obtained from vibration tests 
through identification are in good agreement with 
the values obtained by conventional static tests. 
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ABSTRACT
Non-lineardamping forcescanbequantified usingthe

force statemapping technique and this methodof non-
linear identification hasbeensuccessfullyappliedto a flu-
idelasticsystem.However, whenappliedto a systemwith
low damping this methodbecomesunacceptablysensitive
to small phasedistortions which may be causedby ei-
ther the instrumentationor numerical differentiation. It
hasbeenshown previouslythatasimpleoptimizationtech-
nique(downhill simplex search)canbeusedto accurately
identify light dampingin a singledegreeof freedom linear
system,andthis technique hasbeenusedto obtain equiva-
lent linearizeddampingparametersin afluidelasticsystem
wherethedamping mechanismsareinherently non-linear.
This approach has the advantagethat it is insensitive to
phaseerrors asonly oneresponsemeasurement is required
asinput,howeverit is currentlyrestrictedto linearsystems.
This paperextends the technique to explicitly account for
non-lineardamping terms. Responsedatafor a singlede-
greeof freedom systemwith a small cubic damping term
areobtainby numericalsimulationandareusedto demon-
stratetheenhancedprocedure. Thetechnique is shown to
berobustin thepresenceof line noiseandtheeffect of ini-
tial parameter estimatesis explored.

INTRODUCTION
Whenconsidering the dynamic responseof a system,

thedampingmechanismsareoftenof mostinterest,since
it is thedampingwhich will govern theamplitudeof mo-
tion, in the caseof forced vibration, andthe longevity of
vibration in transientresponse. However, thesedamping
forcesareoftenorders of magnitude smallerthanthestiff-
nessforces.This, coupled with the fact thatdissipationis
oftendueto non-linearmechanisms(e.g. Coulombdamp-
ing; fluidelasticdamping), makesquantificationof thepa-
rametersassociatedwith thedampingforcesdifficult.

This situation is typified by fluidelastic systemsin
which the fluid dynamics is stronglycoupled with struc-
turaldynamics.Theresultingvibrationmaybeselfexcited,

large amplitude andself limiting, a phenomenon referred
to as fluidelastic instability. One example of fluidelastic
instability can be found in heatexchangerssubjectedto
crossflow. An excellent review of fluidelasticinstability in
tubebundles(i.e. heatexchangers)hasbeenpublished by
Price[1]. It canbeconcludedfrom this review thattheself
exciting natureof fluidelasticinstability maybedescribed
well with a linearmodel: anegative lineardamping, which
is causedby thecoupling of thefluid andstructuralsystem,
increaseswith flow velocity. The onsetof instability (the
“critical velocity”) is thenpredictedwhenthe total damp-
ing becomesnegative. Sucha model predicts a dynamic
divergence. However, in the physical system,limit cycle
behaviour is oftenobserved. Prediction of suchbehaviour
requiresa non-linearmodelof thefluid force, particularly
thedamping. While it is truethatstructural non-linearities,
suchasimpacting will bemoresubstantial,Pricenotedthat
a non-linear forcemodel is still desirable,sinceit will de-
terminethe energy available in the system. The experi-
mentalidentificationof a non-linearmodel is problematic,
sinceeven in a post-criticalregime, the non-linear forces
are extremely weak. Thesegeneral observationscan be
equally well appliedto other fluidelatic systemssuchas
aerofoil/hydrofoil flutteror galloping of bluff bodies[2, 3].

Although fluidelasticbehaviour wasthemotivationfor
thisstudy, thetechniquesdescribedbelow arenotrestricted
to suchsystems.The centralissuehereis the parametric
identificationof smallnon-lineardamping forcesin anoth-
erwiselinearsystem.

PARAMETER ESTIMATION PROCEDURES
Marsi & Caughey [4] describeda parametric estima-

tion procedure,referred to as force statemapping, which
hastheadvantagethat the identificationproblem is linear,
even for a non-linear model, but it doesrequirethat the
structure’s statevariables (displacementand velocity) be
measuredsimultaneouslywith thetotalexcitationforce(in-
cluding the systemacceleretion). As well ashaving been
applied to systemswhich include strong non-linear ele-



ments[4, 5, 6], it hasalsobeenusedsuccessfullyto identify
a weakly non-linear model for fluidelasticinstability [7].
However, it hasbeennotedthat for a systemwith light
damping, theestimatesof thedamping parametersarevery
sensitivetosmallphasedistortionsof themeasuredsignals,
whichcaneasilyresultfrom theinstrumentation.This will
betruefor any time domaintechnique which requiressev-
eral synchronous measurements. For this reason, a tech-
niquewhich requires only a singlemeasuredresponse is
desirable.

Mottershead& Stanway[9] proposedsucha schemeto
directly estimatetheparametersof a non-linearsinglede-
greeof freedom systemfrom only a single noisy obser-
vation channel (e.g. acceleration). Unlike the force state
mapping technique,thisprocedureis iterative,andrequires
an inital estimateof the parameters. The authorsapplied
the technique to identify the parametersof a systemwith
nth-powervelocity damping. Similar techniqueshavebeen
appliedby Yar & Hammond[10] and Stanway et al.[11]
to identify non-linearhysteretic anddamping behaviour in
systemswith a singledegree of freedom. In all threestud-
ies,a random forcewasusedto excite thesystemthesys-
tem.

Theiterativetechniqueis startedwith aninitial estimate
for theparametersetto beidentified. Thisparametervector
includestheinitial conditionsof thesystem.Theexcitation
forceis assumedto have beenmeasuredexactly, which in
practiceis probably not the case. The measuredforce is
usedasinput to asimulationof thesystemwith theparam-
eter valuesset by the initial estimate. The simulationis
basedon a Runge-Kutta integration of equationof motion
of thesystem.Thetotal errorbetweentheresultingsimu-
latedresponseandtheexperimentallymeasuredresponseis
thencalculated.For example,if accelerationwasmeasured

��� ������
	�
������� 	��������������� (1)

where 	�
����� is the measuredsignal, 	������� is the simulated
signaland � is theobservation time. Theacceleration re-
sponseis usedhereasit is arguablytheeasiestto obtainex-
perimentally. Theidentificationthenproceedsby minimiz-
ing � with respectto theparameter set. Theminimization
is achieved by usingtheGauss-Newton procedure. This is
a first orderminimizationroutine andso at eachiteration
thefirst derivative of thecostfunction with respectto each
parameteris required. Thesederivativesarecalculatedas
part of the Runge-Kutta scheme,however, this canintro-
ducea phaseerror into the simulatedtime records which
maytranslateinto anerror in thefinal parameter estimates.

Meskell & Fitzpatrick[8] employed a similar method
to identify theequivalentlinearizedparametersin a fluide-
lasticsystem.Theapproachusedby theauthors is broadly

similar to theonediscribedabove,but with threeimportant
differences:
� Thedownhill simplex searchdevelopedby Nelder&

Mead [12] was usedto minimize the cost function.
This algorithm hasthe advantagethat it doesnot re-
quire any derivatives with respectto the parameter
setandit is straightforward to implement. This al-
leviatestheadditional sourceof errordueto numeri-
cal estimationof derivatives. Although it is true that
the minimum is approachedmoreslowly thanin the
Gauss-Newtonmethod, themoderndesktopcomputer
capacitymeansthat this is not sucha critical issue.
TheDownhill simplex schemealsohastheadvantage
thatit is quiterobust.

� In thepreviouswork [8] themeasuredresponsedata 	�
wasobtainedfrom afreedecaytestwith noadditional
excitation. As will beshown below thisoffersconsid-
erableadvantages over forced response, particularly
in termsof the reliability of the parameterestimates
obtained.

� Since the model that was identified previously was
linear, at eachiterationthe response 	� could be cal-
culatedwith ananalyticalsolutionratherthanwith a
Runge-Kuttaintegration. This meantthattheidentifi-
cationprocedure wasvery inexpensive computation-
ally. While it is possibleto develop analytical solu-
tionsfor thefreeresponseof someweaklynon-linear
systems,this is not generally the case. Therefore,
in this papera fourth order Runge-Kutta integration
schemeis usedto obtain the responsefor both free
andforcedsituations.

This paper will extends framework employed by
Meskell & Fitzpatrickto includeweaknon-lineardamping
forces andexplores the effect of measurement noiseand
initial parameterestimateson thefinal identifiedvalues.

EFFECT OF EXCITATION IN THE PRESENCE OF
LINE NOISE

The studiesdiscussedabove [9, 10, 11] have shown
thattheestimatesof parametersmaybecomeunreliable in
the presence of line noiseon the measuredresponseand
aswouldbeexpectedweakforcesaremoreproneto error.
This problem canbe alleviatedsomewhat by the addition
of a noisemodel [11]. Alternatively, if the measured re-
sponseis transient(i.e. a free decaytest), the technique
becomesmorerobustto line noise,evenfor theweaknon-
linear forcesof interesthere. An additional advantageis
thatanidentificationtechniquewhichdependsonly onfree
responsedatawill notbeproneto errorsdueto noiseor rel-
ative phasedistortion in theexcitation forcemeasurement.
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Figure1: Schematicof weaklynon-linearsystem.

However, thediscussionherewill beconfinedto theeffect
excitationontheparameterestimatesin thepresenceof line
noisewithoutphasedistortion of theunderlyingsignal.

In orderto illustratethe differencebetweenparameter
estimatesobtained from forcedandfreeresponse,consider
thespecificsingledegreeof freedomsystemshown in Fig-
ure . This is basicallya linear systemwith a weaknon-
linearcubicdamping element.

Theequationof motionfor thesystemis:

	� �"!� �$#�%�&��'(%�*) �,+ ����� (2)

Note that theparameters ! , # and ' aremassnormalized,
asis theexcitationforce + �-��� . A fourth orderRunge-Kutta
schemewasusedto generate4 seconds of dataat a sample
rateof 2048Hz with the following systemparemeterval-
ues:

Parameter Value

! �/. � 021�34365879�# 04: 3�547�;' < : 3�52=>7?�

Table1: Exactsystemparametervalues.

For the random excitation forcedresponsesimulation
theexcitation, + �-��� wasbandlimitedwhitenoise(0-100Hz)
with a variance of @ : 3 N � kg 7?� . The systemwas started
from equilibrium i.e. ��� 3 � � 3 , %��� 3 � � 3 .

For the simulationwith deterministic excitation, + �-���
wasa SweptSinewith a frequency rangeof 0-100Hz. The
periodof the SweptSInewas4 seconds. The amplitude
on the excitation was 3.8ms 7?� . The simulationwas ini-
tially startedfrom equilibriuim, but wasallowedto run for
10 periodsof the excitation to allow the systemto estab-
lish a periodic response. Oncethis wasachieved the re-
sponsesignalsfor oneperiod(4s)wererecorded.Thestate
variablesat the start of this final periodwere also noted
( ��� 3 � � �A< :CBD7*E , %��� 3 � � � BF: GIH$0J3D79� ). In this way the
initiatial conditions of thesystemareknown.

For the transientresponse, + �-��� waszero,but the sys-
temwasreleasedfrom restwith a non-zerodisplacement:��� 3 � � 3K: 3K0 m, %��� 3 � � 3 .

This choiceof initial conditions andamplitudesyields
the comparablestandarddeviation in the acceleration re-
sponsesassociatedwith the threesimulations. As an in-
dicationof the relative contributionsof the force termsin
equation 2, thestandarddeviation of eachtermis listed in
table2 below for the threedifferent typesof excitation. It

Standard deviation( =L5F7?� )
Forceterm Free Random

Swept
Sine

Excitation - 3.0 2.7
Acceleration 5.3 5.3 5.3
Stiffness 5.3 4.5 4.5
Lineardamping 0.13 0.11 0.11
Cubicdamping 0.011 0.009 0.013

Table2: Responsestatistics

canbeseenfromthisthatthemagnitudeof theacceleration
signal, which will be usedas input for the identification
procedure,is comparablein all threecases.It is alsoworth
noting that the cubic damping term, which is of most in-
terestin this study, hasthelowestvalueandis nearly three
orders of magnitudesmallerthanthestiffness.

Thedataobtainedwasusedasinputto thealgorithmde-
scribedabove: aRunke-Kutta integrationbasedonthecur-
rentparameterestimatesateachstepof adownhill simplex
search. Line noisewas simulatedby adding exactly the
samerandom Gaussiansignal to the transientandforced
responses.Six levelsof noisewereexaminedin therange
0%-10% wherethepercentageindicatesthestandard devi-
ationof thenoiseasa fraction of thestandard deviationof
theresponse.Figure2 shows anexample of noisecorrupt
free response. In this instancethe noiseis 10% with the
noisefreesignalsuperimposedfor comparison.
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Figure2: Noisecorrupt freeresponse.
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Figure3 Distributionof estimatesof # from differentinitial estimatesatvarious levelsof noise
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Therearefiveparameterstobeidentified:theinitial dis-
placement andvelocity; stiffnessterm; thelineardamping;
andthecubicdamping. Sotheparametersetis

M �ONP��� 3 � %��� 3 � ! #Q'
R (3)

In practiceit is the last two parameters(the damping
parameters) which areof primary interestandsoattention
will focuson these.

In order to isoloatethe effect of the excitation signal
on thefinal parameter estimatesfrom theeffect of the ini-
tial parameter estimates,the identifcation procedure was
appliedto eachof thethreeresponserecordsusing100dif-
ferentsetsof initial parameterestimates.Theinitial condi-
tions for thesystemwereassumedto beknown exactly,as
wasthestiffness.Thus,theinitial parameterestimatesetis
givenby M � � N � � %� � 021�343 # � ' � R (4)

with � � � 3F: 3F0�ST3 or �U< :CBVHW0J3F7?E and %� � � 3FSX3 or� BF: G>HY023F7?� for free, random and sweptsine response,

respectively. Both # � and ' � weresystematicallyassigned
valuesupto100% over- andunderestimatingtheexactval-
ues.

As with any iterativeoptimization techniquethedown-
hill simplex method requiresa terminationcriterion in or-
der to determine that acceptableconvergenceon a mini-
mumhasbeenachieved. In this case,the optimization of
theparametersetwasterminatedoncethenormalizedsize
of thesimplex bracketing thesolutionfell below a certain
value. This metric is an indicationof how rapidly the so-
lution setis changing, andsois anindirect measureof the
gradient of the cost function in the region of the current
estimateof theparameterset.A secondary termination cri-
terionspecifyingamaximum numberof iterationswasalso
set.It wasfound that1000 iterationsof theschemewassuf-
ficient,with thecostfunction(equation 1) oftenminimized
in lessthan300iterations.

Figures3 and4 show the distribution of the final esti-
matesof # and ' (normalizedwith the exact values)ob-
tainedfrom the 100 different initial estimatesetsfor the



threetypesof responseat5 levelsof line noise.Resultsfor
zeronoiseis not shown hereasall threeresponsesiden-
tified the damping parameters to within 1% of the exact
valuesregardlessof the initial estimates. It shouldalso
be notedthat the final estimateof stiffness, ! , andinitial
conditions, ��� � S %� � � , arealwayswithin 1% of the correct
values.This is significantin that it demonstratesthat, the
optimizationproceduredoesnot diverge, at leastin these
threeparameters,astheinitial estimateswereexact.

The distributions in Figure 3 show that all three re-
sponsetypesprovidegood estimatesfor thelineardamping# evenat high levelsof noise.Thetransientandsweptsine
responsedataperform comparablywell, with themajority
of estimatesbeingwithin 10%of theexactvalue.However,
therandom excitationdatais morelikely to underestimate
thevalue of # .

Theestimatesof thecubicdampingshow adifferent be-
haviour. Firstly, it is apparentthat thereis a larger spread
in theestimateswhencomparedto thosefor # for all three
responsetypes. At low levels of line noise(up to 2.5%)
the threetypesof responsedataagainprovide reasonable
reliability, with themajorityof estimateswithin 30%of the
exactvalueof ' . However, even attheselow levelsof noise
it is apparentthatthetransientresponseoffers superiorre-
liability whencomparedto therandom responsedata.The
sweptsine estimatesaremarginally lessreliableat these
low noiselevels, asindicatedby the slightly moresignif-
icant spreadin the distribution. At higher levelsof noise,
it is obviousthat thetransientresponsedatais morelikely
to offer anaccurateestimateof ' . Indeed,thereis no sig-
nificant reduction in the likelihoodof an acceptable level
of accuracy with increasednoisefor estimatesbasedonthe
freeresponsedata.For boththesweptsineandtherandom
responsedata,theestimatesof ' deterioratesignificantlyat
higherlevelsof noisealthoughtheestimatesfrom theran-
domresponsedataarearguablyworsethanthosefrom the
deterministic excitation.

For therandomresponsedatait seemsthat,in thepres-
enceof noise,thefinal estimateof ' is closeto the initial
estimate.In otherwords,thecostfunction (equation 1) is
relatively insensitive to thevalueof ' . Similar behaviour
canbe seenin the resultsof Yar & Hammond [10]. It ist
emptingtoarguethatthereasonfor thepoorpredictionof '
is dueto its smallcontribution to thetotal force. However,
the free responsedatahasvery similar relative contrubu-
tionsascanbeseenin Table2.

Theseobservationscanbesummarizedby considering
theabsoluteerrorin theparameterestimatesaveragedover
all the initial parametersets.Figure5 shows thevariation
in theaverageerror in theestimateof the lineardampingf# asnoiselevel increases.As discussedabove, the tran-
sientresponseoffers marginally morereliableresults,but

all threeresponsetypesoffer reasonable estimates.In fig-
ure6, thevariationof themeanerror in thefinal estimates
of ' is seento besimilar in trendto thatin figure5. How-
ever, thesizeof theerrorfar more significant. In this case
thetransientresponseoffers farsuperiorresults.
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EFFECT OF INITIAL ESTIMATES

The performance of the identifcation procedure will de-
pendon the initial estimateof the parameters. To assess
this, theerrorassociatedwith thefinal parameterestimates
will be considered whenthereis 10% line noise. As be-
fore,the first threeparameters of the initial parameterset
(equation 4) aregiven the appropriateexact values. The
valuesof # � and ' � areagainvariedsystematicallyin the
range 3[Z #J\]�*^_#`�,ab< H #c\`�*^_#`� and 3dZ '
\X�*^_#`�ea< H '?\X�?^_#`� respectively. For transient responseit wasfound
that for # � � 3 the procedure diverged, but even a small
non-zerovalueproducedconvergence.
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Theabsoluteerror in thefinal estimatesof # and ' for
therange of startingestimatesis shown in figures7 and8,
respectively. Note that theseerrors areshown aspercent-
ages.

Agian it is apparent that the transientresponse data
will, generally yield bettervaluesfor the systemparame-
ters. This is idicatedby themuchlargerareaof low error
(white region) in figure 7(a) comparedto figure 7(b) and
(c). Thesameis trueof figure8.

In figure 7(a), the identifiedvalueof linear damping,# , is within 10% of the actualvalueof 04: 3�5*7
; except for
low valuesof # � , andeventhenthefinal estimateis reason-
able.Although themaximum errorassociatedwith thecu-
bic damping ' is more thananorderof magnitudegreater
(seefigure8), theerror is lessthan100% aslong as # � is
not very small. For transientresponsetheestimateis bet-
ter than20% for abouthalf the rangeof initial estimates
evaluated.

In contrast,figure7(c)andfigure8(c)demonstratethat
therandomexcitationwill yield accurateresultsonly if the

initial estimatesarecloseto theexactvalues.

Examining thefigure7(a)andfigure8(a)together sug-
geststhatthebeststrategy for choosinginitial estimatesis
to slightly under-estimatethe linear damping (i.e. # �Yf#2\hgJicj
k ) and over-estimatethe cubic damping (i.e. ' �ml'9\hgnioj
k ). In practice,theexactvaluesareunknown; this is
afterall why an identification technique is needed.How-
ever, anappropriatevaluefor # � couldbeachievedby first
estimatingthe equivalent linear damping (i.e. ignore the
non-lineardamping [8]) which couldbescaledby a value
closeto unity.

Yar & Hammond [10] recommendedthat thedamping
parametersshouldbeinitially over-estimated.Theauthors
of that study were examining a systemwith a hysteretic
restoringforcesubjectto random excitation. Further inves-
tigation is needed to clarify whetherthe appropriatestat-
egy for choosingthe initial parametervaluesdepends on
thesystemmodel or on theexcitation or both.



Conc lusions

An iterative time domain techniquehasbeendescribedfor
theparametric identificationof a singledegree of freedom
modelwith weaknon-linear damping. Although it is an
iterativeparamteric identification technique,only aninitial
estimateof theparametersetis required,notthederivatives
of the cost function. The specificcaseof a systemwith
cubicdampingwasconsideredin whichthecontributionof
thenon-lineardamping forcewas2-3 orders of magnitude
smallerthanthatof thestiffnessforce.

It hasbeenshown that parameter estimatesbasedon
free response data are considerably more reliable in the
presenceof line noisewhencomparedto thosevaluesob-
tainedfrom forced responsedata.Both random anddeter-
ministicexcitation signalshavebeenexaminedandin both
casesthetransient responseofferedsuperiorparameteres-
timates.

Using theprocedure,theeffect of initial parameteres-
timateshasbeenexplored for the testsystemandstrategy
for choosing thesevalues is discussed.However, it is likely
that this strategy for choosingthe initial estimatesis not
generalbut rather it is specificto the free responseof the
particularsystemunder investigation. Indeed, furtherwork
is neededto establishif theoverall approachis applicable
to othersystemsandif it is robust in the presence of un-
known excitation, suchaswould bethecasein fluidelastic
systemswhereturbulencewill alwaysbepresent.

In principlethismethodcanbeeasilyextendedtomulti-
degree of freedom systemswhich have weaklynon-linear
components.However, careshouldbetakenasevenwith a
singledegreeof freedom systemthedimension of thepa-
rameterspacewas5. (the likelihoodof successwith any
iterative optimization procedurewill reduceasthenumber
of parametersto be found increases).Onepossiblestrat-
egy for overcoming this issueandreducing thesizeof the
parameterspacewould be to usethe parameterestimates
of an equivalent linearizedsystemwhich canbe obtained
with aonestepprocedure(suchasleastsquares)astheini-
tial values.Thistypeof approachhasbeenusedpreviously
with somesuccess[11].

Not withstandingthesecomments, the basic method
hasbeenshown to bea likely candidatefor anaylsis of ex-
periemntal data.It is widely known thatfor linearsystems
estimatingthedamping canmosteasilybedone from free
responsedata.This paper suggeststhat thesamis truefor
non-linear systems. Thus, for a non-linear systemwhen
non-lineardamping parameters areof primary interest,the
transientresponseoffers more accurateresults.
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ABSTRACT
The present work approaches the problem of

identification of the elastic and damping fields of
a medium by means of a time domain technique.
This technique is within the inverse problems
scope, i.e., the solution of the problem is sought
by means of the minimization of a suitable er-
ror function which includes data from both the
system model and the experiment setup for the
same input excitation. In order to assess the ef-
fectiveness of the proposed method, simulations
on a bar-like structure have been performed un-
der impact loading and considering the corrupt-
ing effects of noise.

NOMENCLATURE

Matrices
C Observability matrix.
D System damping matrix.
K System stiffness matrix.
M System mass matrix.

Vectors
d Direction of descent.
f External force.
p Parameter vector.
x System displacement field.
y System observable variable.
yE System measured data.
λ Lagrange multiplier.

Scalars
E Elastic field.
G Damping field.
n Number of degrees of freedom.

β Search step size.
A Bar cross section area.
Φ Classical Lagrangian piecewise linear shape
functions.

INTRODUCTION

Aiming at taking advantage of the dynamical
properties of each material in a system design,
it is required the fully understanding of the me-
chanical behavior of these materials. This be-
havior can be described by different models such
that the designer has some freedom to choose
the most suitable one for a certain type of ap-
plication that the material will be part of. Once
one has in hands the chosen model that will
be used to describe the mechanical behavior of
the material under study, the next step usu-
ally consists in determining the set of param-
eters that characterizes this model. The iden-
tification of these parameters provides a math-
ematical model which enables one to simulate
and predict the response of the material when
it is subjected to a certain excitation. In par-
ticular, the mechanical behavior of viscoelastic
materials is of great interest in engineering sci-
ences such as mechanical, civil, aerospace and
biomechanical. The technical literature con-
cerned with the identification of viscoelastic ma-
terials is very extensive and it presents different
approaches to the problem [1], [2], [3], [4], [5],
[6], [7] and [8] can be cited as the most recent
ones. The present work is built on the use of
a constitutive equation for viscoelastic materi-
als parameterized by a set of unknown consti-
tutive parameters and makes use of a time do-
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main technique to identify this set of parame-
ters. The solution technique is within the in-
verse problems scope, i.e., the solution is sought
by means of the minimization of a suitable error
function which includes data from both the sys-
tem model and the experiment. The technique
takes into account the constraint associated to
the system evolution equation as being part of
an extended error function what naturally gives
rise to the Lagrange multiplier variables which
are obtained via solution of an adjoint problem
[9], [11] . The effectiveness of the technique is
assessed on simulations performed on a bar-like
structure, where strains or displacements are
measured at a subset of the system degrees of
freedom. The simulated experiment consists on
a bar under dynamic loading excitation and in
order to furnish realism to the simulations, it is
considered the corrupting effects noise.

DIRECT PROBLEM
Consider an n−DOF linear dynamic system

such that its discretized evolution equation is
given by





Mẍ(t) + Dẋ(t) + Kx(t) = f(t)
y(t) = Cx(t)
x(0) = x0

ẋ(0) = ẋ0

(1)

where M, D and K are nxn matrices describing
the mass, damping and stiffness properties re-
spectively and the n dimensional vectors x and
f correspond to the system displacement field
and to the external loading applied to the sys-
tem. The matrix C associates the system DOF
to the measured observable variables y, which
in turn, can be displacements or strains. The
direct problem consists basically in determin-
ing the transient displacement field x(t) when
the external load is known. It should be em-
phasized that the direct analysis assumes a pri-
ori that the material behavior is known, fact
that, for the present problem, means that one
has in hands the constitutive equation between
stress and strain for the material under study
and moreover, the actual value of the param-
eters of this constitutive equation is available.
In equation (1) it is implicit that the property
matrices D and K are in some way functions
of the parameters that characterize the material
constitutive equation, viz.

K = K(p) and D = D(p) (2)

where the vector p contains both elastic and
damping parameters upon which the material
constitutive equation is defined.

INVERSE PROBLEM
For the inverse problem, the elastic and damp-

ing parameters p are considered to be unknown.
It is also assumed that there is set of experimen-
tal data available yE(t), t ∈ [0, tf ], which can be
used as the additional information for the esti-
mation of the parameters p and consequently
the matrices K and D. The idea is to minimize
a suitable error function which consists basically
of the norm of the difference between the mea-
sured data yE(t) and the data obtained from
the system model y(t) for the same input exci-
tation. The error function Ĵ1(p) is defined as
follows

Ĵ1(p) =
∫ tf

0

[y − yE ]T [y − yE ]dt (3)

Therefore, the goal of the inverse problem step
is to estimate the Np-dimensional vector of un-
known parameters p through the minimization
of Ĵ1(p). The search step size determination will
be presented later.

Parameter Estimation
The technique used for parameter estimation

is the Conjugate Gradient Method, which is a
powerful iterative technique for solving linear
and nonlinear inverse problems of parameter es-
timation [9]. In the iterative procedure of the
conjugate gradient method, at each iteration a
suitable step size is taken along a direction of a
descent in order to minimize the error function
as follows

p(k+1) = p(k) − β(k)d(k) (4)

where k indicates the current iteration, β(k) is
the search step size, d(k) is the direction of de-
scent which is defined as follows

d(k) = ∇Ĵ (k) + γ(k)d(k−1) (5)

For the conjugation coefficient γ(k), among some
possibilities, one has chosen

γ(k) =
∇Ĵ (k) · [∇Ĵ (k) −∇Ĵ (k−1)]

∇Ĵ (k−1) · ∇Ĵ (k−1)
(6)

Further details about the previous choice may
be found in [10].
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Sensitivity Problem
The sensitivity function ∆x(t), which is the

solution of the sensitivity problem, is defined
as the directional derivative of the displacement
field x(t) in the direction of the perturbation of
the unknown parameter vector p [9]. The pre-
sentation of the sensitivity problem is required
in order to obtain the search step size β(k). Aim-
ing at obtaining the sensitivity problem one as-
sumes that the displacement field x(t) is per-
turbed by an amount ∆x(t) when the unknown
vector of parameters p is perturbed by ∆p such
that

x(t,p + ∆p) = x(t,p) + ∆x(t,p) (7)

D(p + ∆p) = D(p) + ∆D(p) (8)

K(p + ∆p) = K(p) + ∆K(p) (9)

The evolution equation for the system under
this new set of parameters casts as follows

M[ẍ + ∆ẍ] + [D + ∆D][ẋ + ∆ẋ] +
+[K + ∆K][x + ∆x] = f (10)

and

y + ∆y = C[x + ∆x] (11)

Where x = x(t,p) e y = y(t,p). Applying the
initial conditions to the new solution x(t,p +
∆p) and considering that the equation (7) must
hold leads to the following initial conditions for
the sensitivity problem

∆x(0,p) = 0 and ∆ẋ(0,p) = 0(12)

Hence, disregarding the second order terms of
equation (10) and considering that the terms as-
sociated to the evolution equation of the system,
which are present in equations (10) and (11), are
automatically satisfied, enables one to state the
sensitivity problem as follows





M∆ẍ + D∆ẋ + K∆x =
∆Dẋ + ∆Kx
∆y = C∆x
∆x(0) = 0 ∆ẋ(0) = 0

(13)

Adjoint Problem
The adjoint problem naturally appears when

one considers that the displacement field x(t)

needs to satisfy the evolution equation described
in (1), which is the solution of the direct prob-
lem. Therefore, instead of considering the evo-
lution equation as an additional constraint of
the minimization problem, one may consider it
naturally inherent to the own functional to be
minimized. The price that has to be paid is
the inclusion of a new set of variables into the
problem under study, which are simply the well
known Lagrange Multipliers λ(t). The Lagrange
multipliers λ here belong to the n-dimensional
vector space. So, the new functional that has to
be minimized Ĵ(p) encompasses the one defined
in (3) and a new one Ĵ2(p) which is defined as
follows

Ĵ2(p) =
∫ tf

0

λT [Mẍ+Dẋ+Kẋ− f ]dt(14)

Therefore the identification problem becomes
the minimization of the functional Ĵ(p) which
casts as

Ĵ(p) = Ĵ1(p) + Ĵ2(p) (15)

The concrete definition and presentation of the
adjoint problem will be possible only after the
determination of the functional variation which
is addressed in the next subsection.

Functional Variation
In order to perform the iterative process of

parameter updating described in (4) it is clear
that one has to determine the gradient of the
functional ∇Ĵ(p) at each iteration. The point
is that the gradient determination is not an easy
task since the functional depends on the system
response y(t) which, in general, does not pos-
sess an analytic expression as a function of time
t and the parameters p. Aiming at overcoming
this drawback one may determine the variation
of functional ∆Ĵ(p) when the parameter vector
p suffers a variation of ∆p and based on some
suitable assumptions, try to extract, if it is feasi-
ble, the gradient out of this functional variation.
The functional variation demands the calcula-
tion of the functionals Ĵ1 and Ĵ2 evaluated at
p + ∆p. For the functional Ĵ1 one has

Ĵ1(p + ∆p) =

=
∫ tf

0

[y + ∆y − yE ]T [y + ∆y − yE ]dt =
∫ tf

0

[y − yE ]T [y − yE ]dt +
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2
∫ tf

0

[y − yE ]∆ydt (16)

where the second order terms have been disre-
garded. Performing similar steps for the second
functional Ĵ2 one has

Ĵ2(p + ∆p) =∫ tf

0

λT [Mẍ + Dẋ + Kx− f ] dt +
∫ tf

0

λT [M∆ẍ + D∆ẋ + K∆x] dt +
∫ tf

0

λT ∆Dẋ dt +
∫ tf

0

λT ∆Kx dt (17)

Subtracting Ĵ(p) from Ĵ(p + ∆p) and inte-
grating by parts the terms containing the time
derivatives of the variation ∆x,one reaches to
the variational of the functional Ĵ

∆Ĵ(p) =

Å +
∫ tf

0

[Mλ̈ + Dλ̇ + Kλ]∆x dt +
∫ tf

0

2(y − yE)T ∆y dt +
∫ tf

0

λT ∆Dẋ dt +
∫ tf

0

λT ∆Kx dt (18)

where Å corresponds to

Å = λ(t)T M∆ẋ(t)− λ̇
T
(t)M∆x(t) +

λ(t)T D∆x(t)
∣∣∣
t=tf

t=0
(19)

It is clear that the term of Å associated to t = 0
is null due to the initial conditions of the sensi-
tivity problem and one may choose the Lagrange
Multipliers such that it is null at t = tf as well
its first time derivative inasmuch as the user has
this freedom in hands. Hence the term Å con-
taining data at the final and initial instants of
time disappears from equation (18).

Considering that the variation of the output
∆y has a straightforward relation with the vari-
ation of the displacement vector ∆x as shown
in equation (13) one may write rewrite equation
(18) as follows

∆Ĵ(p) =

∫ tf

0

[Mλ̈−Dλ̇ + Kλ + 2CT (y − yE)]∆x dt +
∫ tf

0

λT ∆Dẋ dt +
∫ tf

0

λT ∆Kx dt (20)

As it has already been mentioned, the goal is
to obtain an expression for ∆Ĵ(p) as a straight-
forward function of the parameter variation ∆p
and it is clear that it cannot be achieved in equa-
tion (20) since there is one term containing the
variation ∆x which is likely to have a very com-
plicated relation with ∆p. In order to obtain
a simpler relation between ∆Ĵ(p) and ∆p one
can make use of an adjoint problem defined as
follows

Mλ̈−Dλ̇ + Kλ = 2CT (yE − y) (21)

under the following conditions

λ(tf ) = 0 λ̇(tf ) = 0 (22)

It should be emphasized that the problem stated
by equations (21) and (22) can be changed to a
problem with initial conditions rather than with
final conditions with a suitable change of vari-
ables.

Gradient Equation
To obtain the gradient of the functional Ĵ(p)

it is necessary to obtain the matrices ∆D and
∆K as functions of the variations of the pa-
rameters ∆p. This task is accomplished by ex-
pressing the damping and stiffness matrices as
functions of the parameters and then evaluating
their variations as follows

∆K(p) =
j=Np∑

j=1

∂K
∂pj

∆pj (23)

and

∆D(p) =
j=Np∑

j=1

∂D
∂pj

∆pj (24)

Hence, the variation of the functional Ĵ casts as

∆Ĵ(p) =
j=Np∑

j=1

∆pj

∫ tf

0

λT (t)
[∂K
∂pj

x(t) +
∂D
∂pj

ẋ(t)
]
dt =

∆pT ∇Ĵ(p) (25)
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where each component of the gradient vector is
given by

[∇Ĵ(p)]j =
∫ tf

0

λT (t)
[∂K
∂pj

x(t) +
∂D
∂pj

ẋ(t)
]
dt (26)

where j ∈ {1, 2, ..., Np} and Np is the number
of parameters that characterize the constitutive
equation of the material.

Search Step Size
The search step size β(k) that appears in equa-

tion (4) is obtained through the minimization of
the functional Ĵ1 at the iteration k +1. Accom-
plishing the corresponding minimization leads
to

β(k) =∫ tf

0
∆yT (t,p(k))[y(t,p(k))− yE(t)] dt∫ tf

0
∆yT (t,p(k))∆y(t,p(k)) dt

(27)

Further details about this choice may be found
in [9].

CONSTITUTIVE EQUATION
It should be emphasized that the starting

point of the present technique is the constitu-
tive equation of the material, i.e., it is out of it
that one is able to define the matrices K and
D as being functions of the parameters p that
characterize the constitutive equation. For the
first trial one may consider a material which pos-
sesses a simple one-dimensional localized consti-
tutive relation between stress σ and strain ε that
is given by

σ(x, t) = E(x)ε(x, t) + G(x)ε̇(x, t) (28)

where E(x) and G(x) represent the elastic and
the damping fields over the entire body respec-
tively. Although, at first sight, one may con-
sider this model quite simple, it can be used as
a simple approach to characterize Functionally
Graded Materials with slight viscoelastic behav-
ior [12].

NUMERICAL ILLUSTRATIONS

Noise
In order to introduce a more realistic scenario

to the simulation one may introduce some Gaus-
sian noise to the experimental data. The level
of noise in the analyzed signal can be quantified

Figure 1: Virtual experiment sketch and its 4
strain sensor locations.

by means of the signal-to-noise ratio, which is
defined as follows

SNR = 10 log
σs

2

σn
2

(29)

where σs and σn are the variances of the signal
and the noise respectively.

Examples
In order to assess the effectiveness of the pro-

posed approach to identify mechanical system
properties from a certain set of experimental
data, a bar-like structure will be considered.
The virtual experiment consists basically of a
bar instrumented with four strain sensors along
its length and which is subjected to a dynamic
loading such as an impact.

A brief sketch of the virtual experiment is
depicted in figure (1) and it has been cho-
sen four equally spaced positions at which
strain measures will be taken during the ex-
periment. The properties of the bar have
been chosen as follows: cross-section area A =
2.84x10−4 m2, length L = 2.03 m, specific
mass ρ = 4408.2 kg/m3. The simulation data
have been obtained from a finite element ele-
ment model of the bar. The one-dimensional
finite element model has 82 elements and it has
been considered that a compressive force P (t)
has been applied at the boundary x = 2.03 m
as shown in picture (2). The force P (t), in New-
tons, is defined as follows

P (t) = 125 [1−cos(Ωt)] t ∈ [0, Timp];(30)

where Ω = 2.52x105 rad/s and Timp =
2.50x10−5 s and the impact force is zero for
t ∈ (Timp, tf ]. The same definition for the im-
pact force has been used by Rusovici in [3].

All the experimental data possess 8192 points
and the sampling frequency was adopted equal
to 4MHz. Here, the components of the stiffness
and damping matrices are represented as follows

Ki,j =
∫ L

0

E(x)A
∂Φi

∂x

∂Φj

∂x
dx (31)



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

0 5 10 15 20 25 30

0

100

200

300
P

 (
N

)

t(10 -6 s)

Figure 2: Impact force applied to the bar.

Di,j =
∫ L

0

G(x)A
∂Φi

∂x

∂Φj

∂x
dx (32)

where Φ corresponds to the classical Lagrangian
piecewise linear shape functions and i, j ∈
{1, . . . , N} and N is the number of nodes of the
finite element mesh.

For the first example (S1) it has been consid-
ered that the elastic E field is a linear distribu-
tion defined by its values at the nodes 1 (0.00
m), 20 (0.48 m), 40 (0.98 m), 60 (1.48 m) and
82 (2.03 m), which were set to be 113.8, 92.2,
72.8, 55.7 and 40.9 respectively, in GPa. The
damping field G is defined similar to the elas-
tic field and at the same nodes such that its
nodal values were set to be 3.71x105, 3.18x105,
2.65x105, 2.12x105 and 1.59 105 in Ns/m2. The
strain sensors are located at the nodes 20 (0.45
m), 40 (0.95 m), 60 (1.45 m) and 80 (1.95 m).

It is assumed for the iteration process that the
initial damping field is null and that the elastic
field is uniform over the bar and its value is equal
to a characteristic value that is assumed to be
obtained by means of a static test on the bar.
The signal-to-noise ratio adopted here is 30 dB.
The result obtained for the elastic and damping
fields are depicted in Fig.(3) and in Fig.(4) re-
spectively and the term “original” refers to the
original finite element model of the system.
It is clear from Fig.(3) that the elastic field has
been determined quite accurately and that al-
though the obtained damping field has some os-
cillations it is also an effective result. The num-
ber of iterations for this case is 75.

For the second case to be analyzed (S2) ev-
erything has been maintained equal to the first
case (S1) but the damping field. The damp-
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Figure 3: Elastic field for case S1.
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Figure 4: Damping field for case S1.

ing field has been defined at the same set of
nodes as the previous example but its nodal val-
ues have been changed to: 1.59x105, 2.12x105,
2.65x105, 3.18x105 and 3.71x105 in Ns/m2. The
result obtained for the elastic field is graphed
in Fig.(5) and the obtained damping field is
graphed Fig.(6). As in the previous example the
obtained elastic field has been perfectly deter-
mined and the obtained damping field has also
been effective. The number of iterations for this
case is 56. It should be remarked that the results
presented for the two examples have been deter-
mined taking into account real-like limitations
such as few measurement sensors and measured
signals polluted with noise.

Concluding Remarks

A time domain technique aiming at identify-
ing the unknown parameters that characterize
a viscoelastic model for a certain material has
been presented. In order to assess the effective-
ness of the approach some simulations have been
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Figure 5: Elasic field for case S2.
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Figure 6: Damping field for case S2.

performed on a bar-like structure subjected to
an impact loading. It was considered that the
constitutive law of the material for stress and
strain is characterized by distributed elastic and
damping fields. The measured signals have been
polluted with white noise to furnish more real-
ism to the simulations and the results provided
by the present approach has shown to be effec-
tive for the examples that have been analysed.
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ABSTRACT 
The classical inverse problems, arising in 

gravity, magnetic and electrical prospecting are 
considered. The main task is reduced to seeking a 
solution of Fredholm's integral equation from the 
first kind. After appropriate discretization this 
integral equation is transformed into 
overdetermined system of algebraic equations. 
This is an incorrectly posed problem since the 
requirements for the existence, uniqueness and 
the stabili ty of the solution do not hold. In this 
case we can not solve the problem neither by the 
classical mathematical methods, such as Gauss, 
Jordan, etc., nor by the very often used in applied 
geophysics method like Least Square Method, 
Singular Value Decomposition, Moore-Penrose 
pseudoinversion, etc. The ill -posedness requires 
the application of the classical Tikhonov's 
regularization, or the regularized pseudoinversion 
method of Moore-Penrose. The way of stating 
and solving the problems arose in potential-field 
geophysical methods is shown. An interpretation 
of a gravity profile over Raguba Field, Sirte 
Basin, Libya is performed. The comparison 
between the result obtained from this 
interpretation and the results received by the use 
of the most common methods used in applied 
geophysics is shown and appears to be 
interesting. 

Key words: Applied geophysics, Tikhonov's 
regularization, Moore-Penrose pseudoinversion. 
 
NOMENCLATURE 
 A - linear bounded operator; the law governing 
the phenomena; 
Ah  - operator given with error h; 

TA - transposed matrix; 
A  - matrix with exactly prescibed coeff icients; 

+A - pseudoinverse matrix of Moore-Penrose; 
h - error in setting the operator; 

 M - point belonging to the Earth’s surface;  

[ ]zM α - Tikhonov’s regularizing functional; 
 p - magnetization; 
q - density of the electrical charges; 

nR - n- dimensional space; 
U - space of the results; 
u - result (vector); right-hand side of the operator 
equation; 

δu - result; right-hand side of the operator 

equation, given with error δ ; 
V - gravitational potential;  
W - magnetic potential; 
Z - space of the causes; space of the sought 
solutions; 
z - causes; vector sought; 

*z - pseudosolution; 
*Z - space of the pseudosolutions; 

z  - normal pseudosolution; 
α - regularization coefficient; 
δ - error in setting the result, the right-hand side 
of the operator equation; 
η - function relating h with δ; 
ϕ - electrical potential; 
Λ - incompatibili ty measure; 
ρ - density of the gravitational masses; 
τ - body under investigation; 

 
 
INTRODUCTION  

In classical mechanics and physics two 
paradigms dominate: 

The concept of exactness, which presumes 
that all the quantities are prescribed accurately 
and that all mathematical operations are exact 
(Aristotle). 
 The concept of the determinism, according to 
which known causes evolve continuously into 
uniquely determined effects (Laplace). 
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In order to comment the above-mentioned 
paradigms, let first remind that in the exact 
natural sciences, including in geophysics, each 
phenomena is described by a cause-result relation. 
This relation is represented in the form of 
equation, or system of equations. These equations 
can be of any type: algebraic, differential, 
integral, operator equations, etc. For example let 
is known the body τ, in which are displayed either 
gravitational masses with density ρ(x,y), or 
magnetic masses with magnetization p(x,y,z), or 
electrical charges with density q(x,y,z) (Fig. 1). 
Then the gravitational V, the magnetic W and the 
electrical Φ potentials can be represented by the 
expressions:  
 

( )
( ) ( )∫ =

τ

τρ
QV

MQR

dM M

,
  (1) 

( ) ( ) ( )QWd
MQR

gradMp MM =∫
τ

τ
,

1
 (2) 

( ) ( ) ( )∫ =
τ

τ
Q

�

MQR

d
Mq M

,
 (3) 

 
where: 

- Q is the observation point, 
- M is the point which belongs to the body τ, 
- R(Q,M) is the distance between the points Q 

and M. 
If we linearize (1)-(3) and generalize the 

problem, we can wire them in the form of   
operator equation 
 
 
 

 
 

 
 

Fig. 1. Basic scheme of the potential field 
geophysical problem 

 

Uu            ,Zz            ,uAz ∈∈=  (4) 
 
where Z is the causes space, U is the results 
space. Both spaces are Hilbert spaces. A is the 
low governing the phenomena. It is a linear 
bounded operator, which acts from Z into U , i.e. 
to a given reason z∈ Z it prescribes a 
corresponding result u∈ U. 

According to the relation (4), two main 
problems arise: 

1. Direct problem – given the reason z and low 
governing the phenomena A, determine the result 
u. 

2. Inverse problem, which is also the main 
problem in the geophysics – given both the result 
u and the low governing the phenomena A, 
determine the cause z. 

Now we can comment the above-mentioned 
paradigms. 

- The right hand side of (4) is a result of a 
measurements, thus it inevitably carries 
measuring errors. The left hand side is also 
prescribed with errors, due to the rounding errors 
in the computation. 

- One result can be caused my numerous 
different causes. 

In the light of the above-mentioned 
peculiarities it arise the question: What type and 
which relations from the class (4) can describe 
real phenomena? 

The answer of the above questions has been 
given by J. Hadamard in 1932 year. [2], [3] in the 
form of the following conditions: 

1. The solution of the posed problem should 
exist; 

2.  The solution should be unique; 
3. The solution should be stable, i.e. small 

changes in the data should lead to small changes 
in the result. 

If Hadamard’s requirements do hold, then the 
problem is correctly posed. If even one of them is 
broken, then the problem is incorrectly posed. 
 
MATHEMATICAL BACKGROUND  

Taking into account the aforesaid we can 
conclude that the inverse problem in geophysics 
is incorrectly posed. To comprehend the essence 
of the problem and to hold out a way for its 
solution let us suppose we have lienarized the 
relation (1)–(3) and that we have discretized it. 
Then in (4) A is a matrix and z and u are vectors. 
Thus we can write the system of linear algebraic 
equation in the form [4]: 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil , 2002 

mn Ru            ,Rz            ,uzA ∈∈=  (5) 
 
where A is a nonzero real nm×  matrix. This 
system could not have a solution in the classical 
sense. However always there exist a nonempty set 

*Z of the pseudosolutions, i.e. such a vectors 
mRz ∈*  for which: 

 

{ }nRzuAuzA ∈−=− :inf*  (6) 

 
 If in addition the following equali ty holds  
 

{ }*:inf Zzzz ∈=  (7) 

 
then the pseudosolution z  is called normal 
pseudosolution, received by the Least Square 
Method (LSM). This is the situation when we 
have exact data. 

Taking into account that the data are 
approximately prescribed, i.e.  

,, δδ ≤−≤− uuhAAh where h is the error in 

setting the operator and δ is the error in setting u , 
we can pose the following problem: Given the 
approximate data δδ ,,, huAh , construct a stable 

in nR  approximation ( )( )δηη ,hz ≡  to the normal 

pseudosolution z of the system (5) : 0→− zzη  

when 0→η . 

The solution of the posed problem, i.e. the 

unique element αz  in respect to 0>α  for given 
η and α is received as a solution of the variational 
problem 
 

[ ] [ ]{ }nRzzMzM ∈= :inf ααα  (8) 
 
where 
 

[ ]
0

22

>∈

−+=

α

α δ
α

            ,Rz 

        ,uzAzzM
n

h  (9) 

 
It is known [4] that the problem (8)–(9) is 

equivalent to seeking the solution of the Euler’s 
equation 
 

δ
αα α uAzzAA T

hh
t
h =+  (10) 

 
which leads to  
 

( ) δ
α
η α uAEAAz T

hh
T
h

1−
+=  (11) 

 
The element (11) is a solution of the posed 

problem if we substitute α with the root of the 
equation  
 

( )

( ) 0ˆ
2

2

>+++

+−=

αδµ

αρ

α
η

δ
α

           ,zh

uzAh
 (12) 

 
where 
 

{ }n
h RzzhuzA ∈++−= :infˆ δµ δη  (13) 

 
Now in the light of the above outlined we wil l 

proceed with the Moore-Penrose method 
[5],[6],[4]. 

We introduce the normed spaces of the 

matrixes nm UUUU ,,, *  with dimensions 

nnmmmnnm ×××× ,,,  and with Euclidian 

norms 
nm

⋅⋅⋅⋅ ,,,
*

. The normal solution z of 

(3) for exact data ( )uA,  has the form uAz += . 

Here +A is the pseudoinverse matrix, which is a 
solution of the following extreme problem: 

determine such a matrix *~
UZ ∈ , for which  

 

{ }*:inf
~

UZEZAEZA
mm

∈−=−  (14) 

 
where mUE ∈  is identity matrix. The posed 

problem can have a non-unique solution. Its 
unique normal solution is 
 

{ }*
0

**

~
:

~
inf UZZA ∈=+  (15) 

 

where *
0U  is the set of the solutions to the 

problem (14). For example, if the matrix A  with 
dimensions nm× is a matrix with full rank, then 

the matrix +A has the form  
[10]: 
 

( )
( )

     
nm          ,AAA

nm               ,AA
A

TT

T

î





≤

≥
=

−

−
+

1

1

 (16) 

 
Many researchers consider Moore-Penrose 

pseudoinversion method as an appropriate 
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approach for solving the main problem in the 
inverse geophysical theory. However the method 
is not fit for solving inverse geophysical 
problems. This is due to the fact that Moore-
Penrose method is stable in respect to the errors in 
the right hand side in (5), but is not stable in 
respect to the errors in setting the matrix [8]. 

We will see first that the method is stable in 
respect to the errors in setting the vector u . Let 
instead of u  it is given the vector δu  such that 

0, >≤− δδδ uu . Constructing the 

pseudomatrix +A  we can determine the 

approximate normal solution of (5): δδ uAz += . 

Since any linear operator acting in a finite space 

is continuous, then uAzuAz ++ =→= δδ , i.e. the 

problem for finding the normal pseudosolution of 
the system (5) is unstable in respect to the error in 
setting the vector δu . We can determine the error 

in receiving δu : 

  

δδδ
++ ≤−≤− AuuAzz  (17) 

  
where the norm of the linear operator is 
determined as 

 
 
 (18) 

 
Let now instead of the matrix A in (5) it is 

given the matrix { } haA ijijh +=  where ijh  is the 

error in setting A . The matrix hA  being a result 

of measuring or calculations carries inevitable 
errors. Let us consider the system 
 

1

1

21

21

=+
=+

zz

zz
 (19) 

 
and let for example  
 

 (20) 

 
i.e. let us consider the system 
 
 
 

( ) 11

1

21

21

=++
=+

zz

zz

ε
 (21) 

 
For any 0≠ε  the system (21) has unique 

solution, which we can receive by the 

pseudoinversion method { }T
h zoz ,= . This 

solution tends to the exact normal pseudosolution 

{ }Tez 2
1,2

1= when 0→ε . If we estimate the 

error in receiving the “approximate solutions” as 
prescribing the error h to the matrix 

( )hAAhA hh ≤−> ,0  and we write all possible 

solutions hz , then taking the least upper bound of 

the deviation hz  from z , we receive 

 
∞=− zzhsup  (22) 

 
Thus it terns out that the problem for 

obtaining the normal pseudosolution of the 
system (5) is unstable in respect to the errors in 
the matrix, i.e. this problem is incorrectly posed. 
Therefore it requires regularization. 

For achieving the goal we wil l use a technique 
similar to the above described, and we will be 
based on the smoothing functional [4]: 
 

[ ]
*

mh

U      Z      ,

      ,EZAZZM

∈>

−+=

0

22

*

α

αα

 (23) 

 
For any 0>α  this functional has unique 
extremum 
 

( ) T
hh

T
h AAAaIZ

1−
+=α  (24) 

 

which realize its infimum *U . 
The coeff icient ( ) 0>hα in (24) is determined 

as a solution of the equation (generalized 
discrepancy) 
 

( ) ( )2
*

2 αααρ ZhEZA hmh +Λ−−=  (25) 

 
where 
 

{ }*

*
:inf UZZhEZA

mhh ∈+−=Λ  (26) 

 
 
 

xA
x

xA
A

x

+
+

≠
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Fig. 2. Interpretation of the gravity profile over Raguba Field, Libya. 
 
 
 

We can prove  [4], that ( ) +→ AZ hα when 0→h . 

Now the regularized approximation ( )hZα can 
be used for constructing approximations to z : 
 

( )
δ

α
δ uZz h=  (27) 

 
From the inequality  
 

( )

uuA

uAZzz h

−+

+−≤−
+

+

δ

δ
α

δ

*

*  (28) 

 
follows the convergence 

zz →δ       when      ( ) 0, →= δη h   (29) 

 
EXAMPLE AND DISCUSSION 

In [9] Murthy and Rao have interpreted a 
gravity profile over Raguba Field, Sitre Basin, 
Libya. The same problem was solved by using the 
program TANGRA, which realize the method 
described in this article. The level of the errors is: 

33 10,10 −− == δh . For the data of [9]: 
2

12 /2.0,7.5 cmgkmH =−= ρρ , we determined  

the contact surface by using the nonregularized 
Moore-Penrose method – the crocked line, and by 
the regularized Moore-Penrose method – the 
dotted line. The comparison of the results 

received in [9] - the thick line with our results 
(Figure 2), show that: a) The results received in 
[9] and the results received by the regularized 
Moore-Penrose method are apparently 
qualitatively close, but from quantitative aspect 
they differ significantly. In some points the 
differences rich up to 100-150 meters. This can be 
seen on Figure 2; b) The results received by the 
nonregularised Moore-Penrose method are so 
instable, that they are not acceptable for the needs 
of the Applied Geophysics.  The reason for the 
malfunction of the nonregularized Moore-Penrose 
method and the method proposed in [9] is the fact 
that in these methods the error in setting the data 
are not prescribed. According to Leonov-Yagola’s 
theorem without setting the errors in the data we 
can not solve il l-posed problems [11].  
 
CONCLUSION 

The lienarized inverse problem arisen in the 
gravity, magnetic and resistivity prospecting is 
reduced to a system of linear algebraic equations. 
This system is usually overdetermined. It is 
proposed to use the regularized Moore-Penrose 
method in seeking the solution to the main 
geophysical problem. An example about the 
contact problem in gravity prospecting is 
considered. Attention is drawn to the fact that the 
most common methods used in solving inverse 
problems in Applied Geophysics like the classical 
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LMS, classical pseudoinversion method of 
Moore-Penrose, and many other do not use the 
errors in the data. Due to Leonov-Yagola’s 
theorem the results obtained by them are not 
reliable.  
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ABSTRACT 

We present the development, implementation 
and application of a multidimensional anisotropic 
resistivity inversion technique. We use finite 
elements to discretise the anisotropic Laplace 
equation governing the forward problem. The 
inverse problem is posed as an optimisation 
problem and is solved using a variant of the 
popular Marquardt-Levenberg algorithm. 
Inversion for the anisotropic conductivity 
distribution increases the number of model 
parameters by a factor of six and therefore the ill-
posedness of the electrical inversion problem is 
increased. We counter this ill-posedness by 
introducing terms for smoothness, structural and 
anisotropy constraints in the error-functional. 

We apply the inversion algorithm to survey 
data from an electric tomographic study between 
two boreholes at a hydrological test–site. The 
resulting electric inversion images are compared 
to the results anisotropic seismic images from 
same study area. Both the electric and the seismic 
experiment scan a depth interval of 20–115 
meters between two wells spaced at 25 meters. 
The number of data is approximately 8000 for 
each survey and the subsurface in the inter-well 
region is discretised in elements of approximately 
1.5 meters in both x– and z–directions. 

A comparison of anisotropic seismic velocity 
distribution and electric conductivity distribution 
shows an amazing correlation between the two 
tomograms. Both methods clearly delineate an 
anisotropic body of highly layered and fractured 
siltstones underlain by an isotropic sandstone 
body. Zones of fractured rock and zones of highly 
layered sedimentary rock both result in electric 
and seismic anisotropy. 

 

INTRODUCTION 
Earth materials are known to exhibit 

anisotropic behaviour for both electric current and 
seismic waves [1]. Anisotropy can be caused by 
fine layering of sediments, aligned fractures, 
preferential stress direction or aligned crystals. 

Electric tomograms give an image of the 
distribution of electrical conductivity (or 
resistivity) in the surveyed region and seismic 
tomograms give an image of seismic velocity. 
These images can subsequently be interpreted in 
terms of parameters of direct interest to engineers, 
geologist or hydrologists, such as shear and bulk 
modulus, lithology or hydraulic conductivity. 
Especially electric tomography has created an 
interest for application in hydrology due to its 
potential to image hydraulic flow, since pathways 
of hydraulic and electric flow are similar [2], and 
a number of papers have been published on 
application of resistance tomography to 
hydrological problems [3,4,5]. 

Despite the knowledge of the presence of 
electrical anisotropy in Earth materials since early 
days of exploration [6], to our knowledge no 
anisotropic multi-dimensional electrical inversion 
algorithm has been published or is commercially 
available. In a previous paper we have 
demonstrated the need for such an algorithm by 
showing that field data from an anisotropic test–
site can not be adequately explained by isotropic 
models [7]. In this paper we describe the 
development of an algorithm that is capable of 
inverting data from state-of-the-art geo–electrical 
surveys comprised of up to 10000 datapoints and 
apply the newly developed algorithm to field–data 
from a survey at a hydro–geological test site. 

In a first section we describe the geophysical 
crosswell experiments used to acquire data to test 
our new electric inversion algorithm and to 
benchmark its results by a seismic crosswell 
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tomographic study. In the next section, the 
development of the anisotropic electric inversion 
algorithm is described. Due to the increased 
number of inversion parameters in anisotropic 
inversion, the ill-possedness of the inverse 
problem increases and thus the inversion models 
become more ambiguous. Therefore special 
attention is given to the application of structural 
constraints and anisotropy constraints in 
conditioning the inverse problem. Finally, field 
data inversion models for both anisotropic electric 
and seismic crosswell inversions are presented.  

 
GEOPHYSICAL CROSSWELL EXPERI-
MENT 

This section describes an electrical and a 
seismic field experiment. The two experiments 
were carried out over the same depth interval of 
approximately 20–115 m and the two wells used 
in the experiments are spaced at 25 m. The size of 
the scanned region is approximately equal in size 
to half a football pitch. Scanning the same region 
with different methods allows the resulting 
inversion images to be compared as a method of 
quality control of the inversion images. 

We first describe the field site and then give a 
detailed description of the electric and the seismic 
experiment. 

 
Field Site 

Electric and seismic crosswell experiments 
were carried out at the Reskajeage hydrological 
test site in Cornwall, UK. A large amount of 
hydrological and geological data has been 
previously acquired [8] and can be used to 
compare results of geophysical inversion models 
with geological and hydrological data. A series of 
unlined boreholes penetrate up to 300 m into the 
Mylor slates, a series of marine metasediments of 
Devonian age. The bedding planes of the 
sedimentary rock are inclined at an angle of 10-15 
degrees in the direction between the two wells 
used in this study. There is also evidence of 
abundant open fractures. The highly fractured 
intervals correspond to hydraulically transmissive 
zones. 

The vertical plane through the two wells used 
in this study is at right angles to the strike 
direction of both the bedding planes and the 
dominant fracture set, which is some justification 
for obtaining two dimensional crosswell 
resistivity and seismic data. 

Electric Experiment 
In geophysical DC-electric experiments 

current is injected into the ground by means of 
two electrodes located either on the Earth surface 
or in boreholes. The resulting electrical field is a 
function of the conductivity distribution in the 
Earth and is monitored by measuring voltages 
between two further electrodes. For one datum 
one needs to know (i) the location of the two 
current electrodes, (ii) the strength of the injected 
current, (iii) the location of the two potential 
electrodes and (iv) the potential difference 
(voltage) between the two potential electrodes. 

A sketch of an electric crosswell experiment is 
shown in figure 1. Current is injected between an 
electrode in the left borehole (labelled C1) and a 
remote electrode (labelled C•). This acquisition 
geometry is referred to as Pole–Pole geometry. 
Dashed lines schematically show the resulting 
electrical potential. Note that lines of constant 
potential are perpendicular to the Earth’s surface 
at the point of intersection as a result of Neumann 
boundary conditions at the free surface. 

 

 
Figure 1: Sketch of electrical crosswell 

experiment in Pole-Pole geometry. 
 
 

The instrumentation for the field experiment 
at Reskajeage Quarry Borehole testsite consists of 
two custom-built downhole electrode strings with 
32 electrodes per string at 1 m spacing interfaced 
with a 64–channel fully automated digital 
resistivity meter. 

For the electric experiment current was 
injected at 88 electrode locations in one borehole 
and the resulting potential field monitored at 87 
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locations in the other borehole covering a depth 
interval of approximately 20–105 m below the 
Earth surface. Slowly varying alternating current 
(using a boxcar-shaped time function) at 1 Hz is 
used. Using direct current, polarisation at the 
electrodes would result, an effect that is hard to 
quantify or correct for. Using alternating current 
at higher frequencies, faster acquisition would be 
possible, but polarisation effects (skin effect) 
cannot be neglected and the governing equation 
changes from Laplace’s equation to a diffusion 
equation. The choice of acquisition parameters is 
a trade-off between accuracy and speed. Our 
dataset consists of 7656 datapoints and the 
acquisition time was 2 hours.  

 
Seismic Experiment 

In seismic crosswell experiments a mechanical 
pulse is generated in one well by either an 
acoustical, air-pulse, piezo-electric or mechanical 
source. The resulting disturbance travels as a 
seismic wave. The wavefield is monitored at 
discrete receiver location in a further well using 
hydrophones or geophones, measuring the 
pressure or velocity-field, respectively. 

The Reskajeage seismic crosswell experiment 
was carried out using a 48–channel hydrophone 
string (using piezo–electric receivers) at half–
metre spacing and a sparker source (using the 
“bang” generated by an electromagnetic discharge 
across a spark–gap as signal) with a centre 
frequency of 2 kHz, fired at one–metre depth 
intervals. The signals are monitored using a 48 
channel digital seismograph with a 24–bit 
dynamic range and a sampling interval of 
1/32 ms. 

A total of 95 source positions over a depth 
interval from 17.5–112.5 m were recorded at 
more than 200 receiver locations ranging from 
13.5–119 m in the opposite well, resulting in more 
than 20000 individual traces. The first arrival 
times of the signals are extracted from the seismic 
recordings and form the data for the inversion. 
Times were picked manually, using interactive 
computer software, in a variety of different 
gathers (common shot, common ray angle and 
common receiver gathers) and using different 
gain settings in order to achieve high picking 
accuracy and reliability. 

 
ANISOTROPIC ELECTRIC INVERSION 

This section describes the development of a 
novel multi–dimensional anisotropic resistivity 
inversion method. Electrical anisotropy on a 

macroscopic scale can be caused by fractures in 
the earth, layered strata or fibrous materials, and 
the conductivity distribution needs to be 
expressed as a spatially varying tensor. The aim 
of this work is to present an algorithm that can 
invert for this tensor. The extra non-uniqueness of 
the inverse solution over and above isotropic 
solutions is handled with spatial regularization 
and flexible anisotropy penalisation (model 
covariance). The algorithm is implemented in a 
robust and efficient finite element framework and 
uses a least squares procedure, which treats the 
model covariance implicitly. 

 
Forward Problem 

DC-electrical experiments, where current of 
strength Is is injected at a source location sr  into a 
body with conductivity distribution ( )rσ , are 
governed by Laplace equation: 

 ( ) ( )s ssr I r rσ δ∇ ∇Φ = −i . (1) 
The resulting potential field resulting from this 
source-experiment is given by sΦ . Note, that the 
conductivity distribution ( )rσ  is both 

inhomogeneous and anisotropic, i.e. ( )rσ  is a 
function of the location r and at a given location 
dependent on the direction of observation. 

In all physical experiment current can only 
flow in a closed circuit and thus at least two 
current electrodes are needed. The solution of a 
problem with multiple sources can be found by 
superposition. To make the solution of Laplace 
equation unique, appropriate boundary equations 
need to be defined. In the presented experiment, 
Neumann boundary conditions are applied at the 
Earth’s surface (normal derivative of potential 
equals zero) and at the other boundaries of the 
modelling domain Dirichlet boundary conditions 
(potential equals a constant) are applied. 

We solve Laplace equation by discretisation 
using finite elements with unstructured elements 
using 8-node hexahedral elements with tri-linear 
basis functions. The use of unstructured meshes 
allows for element–sizes to vary over the 
modelling domain. For example, we use a fine 
mesh in the vicinity of the sources where the 
solution (the electrical potential) varies quickly 
with space and a good resolution is needed. Near 
the border of the modelling domain, where the 
solution is slowly varying in space, large elements 
are used. This decreases the size of the employed 
FE–mesh and thus is computationally efficient. 
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The set of linear equations resulting from 
disretisation is solved using a preconditioned 
conjugate gradient solver. This allows solving 
very large problems with up to a million 
nodepoints without excessive memory 
requirements. 

 
Material Properties 

In this section we describe the material 
properties we invert for and their relationship to 
the conductivity tensor. 

The conductivity tensor σ  can be described 

by its eigenvalues l
1

σ , l
2

σ and l
3

σ and the Euler 
angles α, β and γ. The conductivity in terms of 
eigenvalues and rotations can then be written as: 

 lTR Rσ σ= . (2) 

The diagonal matrix lσ contains the Eigenvalues 

l1
σ , l 2

σ and l 3
σ of the conductivity tensor as 

diagonal elements and the rotation matrix 
R contains the projections of the Eigenvectors 
onto the x-, y- and z-axis of the coordinate system. 
In our description of the Euler angles we follow 
the definitions given in [9]. The description of the 
conductivity tensor using Eigenvalues and 
rotations is instrumental in applying an anisotropy 
penaltiy in our inversion framework. 

The numerical values found for conductivity 
in materials occurring naturally in the Earth vary 
over orders of magnitude. This could pose a 
problem in the inversion process, where it is 
advisable to use model parameters of similar 
magnitudes. For this reason we use the logarithm 
of the conductivity and the Euler angles as model 
parameters. We thus invert for six material 
properties at each node point of the FE–mesh, 
namely: 

 
l l l1 2 31 2 3

4 5 6

ln , ln , ln
, and .

m m m
m m m

σ σ σ

α β γ

= = =

= = =
 (3) 

Using the logarithm of conductivity has the added 
advantage of introducing positivity constraints, 
which is physically an entirely reasonable 
constraint. Using a node-based finite element 
description, each of the material properties 
m1, … , m6, is sampled at the node-points and the 
discretized model vector m is of length 6 × 
number of nodes.  

 
Error Functional 

In order to solve the inverse problem of 
reconstructing electrical conductivities from 

observed electrical potentials we minimize the 
error–functional: 

 d rF F F= + . (4) 
Fd is a measure of data misfit (i.e. how good the 
predicted data from an inversion model matches 
the observed field data) and Fr forms the 
regularisation contribution to the error–functional.  

The data misfit is calculated by summing the 
squared differences between observed data and 
the data predicted from solving the forward 
problem: 

 2

1

( )
NData

obs pre
d i i i

i

F w d d
=

= −∑  (5) 

The contribution of each datum i to this functional 
is additionally weighted according to the error wi 
associated with this datum. 

The regularisation part of the error–functional 
consists of three parts, penalizing structure s

rF , 
anisotropy a

rF  and deviation from a desired 
starting model. The implementation of these 
penalties is discussed in the next section. 

 
Use of Model Covariance in Error 
Functional 

The success of the presented inversion 
methodology relies on the use of model 
covariance information. For most practical 
geophysical inverse problems the available data 
cannot uniquely determine an inversion model 
and the inverse problem is ill-posed. However, by 
including prior information or allowing only 
certain classes of models, unique and meaningful 
solutions can be found. 

Proposed measures for the desired model 
covariance information cited in the geophysical 
literature include requirements on the roughness 
[10] of the inversion model or previous 
knowledge about stochastic properties of the 
model [11,12]. In the following, three ways of 
using model covariance information that are 
implemented in our code are discussed. Since we 
solve for anisotropic material properties, we 
introduce a penalty function that limits the 
amount of anisotropy allowed in the inversion 
model. 

 
Structure Penalty. In order to impose 

structural constraints we have designed the 
following functional: 

 
6

1

1
2

s T
r sF m k m dµ µ µ

µ

λ
=

= ∇ ∇ Ω∑ ∫ . (6) 
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For each of the 6 material properties m1, … ,m6 a 
scalar product T Tm k mµ µ∇ ∇  of the gradient: 

 ( , , )T
x y zm m m mµ µ µ µ∂ ∂ ∂
∂ ∂ ∂∇ =  (7) 

is calculated and integrated over the whole 
domain Ω. The resulting number, measuring the 
amount of “structure” contained in the model, is 
weighted by a structure penalty level (also known 
as Lagrange multiplier) s

µλ . The tensor k needs to 
be positive definite in order to define a scalar 
product. In the simplest case, k is an identity 
matrix and the scalar product reduces to the 
squared gradient 2 2 2( ) ( ) ( )x y zm m mµ µ µ∂ ∂ ∂

∂ ∂ ∂+ + . 
However, in order to allow the gradient to be 
spatially and directionally variable we use a 
positive definite tensor function k(x,y,z). For 
example, if inhomogeneous but isotropic 
smoothing is desired, the tensor is a diagonal, 
with the three diagonal elements being spatially 
varying, i.e. k11=k22=k33=f(x,y,z). In the most 
general case spatially and directionally varying 
smoothness constraints can be forced by this 
formulation. A similar functional has been 
proposed in [13]. 

Using the finite element formulation the 
equation for structural constraints is written in 
matrix form as: 

 1
2

s T
rF = m Km . (8) 

 
Anisotropy Penalty. It can be useful to 

remove some of the ambiguity associated with 
electrical inversion and help the inversion 
algorithm to find a “good” local minimum by 
penalizing anisotropy. The contribution to the 
error–functional that achieves this takes the form: 

 

1

1 2 3 2

3

1 ( )
2

a
r a

m
F m m m a m d

m
λ

 
 

= Ω 
 
 

∫ . (9) 

The material properties m1, m2 and m3, were 
defined in equation (3). The matrix a has the form 
of a discretised Laplacian and a typical form 
would therefore be: 

 
2 1 1
1 2 1
1 1 2

a
− − 

 = − − 
 − − 

. (10) 

The anisotropy penalty level λa influences the 
degree to which anisotropy in the inversion model 
is penalized. For large values of λa the resulting 
inversion model is isotropic and for small values 

of λa the inversion model can be very anisotropic. 
Using the finite element approximation the 
expression for the anisotropy penalty becomes: 

 1
2

a T
rF = m Am . (11) 

 
Step Length Damping. Additionally the 

structure m of an inversion model with respect to 
a known (or desired) structure m0 can be used for 
regularisation. If a good guess of a starting model 
is available, for example from detailed knowledge 
of the geology in the survey area, a penalty for 
deviation from a starting model is required. The 
functional that achieves this is given by: 

 ( )
6 2

0
1

1
2 l

l
rF m m dµ µ µ

µ

λ
=

= − Ω∑ ∫ . (12) 

The steplength penalties λl
µ in the directions 

of each of the six materials can be chosen 
individually. In discretised form the steplength 
damping becomes: 

 ( ) ( )Tl
rF = − −0 0m m M m m , (13) 

in which the matrix M is the mass-matrix of the 
finite element system. 

 
Least–Squares Inversion 

In our inversion program, an initial user 
supplied starting model is iteratively updated. The 
model updates are calculated using a Marquardt-
Levenberg type method with additional terms for 
the model-covariance information. The equations 
for obtaining model updates ∆m solved in each 
iteration step are given by: 

 
( )1

1( ( ))

T

T obs pre
old old

ν−

−

+ + =

− − −

J WJ C M ∆m

J W d d m C m
. (14) 

In this equation J is the Jacobian, W is the data 
covariance matrix, M is the mass matrix 
controlling the steplength damping and C is the 
model covariance matrix. Note that C-1=K+A 
with K and A defined in equations (8) and (11), 
containing the disretized structure and anisotropy 
information used for regularization.  

The steplength damping factor ν is adjusted 
automatically at each iteration: ν is increased by a 
factor of 10 (i.e. the steplength is decreased) if 
either the conjugate gradient solver is not 
converging well, or the updated model performs 
worse in terms of data-misfit than the old model. 
If the updated model results in a smaller data-
misfit and the conjugate gradient algorithm 
converges well, ν is decreased by a factor of 10, 
resulting in a larger steplength. 
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Matrix equation (14) is solved using 
preconditioned conjugate gradients (using the 
same solver as for the forward problem). This has 
the advantage, that the matrices are never 
explicitly formed and stored in memory. This 
makes the algorithm very memory efficient, 
allowing the solution of large-scale inversion 
problems (e.g. several 100000 nodepoints). The 
elements of the matrix are assembled when they 
are needed. 

A full description of the algorithm, including 
efficient calculation of the Jacobian and 
computational issues is given in [14,15]. 

 
Choice of penalty levels: To find 

appropriate values for penalty levels s
µλ  and λα 

for structural constraints and anisotropy 
constraints, respectively, we advocate running a 
series of inversion with penalty levels varying on 
a logarithmic scale. For each inversion we plot 
residual maps, i.e. colourcoded data–residuals as 
function of source and receiver position. Large 
values for the penalty levels clearly create 
correlated residuals. As the penalty levels are 
decreased the residual maps become less 
correlated. The displayed inversion images 
picture the smoothest and least anisotropic model 
for which the residual map shows uncorrelated 
residuals. 

 
ANISOTROPIC SEISMIC TRAVELTIME 
INVERSION 

The seismic inversion for anisotropic velocity 
models uses first arrival travel times as input data. 
The subsurface is parameterised with a piece-wise 
homogeneous medium, and 6 model parameters 
describe the stiffness tensor in each homogeneous 
region. 

We have used code developed by R.G. Pratt to 
invert the seismic travel times into a distribution 
of anisotropic velocities. Details of the inversion 
algorithm and methodology are not included since 
they are well documented in a number of papers 
including [16,17,18]. In this study, we use the 
seismic inversion models as a benchmark for 
inversion models from our newly developed 
electric inversion algorithm. In [19] a detailed 
description of the seismic tomograms at the test-
site including choice of inversion parameters is 
given. 

Assuming a transversely isotropic (TI) 
medium, the 6 model parameters used to describe 
the stiffness tensor in each region can be mapped 

to (i) velocity along the axis of symmetry, (ii) the 
Thomsen (anisotropy) parameters ε and δ and (iii) 
the tilt angle of the symmetry axis with respect to 
the vertical. The anisotropy parameter ε measures 
the fractional difference between the P-wave 
velocities perpendicular v ⊥  and parallel v &  to 
the symmetry-axis 

  
v v

v
ε ⊥ −
=

&

&
.  (15) 

The anisotropy parameter δ can be thought of 
as describing the shape of the wavefront of a 
compressional wave in a TI-medium. For ε = δ 
the wavefront is elliptical, whereas for ε ≠ δ the 
wavefront can deviate markedly from elliptical. 
The Thomsen parameters were introduced and are 
fully explained in [20] and are widely used in 
exploration seismology. 

 
ANISOTROPIC GEOPHYSICAL IMAGES 

In this section we present anisotropic 
inversion images from the Reskajeage test–site. 
The ability to compare the inversion images 
derived from anisotropic electrical inversion with 
(independently) calculated anisotropic traveltime 
tomograms confirms the quality of the electric 
inversion images. 

 
Anisotropic Electric Inversion Image 

Figure 2 shows anisotropic resistivity 
inversion images calculated using the newly 
developed algorithm. The left image shows 
average resistivities and the right image shows the 
reconstructed level of anisotropy in percent. 

A total of 7656 datapoints, are used to invert 
for 6 material properties at each of the 
approximately 60000 nodepoints of the three-
dimensional FE–mesh. Clearly, this inverse 
problem is severely underdetermined. In order to 
solve this problem we use the structural 
constraints described above. For example, since 
the acquisition geometry is essentially two 
dimensional (given by the x–z plane), it is 
reasonable not to allow conductivities to vary in 
y–direction. This is easily accomplished by 
setting k22 in equation (6) to a large number (here 
k22=106), while imposing reasonable values for 
the smoothness in x– and z–directions (here 
k11=k33=1). 

The nodespacing in the region between the 
boreholes, the region displayed in figure 2, is 
1.5 m. At each of the nodes the arithmetic mean 
  i l l l1 2 3

3( )σ σ σσ + +=   (16) 
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of the three conductivity eigenvalues is 
calculated. It has become habitual in the 
geophysical literature to plot resistivities rather 
than conductivities. We follow this convention 
and display resistivities i1/ρ σ=  on a logarithmic 
scale. The inverted resistivities range from 300 to 
1000 Ωm, values that are typical for sedimentary 
rocks. The percentage anisotropy is calculated by 
evaluating: 

 l l l( ) l l l( ) i1 2 3 1 2 3 1
100%

T

aσ σ σ σ σ σ σ
−

⋅ ⋅ (17) 

at each nodepoint. 
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Figure 2: Anisotropic resistivity tomogram. In the 
left image average resistivity is displayed and on 

the right electric anisotropy is shown.  
 
 

The top part of the tomogram shows a 
conductive, highly anisotropic band, dipping from 
the left towards the right. This observation is in 
accordance with the geological log showing finely 
layered and highly fractured siltstones. At a depth 
of around 65 m a region of high resistivity and 
low anisotropy is encountered. This region 
coincides with a well–cemented sandstone body. 
From 70 m to 80 m a horizontal zone of low 
resistivity and high anisotropy images one of the 
most hydraulically active fracture zones in the 
boreholes. Below 80 m the geological units 
become smaller. This is reflected by a complex 
pattern in both the resistivity and the anisotropy 
tomograms. 

 
Anisotropic Seismic Inversion Image 

Seismic anisotropic velocity images (Fig. 3) 
are used to assess the quality of the anisotropic 
electric images.  

A total of 7440 traveltime picks served as 
input to the seismic inversion. The existence of 
significant anisotropy was clearly observed in the 
raw travel-time data. Steeply dipping rays arrive 
anomalously late and horizontal rays arrive 
anomalously early. The subsurface was 
parameterised in blocks of 1.5 × 1.5 m. Within 
each block, we invert for 6 parameters, resulting 
in a total of 8640 model parameters to be 
estimated.  

The left image shows directionally averaged 
seismic velocity in each of cells in the region 
between the two wells. On the right seismic 
anisotropy ε is displayed. 
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Figure 3: Anisotropic velocity tomogram. In the 
left image average seismic velocity is shown and 

the right image displays seismic anisotropy ε. 
 
 

The correlation between seismic and electric 
average velocity and resistivity on the one hand 
and between seismic and electric anisotropy on 
the other hand is clearly obvious. Seismically fast 
geological units correspond to electrically 
resistive regions. Seismically anisotropic regions 
also exhibit strong electric anisotropy. The degree 
and mechanisms behind the correlation is subject 
of ongoing research. 

 
SUMMARY AND DISCUSSION 

We have successfully developed and 
implemented an inversion algorithm that inverts 
data from DC–electrical experiments into 
anisotropic conductivity distributions. The 
presented algorithm is computationally effective 
and can deal with datasets of approximately 
10000 data points on FE–meshes with more than 
100000 node points. The success of the method is 
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attributed to the flexible implementation of model 
covariance information. 

We have tested the algorithm on a dataset 
from a geologically well-studied test-site. At the 
same site a seismic crosswell experiment and 
geological and hydrological logs could be used to 
benchmark the anisotropic electric inversion 
images. The images derived using the new 
electrical inversion algorithm correlate well with 
both, the seismic images and the geological logs. 
We have thus demonstrated the feasibility and 
necessity of anisotropic resistivity inversion. 

We believe that anisotropy effects will 
become important in non-geophysical fields of 
research that are also governed by Laplace 
equation. We can foresee applications in medical 
electrical resistance tomography (ERT), where 
muscular tissue is known to be electrically 
anisotropic and inverse heat flow problems, 
where aligned crystals account for anisotropic 
thermal conductivity. 

 
ACKNOWLEDGMENTS 

We would like to thank Prof. Gerhard Pratt of 
Queens University, Canada, for making the 
seismic inversion software available. We also 
thank Dr. Andrew Binley of Lancaster University 
for invaluable assistance in the acquisition of the 
electrical data. 

 
REFERENCES 

1. F. S. Grant and G.F. West, Interpretation 
Theory in Applied Geophysics, McGraw Hill, New 
York, 1965. 

2. A. Binley, Shaw, B. Shaw and H. Siobhan, 
Flow Pathways in Porous Media: Electrical 
Resistance Tomography and Dye Staining Image 
Verification, Meas. Sci. Technol., 7, 384-390 (1996). 

3. W. Daily, A. Ramirez, D. LaBreque and J. 
Nitao, Electrical Resistivity Tomography of Vadose 
Water Movement, Water Resources Research, 28, 
1429-1442 (1992). 

4. A. Weller, M. Gruhne, M. Seichter and F. D. 
Börner, Monitoring Hydraulic Experiments by 
Complex Conductivity Tomography, Europ. J. Env. 
Eng. Geoph., 1, 209-228 (1996). 

5. L. D. Slater, Electrical Imaging of Fractures 
using Groundwater Salinity Changes, Ground 
Water, 35, 436-442, (1997). 

6. R. Maillet, The Fundamental Equations of 
Electrical Prospecting, Geophysics, 12, 529-556 
(1947). 

7. J. V. Herwanger, C. C. Pain, A. Binley and M. 
H. Worthington, Diagnosing Anisotropy in 
Electrical Tomography, submitted to Geopys. Prosp. 

8. N. L. Jefferies, S. Clabburn, C. Tabb, V. M. B. 
Watkins, and A. V. Bromley, GroundwaterFlow at 
Reskajeage Quarry, Cornwall: Acquisition of 
Borehole Data for the NAPSAC Fracture Network 
Program, AEA Technology Report AEAT/ERRA-
0087, 2000. 

9. G. B. Arfken and H. J. Weber, Mathematical 
Methods for Physicists, Academic Press, 4th edition, 
1995. 

10. S. C. Constable, R. L. Parker and C. G. 
Constable, Occam’s Inversion: A Practical 
Algorithm for Generating Smooth Models from 
Electromagnetic Data, Geophysics, 51, 289-300, 
1987. 

11. H. Maurer, K. Holliger and D.E. Boerner, 
Stochastic Regularisation: Smoothness or 
Similarity?, Geophysical Research Letters, 25, 2889-
2892, 1998. 

12. H.F.C. Velho and F.M. Ramos, Numerical 
Inversion of Two-dimensional Geoelectric 
Conductivity Distributions from Magnetotelluric 
Data, Braz. J. Geophys., 15(2), 133-143, 1997 

13. J. P. Kaipio, V. Kolehmainen, M. 
Vauhkonen, and E. Somersalo, Inverse Problems 
with Structural Prior Information, Inverse Problems, 
15, 713-729, 1999 

14. C. C. Pain, J. V. Herwanger, M. H. 
Worthington and C. R. E. de Oliveira, Effective 
Multi-Dimensional Resistivity Inversion using Finite 
Element Techniques, submitted to Geophys. J. Int. 

15. C. C. Pain, J. V. Herwanger and J. Saunders, 
Finite Element Anisotropic Resistivity Inversion, 
manuscript in preparation. 

16. C. H. Chapman and R. G. Pratt, Traveltime 
Tomography in Anisotropic Media – I. Theory, 
Geophys. J. Int., 109, 1-19, (1992) 

17. R. G. Pratt and C. H. Chapman, Traveltime 
Tomography in Anisotropic Media – II. Application, 
Geophys. J. Int., 109, 20-37 (1992) 

18. R. G. Pratt and M. S. Sams, Reconciliation of 
Crosshole Seismic Velocities with Well Information 
in a Layered Sedimentary Environment, Geophysics, 
61, 549-560 (1996). 

19. J. V. Herwanger, M. H. Worthington, R. 
Lubbe, A. Binley and J. Khazanehdari, A 
Comparison of Crosshole Electrical and Seismic 
Data in Fractured Rock, submitted to Geophys. 
Prosp. 

20. L. Thomsen, Weak Elastic Anisotropy, 
Geophysics, 51, 1954-1966 (1986). 



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

POINTWISE ESTIMATION OF THE MATERIAL PROPERTIES OF A BEAM
BY ELECTRONIC HOLOGRAPHY

Dan  Borza1,  Eduardo Souza de Cursi2
Laboratoire de Mécanique de Rouen, UMR 6138 CNRS

Institut National des Sciences Appliquées de Rouen, INSA
Avenue de l’Université,  BP 08

76801 Saint-Etienne du Rouvray CEDEX, France
1borza@insa-rouen.fr, 2 souza@insa-rouen.fr

ABSTRACT
This work presents a method for the

identification of a field of material properties of a
beam; the aim is to characterize the value of the
material properties at each point of the structure.

The material property is given by a function
defined everywhere on the structure, and may
have different values at different points.

The identification procedure needs a large
amount of information in order to proceed: the
field of displacement of the beam under a given
load is experimentally obtained by electronic
holography, which furnishes dense enough data.

From the numerical standpoint, both the
distribution of the moments and the measured
field are finite dimensionnally approximated by
using Galerkin's basis and the equations of the
equilibrium are used in order to calculate the
values of the unknown at each node.

We shall present numerical and experimental
results. The results have been confirmed by
electronic shearography.

NOMENCLATURE

a point of application of the force
C(x,y) local contrast in the image plane

EI material parameter to be identified
h length of a subinterval

I(x,y) intensity distribution of the object
image with interference fringes

IOBJ(x,y) intensity distribution of the object
image without interference fringes

M bending momentum
n number of nodes

npx,
npy numbers of pixels along x and y

P force applied on the beam

x,y coordinates in the image plane
s particle of the beam
T tension

u’,u’’ derivatives with respect to s:
u’ = du/ds ; u’’ = d2u/ds2

w vertical displacement of the beam
we Experimental displacements
ℓ length of the beam
α arbitrary phase shift

ϕ
optical phase of object wave with
respect to reference wave in the

detector plane
λ laser light wavelength

INTRODUCTION
The characterization of the material properties

of structures is an important field in inverse
problems. Many works may be found in the
literature. The particular case of beams has been
considered, with a special interest in fault
detection. Dynamic and static measurements have
been used in this field.

We introduce in this paper an original method,
based on the use of a large amount of data related
to the static displacements and an accurate
estimation of the third order derivative of the
measured field of displacements.

We adopt a point of view analogous to those
of some works on fault detection: the material
parameter is treated as a field defined everywhere
on the structure. The field is discretized by using
its value on a set of nodes.  Usually, the number
of nodes is connected to the number of points of
measure. In our experiments, we consider data
furnished by electronic holography, which leads
to a large number of nodes.
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LINEAR BENDING OF A BEAM
As previously  observed, a beam is a

mechanical structure which can be approximated
by an unidimensional continuous medium. We do
not develop here the different models which can
be constructed (see, for instance, [1]) and we
focus on the experimental situation concerned by
the identification  results, presented in Figure 1.
In this situation,  the beam is clamped at both the
extremities and modifies its geometry under the
action of an external force P > 0, concentrated at a
point  a of the beam.  The force is chosen so that
the equilibrium of the structure may be described
by a linear bending model.

The linear bending model assumes that the
sections of the beam may be approximatively
considered as not deformed and the displacement
field may be described by the single vertical
displacement w. Such a model is classical and we
do not present a complete description of the
mechanical assumptions and approximations
involved. More detailed information may be
found in the litterature (see, for instance, [1]). We
give below some elements concerning the model
which will be used in the identification procedure.

The linear bending model

Geometrical description. The structure is
described by a coordinate s ∈ (0, ℓ), where ℓ > 0
is the length of the beam (see Figure 1). Thus
each particle of the beam is associated to a point
on this interval.

The vertical displacements along the beam are
denoted by w: the particle s has the vertical
displacement w(s).

External load. The external force P is
applied at the particle s = a and causes the
bending of the beam. In practical situations, the
value of  a  is only approximately known.

Internal efforts and equilibrium. The
internal efforts of the medium are given by a

bending momentum M and a tension T. These
unknowns are fields: M, T : (0, ℓ) → R.

Let us denote by the symbol ’ the derivation
with respect to s. The equilibrium is characterized
by the equations

M’ + T = 0  ;  T’ + Pδa = 0    on (0, ℓ)         (1)

where δa  is the Dirac’s distribution concentrated
at the point a. Thus, we have :

M(s) = -T0(s-a) + M0   ;   T(s) = T0  on  (0, a)   (2)

M(s) = -T1(s-a) + M1   ;   T(s) = T1  on  (a, ℓ)   (3)

T1 = T0 - P   ;    M1 = M0                   (4)

Constitutive Relation and material
parameter. The bending moments are connected
to the vertical displacements by

M =  EI w’’   on  (0, ℓ)                (5)

where EI is the material parameter. We consider
EI as a field, EI : (0, ℓ) → R and we introduce a
method for its determination from measurements
of w. Equations (2)-(3) yield that w’’ is affine on
each interval where EI is constant. In addition, if
we assume the EI is continuous on the
neighbourhood of a,  then (4) yields that

w’’(a+) =w’’(a-); w’’’(a+) –w’’’(a-) = P/EI(a)  (6)

These properties  are exploited in the sequel.

Boundary conditions. The extremities of
the beam are clamped:

w(0) = w(ℓ) = w’(0) = w’(ℓ) = 0            (7)

IDENTIFICATION OF THE FIELD OF
MATERIAL PROPERTIES

Our purpose is the determination of the field
of material properties from measurements of w.

In [2],  the values of M are determined  by a
Finite Element Method and w’’ is determined
from the experimental data. Then (5)  gives EI.
Heree, we shall present an alternative approach,
which has shown to be more stable for
experimental data.

P

s = a

w

w = 0

s = ℓs = 0
ℓ

Figure 1 – The experimental situation
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Discretization
The interval (0, ℓ) is discretized as follows: let

n > 0 be a given integer and

h = ℓ/n  ;  si = (i-1)h  ,  i = 1, …, n+1       (8)

We shall note

EIi = EI(si) ;  (w’’)i  =  w’’(si)  ;  Mi = M(si)   (9)

Thus, we have

Mi =  EIi (w’’)i  ,  i = 1, …, n+1       (10)

Let us introduce Ii = (si–h/2, si+h/2) ∩ (0, ℓ).
The field EI is approximated by a piecewise
constant function on each Ii.

EI(s)  ≈  EIi   on   Ii                  (11)

Identification
As previously remarked, equations (2)-(3)

show that  M is an affine function (for instance,
we have  M’ = -T0  on  (0, a) ).  Thus, the
approximation (11) implies that  w’’’ is an affine
function on each subinterval  Ii. Thus,

w’’’(s)  ≈  (w’’’)i     on  Ii                  (12)

Let  ip verify sip  ≤ a < sip+1. We have

 (w’’’)i   =  T0/EIi ,  i ≤ ip-1   ;           (13)

(w’’’)i   =  T1/EIi , i ≥ ip+1   .          (14)

Once the values of T0 and T1 have been
determined, these equations are used for the
determination of EI. These values can be
determined by assuming that EI is constant in the
neighborhood of a. Thus,

)15(

wEI(a)T;wEI(a)T

ww
P

)(aw)(aw
PEI(a)

1ip1ip0

ip1ip

+

+

′′′−=′′′−=

′′′−′′′
≈

−′′′−+′′′
=

The use of this method implies the numerical
evaluation of w’’’. In practice, we have the values
of the measured displacements wei = we(si) on a
region  smin ≤ s  ≤ smax, corresponding to  i1 ≤ i ≤ i2 .
In the sequel, we consider such a  measured data

and we introduce a filtering method for the
determination of  w’’’.

Numerical approximation of w’’’
As previously observed, the measurements

will be affected by experimental noise. Thus, we
must introduce an adapted procedure for the
evaluation of the derivatives w’’’. The numerical
filtering below is based on dynamical
programming and has been introduced in [3]. A
more detailed presentation can be found in this
reference. Let us note

z1 = w  ; z2 = w’  ; z2 = w’’  ; z3 = w’’’;     (16)

                  u = w’’’’                           (17)

   We set  z = (z1,z2,z3,z4) ;

zi = z(si) ;  ui = u(si)                     (18)

Then
zi+1 = Azi + Bui   ;  zi1

 =  θ             (19)
where

(20)

h
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Let us introduce

u = (uiini
, … , uifin

)                  (21)

and denote by {zi(u, θ)}i the sequence defined by
(19).  We consider

( ) ��
==

+−=
end

ini

end

ini

i

ii

2
ireg

i

ii

21
ii (22)ubθ)(u,zweθ)J(u,

where  breg > 0 is a given  parameter and we
denote by  (u*,θ*)  the solution of

(u*,θ*)   = Arg Min J                         (23)

We shall approximate

(w’’’)i  ≈   (z3(u*,θ*) )i                  (24)
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EXPERIMENTAL SETUP
We have realized a structure corresponding to

the model by using a steel plate clamped on its
two opposite sides with an out-of-plane force
applied at the center of plate, as shown in Figure
2. The dimensions of the plate are lx × ly × lz,
where lx = 0.15 m, ly = 0.03 m, lz = 0.001 m. The
force was applied through a piezoelectrical
actuator having a spherical cap. Between the PZT
ceramic stack and the spherical cap a calibrated
force measuring transducer was mounted. The
whole system is positionned so that the applied
force lies in a horizontal plane

Figure 2. Loading mechanism

Besides the force transducer calibration, a
preliminary series of tests was completed in order
to check the linearity between the voltage applied
to the piezoelectric actuator and the maximum
value of the corresponding displacement map
produced. Nine different values of the applied
voltage had as results different holographic fringe
patterns. Figure 3 presents the graph relating the
applied voltage and the maximum number of
fringes on the corresponding  interferogram.

Figure 3. Voltage – displacement relationship

Three of these interferograms, for increasing
values of the applied voltage, are presented in
Figure 4.

Figure 4. Three interferogram samples

The interferograms and the full-field
displacement map at the surface of the tested plate
are obtained by electronic holography (Figure 5).

Figure 5. Holographic setup
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The holographic system includes a frequency-
doubled YAG laser in a typical 4-frames phase-
stepped electronic holography configuration.

In order to obtain the full-field displacement
data the plate clamping and loading mechanism is
set in place and four reference frames are
acquired, by applying a staircase voltage to the
piezoelectric actuator.

The voltage step is chosen so as to produce a
phase shift close to π/2 between the reference
wave and the object wave. The intensity
distribution corresponding to these images are
given by relation (25):

( ) ( ) ( ) [ ]{ }
( ) )25(1,2,3,4i,

2
π1iα

αcosyx,C1yx,Iyx,I OBJi

=−=

++= ϕ

The reference state is then recorded in the
computer memory by calculating the two
differences C0 and S0, given by eqs. (26) and (27):

( ) ( ) )(26cosyx,Iyx,2CIIC OBJ310 ϕ=−=

( ) ( ) )27(sinyx,Iyx,2CIIS OBJ240 ϕ=−=

After applying the desired force to the plate,
the plate bends and the mutual phase between the
object wave and the reference wave becomes
ϕ+∆ϕ. Another four-frames bucket Ji is then
acquired while the staircase voltage is being
applied to the piezoelectric actuator. The
expressions of these images are given by eq. (28):

( ) ( ) ( ) [ ]{ }
( ) )(281,2,3,4i,

2
π1iα

α∆cosyx,C1yx,Iyx,J OBJi

=−=

+++= ϕϕ

The two new differences Cd and Sd
corresponding to the deformed plate are then
computed; they are described by eqs. (29) and
(30).

( ) ( ) ( ) (29)∆cosyx,Iyx,2CJJC OBJ31d ϕϕ +=−=

( ) ( ) ( ) (30)∆sinyx,Iyx,2CJJS OBJ24d ϕϕ +=−=

Phase Map
The modulo 2π phase difference

corresponding to the plate deformation between
the reference state and the actual state is
calculated as:

d0d0

d0d0

SSCC
SCCS

atan∆
+
−

=ϕ (31)

It is illustrated in Figure 6. The force value is
1 mN.

Figure 6. Phase map at the plate surface

The full-field displacement-related phase map
is obtained, after applying an edge-preserving
smoothing filter and appropriate masking, by
phase unwrapping, as shown in Figure 7.

Figure 7. Unwrapped phase and profile

Displacement map
The normal displacement d(x,y) at a location

(x,y) on the plate is related to the phase map
∆ϕ(x,y) by the approximate relation:

( ) ( ) ( )yx,∆yx,s
λ

4πyx,d ϕ=       (32)

In equation (32) s(x,y) represents the sensibility
vector at the current plate point (x, y). To provide
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the necessary accuracy, the sensibility vector
value variation across the plate surface has been
calculated and taken into account, although it only
exhibits small variations (between 0.985 and
0.992) across the object field.

After the phase unwrapping, the resulting
phase map is spatially corrected for the
perspective and lens distorsions; taking into
account the extrinsic and intrinsic camera
parameters. About 1.7 % of the total number of
pixels situated near the clamped sides were
excluded from this procedure, most of them on
the right side of the image, because of the shade
of the clamping device. Thus, the final map
concern a part of plate such that  xmin ≤ x  ≤ xmax.
The values of  xmin and xmax are evaluated from the
number of pixels excluded.

The final displacement map is scaled to a size
of  npx × npy pixels and provided as a binary
matrix  D = (dij). We have

dij = d(xi,yj),  xi = xmin+(i-1)hx, yi = (j-1)hy , (33)

hx  = (xmax – xmin)/npx ; hy = ly/npy .       (34)

hx and hy are respectively the horizontal and
vertical length corresponding to one pixel. The
matrix D is transmitted to the material properties
identification computing system. The experiment
uses npx = 646, npy = 248.

Displacement Derivatives. To check the
consistency of the holographically obtained
displacement field over the plate surface the
horizontal derivative of the displacement map was
numerically computed. The results have been
compared with the experimentally obtained
derivative field, obtained by electronic
shearography.

Figure 8. Modulo 2π phase shearogram

Figure 8 shows the initial modulo 2π phase
shearogram, and Figure 9 shows the
corresponding unwrapped phase and the profile of
a horizontal line.

Figure 9.Unwrapped phase from shearogram

APPLICATION OF THE METHOD TO THE
EXPERIMENTAL DATA.

We take  s = x. The values of  wei are obtained
from  D by considering the mean value of each
column:

wei = �
=

npy

1j
ijd

npy
1                         (35)

The values of  xmin and xmax define the indices
i1 and i2 :

si1
 ≤ xmin  < si1+1 ;   si2-1 < xmax ≤ si2

 .     (36)

The  minimum of  wei  gives the index ip.

weip = min {wei , i1 ≤  i ≤ i2}            (37)

and the value of  a is  approximated by a ≈ sip.
w’’’ is evaluated by using (24). We present below
the results for P = 0.2 N. Figure 10  shows the
values of z1, which estimates the displacement w.
The result is coherent with the experimental data
in Figure 7.

The values of z2, which corresponds to the
derivative w’ are shown in Figure 11. The result
is in coherence with the independent
shearographic data in Figure 9.
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The values of z3 and z4 which estimate w’’ and
w’’’, respectively, are shown in Figures 11 and 12.
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Figure 10 – displacements z1
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Figure 13 – derivative w’’’ = z4.

The values of EIi  obtained are shown in the
Figure 14.
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Figure 14 – Field EI.

The values of EI obtained are in accordance
with the known values for a steel beam of the
given rectangular section. We have EImean = 3850
(103 units SI).

The mean value has been compared to the
value obtained by the identification of a single
parameter EI for the whole beam. This
corresponds to the special case where the field is
constant. In this case, the displacements are given
by two polynomials of the third degree:

)38(
a  s ,  da)-(sc a)-(sb a)-(sa
a  s ,  da)-(sc a)-(sb a)-(sa w(s)
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00
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0
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<+++=

The coefficients of each polynomial may be
determined by using the data and the value of EI
will be given by EI = P/(6(a1-a0)). This method
gives EI = 3868 (103 units SI), what is in
accordance with the preceding calculations.

The value of breg used has been breg = 1010.

LOCALIZATION OF A BEAM DEFECT.
In this experiment we shall  consider a beam

having a defect represented by a local
modification of the value of EI.

We  consider a beam of length d = 0.15 m,
with  a force P = 0.2 N applied on its middle point
a = 0.075.  We assume that EI = 3800 ( × 103

units SI) along the beam, except in the region
0.025 ≤ s ≤ 0.0275, where EI = 3000 ( × 103 units
SI).

The field of moments M(s) is generated by
using  M1 = M0 = -0.0375; T0 = 0.1 ; T1 = -0.1.
The exact value w corresponds to these
parameters. We generate the experimental field by
adding a  random noise ε corresponding to 10 %
of  w: we = w + ε.  We generate npx = 600 points.
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The values of  we are shown in Figure 15. Figure
16 shows the values of EI obtained with breg=0.01.
The horizontal line gives the value of EI: the
values obtained correspond to the exact value,
except on the defective region. The defect is
localized. The value of EI on the defective region
may be estimated from the values of z3 = w’’. The
mean value of the calculated values of EI on (a, ℓ)
is eimean = 3800 ( × 103 units SI).  In Figure 17, we
present the region where the values of EI differ
from eimean by more than 10 %: it corresponds
exactly to defective region.
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Figure 17 – Estimation of the defective region

Local information about the values of EI in
the default zone may be obtained from z3 = w’’ , as
shown in Figure 18.
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Figure 18 – EI obtained by using z3 = w’’

CONCLUDING REMARKS.
We have presented a method for the

identification of a field of material properties of a
beam. The material property is given by a
function defined everywhere on the structure, and
may have different values at different points.
From the numerical standpoint, the field is
discretized  at a set of nodes (typically 600 ones).
The method is based on the use of the third order
derivatives of the displacements, which are
calculated by an adapted filtering procedure.

The identification method has been tested on
data experimentally obtained by electronic
holography. It  has also been tested on
numerically generated data  representing a
defective beam. In both situations, it has shown to
be effective for calculations. In addition, the
results of the experimental case have been
confirmed by comparison with the results
furnished by electronic shearography.

Improvements and development will be matter
of future work: extension to models of plates,
simultaneous use of the second and third order
derivatives.
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ABSTRACT 

This work presents an investigation on the use 
of the finite element method (FEM) and artificial 
neural networks (ANN) for the identification of 
defects on metallic walls (pipelines, metallic 
vessels, large metallic structures, etc.), due to the 
aggressive actions of the fluids contained by 
them, and/or atmospheric agents. The 
methodology used in this study consists in the 
simulation of a  large number of defects in a  
metallic wall, considering its geometry and 
magnetic characteristics, by the finite element 
method. Both variations in the width and height 
of the defects are considered.  Then, the obtained 
results are used to generate a set of vectors for the 
training of a perceptron multilayer artificial neural 
network. Finally, the obtained neural network is 
used to classify a group of new defects,  simulated 
by the finite element method, but not belonging to 
the original dataset. The results on the simulated 
defects seem to support the proposed method, and 
encourage future works on this subject 

 
INTRODUCTION 
     Metallic walls constitute important 
components of many kinds of industrial plants, 
such as gas pipelines, chemical pipelines, fuel 
vessels, sugar and alcohol plants etc. Generally, 
these walls are subject to the aggressive 
(corrosive) actions by the fluids contained by 
them, or even by atmospheric agents. So, these 
equipments must be periodically evaluated, in 
order to avoid operational interruptions and/or 
dangerous accidents. Usually, these evaluations 
are done using non-destructive techniques. Such 
techniques may involve the use of 
electromagnetic fields, which are induced in the 
metallic walls of the equipment under inspection.  
 

      More common techniques used in the 
inspection of metallic walls are based on eddy 
current systems. In this kind of analysis, 
electromagnetic devices are excited by an 
alternating current of a given frequency that 
induces a flow of eddy currents in the material 
under test. As the probe passes over the defect, 
the same causes a change in the flow of eddy 
currents. These changes are then detected by 
electronic sensors. The changes are generally 
proportional to the depth of the defect. So, we can 
estimate the depth of the defect by proper 
electronic calibration. Relative motion between 
the test probe and the material being inspected is 
a requirement of this type of inspection. Although 
the probe can be hand held as the piece under test 
is examined, this method is usually too slow, and 
unreliable.  A very interesting alternative, 
introduced by Low, [1],  is the use of the Finite 
Element Method (FEM) in conjunction with 
Artificial Neural Networks (ANN) for solving this 
kind of inverse problem.  
     In this paper we present an investigation on the 
use of FEM and ANN in the identifications of 
defects in metallic walls. The methodology 
consists of the following steps: 
 
1. A large number of defects in a metallic wall is 

simulated using the finite element method.  
 
2. The obtained results are then used to generate  

the training vectors for a multilayer perceptron 
artificial neural network. 

 
3. The trained network is used to classify new 

defects in the wall, which  not belong to the 
original dataset. 
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4. The network weights can be embeded in an 
electronic device, and used to identify defects 
in real pieces, with  characteristics similar to 
those of the simulated ones. 

     For the methodology presented here, the 
measured values are independent of the relative 
motion between the probe and the piece under 
test. In other words, the movement is necessary 
only to change the position of the probes, to 
acquire the fields values, which are necessary to 
the construction of the defect pattern. 
Furthermore, the use of neural networks in 
conjunction with the finite element method 
permits a very good determination of both, width 
and height of the defect.  
     The  kind of defect we have investigated in 
this work is corrosion on the inner surface of 
metallic tubes. For the purpose of the paper, the 
defects were classified in large, medium and 
small. The dataset was generated considering 
variations on width and height, resulting in 
approximately 550 finite element simulations. 
 
THE FINITE ELEMENT METHOD IN THE 
ELECTROMAGNETIC FIELD ANALYSIS 
     In this section we present a brief resume of the 
application of the finite element method in 
magnetostatic field problems. 
     Two-dimensional magnetostatic field problems 
are described by the quasi-Poisson equation : 
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(1) 

 
where : 
  
A =  is the magnetic potential vector, here 
presented as a scalar quantity, in A/m 
J = density of current, in A/m2. 
ν = is the inverse of the magnetic permeability, µ. 
 

The magnetic potential vector A
&

 does not 
have any physical meaningful, but it is a 
mathematical function used to obtain  the 
magnetic flux density B. 

 Equation (1) has no analytical solution. So, its 
solution must be numerical, and the most popular 
technique for this kind of solution is the finite 
element method (FEM). 

In terms of calculus of variations, the 
magnetostatic field problem can be  formulated in 
terms of a functional of energy : 
 

 ( )∫∫ ∫ −ν= dxdyA.JBdBF  (2) 

 

where  AB
&

×∇= . 
Minimization of (2) is done by proposing an 

approximating function for the magnetic potential 
vector, that is : 
 
 

∑
=
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n
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ii A.)y,x(A  

 
(3) 

 
where Ai is the value of the magnetic potential at 
the nodes of the finite element, and φi are the 
shape functions. For the first order triangular 
element (the element used in this work, and 
showed in figure 1), φi is : 
 
 

∆
++

=φ
2

cybxa ii
i  

 
(4) 

 
where the coefficients ai, bi and ci are dependent 
of the node positions, and ∆ is the area of the 
triangle.  

The minimization is done substituting (3) in 
(2), and taking its derivatives in relation to the 
magnetic potential in the nodes.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Free representation of finite 
elements 

 
For the magnetostatic case, after 

minimization, we have for each element the 
following 3x3 algebraic system of equations : 
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J = J1 

J = J2 
A1 

A2 
A3 

A = constant 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

Combining all the elementary matrices, we 
have the global system of equations : 

 
 ( )( ) ( )RAS =.  (6) 

 
More details about the finite element theory 

can be found in  [2] and [3]. 
 
THE  METHODOLOGY FOR DEFECT 
IDENTIFICATION 

First of all, an electromagnetic device was 
idealized to be used as an electromagnetic field 
exciter (Figure 2). In this paper, we have 
considered direct current in the coils. So, the 
material of the metallic wall must be 
ferromagnetic. Very low frequency currents in the 
coil must be used for non-ferromagnetic 
materials, and these will be studied  in future 
works.  

Surface swapping with the above described 
electromagnetic device are done to take 
deviations of the magnetic induction at equally 
stepped points on the external surface of the wall.  

Each position of the swapping, with each 
defect dimensions, correspond to one simulation 
with the finite element program. In order to 
generate the training vectors for the neural 
network, a large number of defect shapes must be 
simulated. In this work, 40 defects have been 
simulated, with 13 positions of the sensor. So, 
more than 500 finite element simulations were 
done. 
 
 
 
 
 
 
 

 
 
 

Figure 2 – Arrangement for the measurements 
 

     Figures 3a and 3b show the steps of the 
methodology used in this work. 

Steps 1-4 correspond to the finite element 
analysis of  the defects. In this work we used a 2D 
finite element program to simulate the defects in a 
metallic wall. Extensions of this work include the 
use of 3D finite element programs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Flowchart of the Used Methodology  
 

coils 

wall 
sensor 

Modifications in the finite element 
mesh, changing the defect 
shapes. 

Finite element solutions getting 
the magnetic inductions values at 
the sensor position. 

 Analysis of the data, in order to 
verify their coherence. 

2 

3 

4 

Generation of the neural network 
training vectors 

Definition of the neural network 
architecture. 

 

Neural netowork training 

 

Validation tests 

 

Classification of new defects 

5 

6 

7 

8 

9 

Generation of the initial finite 
element mesh. 

1 
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The simulations were done for a hypothetic 
high pressure vessel, with 1500 mm of diameter 
and 10 mm thick. The material of the vessel is 
1006 Steel (a magnetic material), and the 
permeability of the defects was set to the 
permeability of the air. Finite element meshes 
with 36000 elements and 18000 nodes, 
approximately, were used in the simulations. 
Figure 4 shows a field distribution for one of 
these simulations. 
 

 

 

Figure 4 – Field mapping for a finite element 
simulation 

     During the phase of finite elements 
simulations, errors can appears, due to its 
massively nature. So, the results of the 
simulations must be carefully analyzed. This can 
be done, for instance, plotting in the same graphic 
the magnetic induction deviations for a set of 
defects. Figure 5 shows the deviation on the 
magnetic induction in the space between the coils 
for a set of defects, having the same height (4 
mm), and width ranging from 9.87 mm to 98.24 
mm, and with the sensor fixed at the middle of the 
defect.  
     In the step 5, we generate the training vectors 
for the neural network. In this work, we generated 
40 vectors with 25 elements each one, with mirror 
symmetry in relation to the 13th element. Figure 6 
and 7  shows the the graphics  for two of these 
vectors, for the heights of 4 mm and 1 mm 
respectively. In this graphic, and all subsequent 
ones, magnetic inductions values are at vertical 
axes, and length are at horizontal axes. 
     For the purpose of training and classification, 
the defects were identified by : initial (number 1), 
serious (number 2) and critical (number 3). From 
the original  40 vectors, 36 vectors were used in 
the network training, and 4 vectors were used in 
their validation. 

 

 

Figure 5 – Magnetic induction in the region 
between the coils, for a group of defects 

 

 

Figure 6 – Magnetic induction for the 25 elements 
of the vectors which correspond to the height of 4 

mm 

 

 
Figure 7 – Magnetic induction for the 25 elements 
of the vectors which correspond to the height of 1 

mm 
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     The neural network architecture chosen was a 
multilayer perceptron, trained with the 
Levemberg-Marquadt, [4]. Several network 
configurations were tried, and better results have 
been obtained by a network constituted by  three 
layers  with 15, 10 and 5  neurons, as we can see 
in  Table 1 

 
Table 1 – Errors for several neural network 

training sessions 
1st  

hidden 
layer 

2nd 
hidden 
layer 

3rd 
hidden 
layer 

Mean 
Squared 

Error 

Standard 
Deviation 

15 - - 13,86 18,11 
15 - - 12,46 23,27 
15 - - 12,30 24,12 
20 - - 12,02 18,75 
20 - - 11,71 17,56 
20 - - 9,83 14,89 
15 5 - 5,19 10,21 
15 5 - 0,57 0,55 
15 5 - 0,35 0,55 
15 10 - 2,61 3,31 
15 10 - 0,67 0,79 
15 10 - 0,53 0,75 
15 10 5 0,17 0,20 
15 10 5 0,09 0,13 
15 10 5 0,005 0,002 

 
 NEW CLASSIFICATIONS 
     After the neural network training and 
respective validations, new defects were 
simulated by the finite element method, for 
posteriori classification by the network. Table 2 
shows the defects dimensions (height and width), 
expected defect number and obtained defect 
number, by the neural network. 
 

Table 2 – Simulation results 
Defect 
height 
(mm) 

Defect 
width 
(mm) 

Expected 
number 

Obtainded 
number 

3 35,26 2,0 2,0001 
1 84,23 1,0 1,000 
4 81,55 3,0 2,9999 

     As we can see, the results obtained by the 
neural network for these examples, although very 
simple, were very good. 
 
CONCLUSIONS 

In this paper we presented an investigation on 
the use of the finite element method and artificial 
neural networks for identification of defects in 
metallic walls, present in industrial plants. For a 
given metallic wall characteristics, defects can be 
simulated by the finite element method, and the 
fields results used in the preparation of training 
vectors for artificial neural networks. The main 
contribution of the proposed methodology is the 
possibility of better identification of shape of the 
defects. The network  can be embedded in an 
electronic device in order to identify defects in 
real metallic walls. Again, we can   So the 
association of FEM and ANN techniques seems 
to be an useful alternative for non destructive 
evaluations. Future works are intended to be done 
in this field, such as the use of more realistic 
finite element problems, computer parallel 
programming, in order to get quickly solutions. 
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ABSTRACT
Real world mechanical systems present

nonlinear behavior and in many cases simple
linearization in modeling the system would not
lead to satisfactory results. Coulomb damping and
cubic stiffness are typical examples of system
parameters currently used in nonlinear models of
mechanical systems. This paper uses orthogonal
functions to represent input and output signals.
These functions are easily integrated by using a
so-called operational matrix of integration.
Consequently, it is possible to transform the
nonlinear differential equations of motion into
algebraic equations. After mathematical
manipulation the unknown linear and nonlinear
parameters are determined. Numerical
simulations confirm the above methodology.

INTRODUCTION
Real systems, in general, have a non-linear

dynamical behavior. However, most of these
systems can be studied through an approach based
on the linear system theory, according to which
the superposition principle can be applied. The
error that arises from this type of approach
depends on the non-linearity degree of the system
under analysis. When systems with high non-
linearity are concerned, the application of the
theory for linear systems is not acceptable. So, in
these situations, specific methods for non-linear
system analysis must be employed.

In reference [1] the authors present a
parametric identification method in which time
series are used to extract the dynamical
characteristics of the system and predict the time
response. Systems presenting Coulomb friction
and non-linear stiffness, occurring separately or
simultaneously, are studied. This parametric
identification procedure uses the AVD model
(acceleration, velocity and displacement) and
models the dry friction force using the velocity.

The AVD model of the friction mechanism is
independent of the excitation level and can
predict accurately the time response due to
random excitations since the condition of
continuous motion is satisfied, i. e., stick-slip
motion does not occur. Displacement and velocity
signals should be used besides the acceleration in
order to obtain accurately the non-linear terms.
The precision in the friction force identification is
better when using higher excitation force levels.

In reference [2] a wavelet-based procedure is
developed to identify mechanical parameters of
discrete non-linear structural systems. The
methodology allows the parameter estimation of a
prior known dynamical models as well as the
identification of classes of suitable non-linear
models based on input-output data. The method
relies on a wavelet-based discretization of the
non-linear governing differential equation of
motion. The inertia terms of the system have to be
known, a priori, in order to identify the other
parameters, what may limit the use of this
technique in certain applications.

In this paper a methodology to identify
physical parameters of non-linear systems,
through orthogonal functions, is presented.
Different types of non-linearity can be addressed
for both free or forced systems, since the
mathematical model is known. Numerical
simulations testify the efficiency of the technique
and show its applicability for single and multi-
degree of freedom systems.

ORTHOGONAL FUNCTION REVIEW
A set of functions φi(t), i = 1, 2, 3, ... is said to

be orthogonal in the interval [a,b] if:

mn

b

a
nm Kdt)t()t( =� φφ (1)
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where: 
�
�
�

≠
≠=

n=m if  0K
nm if  0K

mn

mn

If Kmn is the Kronecker's delta, the set of
functions φi(t) is said orthonormal. The following
property, related to the successive integration of
the vectorial basis, holds for a set of r
orthonormal functions:

���

�

 timesn

t

0

t

0
� � { })(τφ ( )ndτ  ≅  [ ]nP  { })t(φ (2)

where [ ] ℜ∈ r,rP  is a square matrix with constant
elements, called operational matrix and

{ } { }T
1r10 )t(...)t()t()t( φφφ=φ −  is the

vectorial basis of the orthonormal series
References [3] and [4] give details about the

vectorial basis and operational matrix related to
the various types of orthogonal functions
considered in the present paper.

PARAMETER ESTIMATION TECHNIQUE
THOUGH ORTHOGONAL FUNCTIONS
The equation of motion of a N-D.O.F. non-linear
system, submitted to any external force { })t(f ,
can be described by:

[ ]{ } [ ]{ } [ ]{ }
{ } { })t(f))t(x),t(x(g

)t(xK)t(xC)t(xM
=+

+++
�

���
(3)

where [ ]M , [ ]C  and [ ]K  are, respectively, the N
order mass, damping and stiffness matrices,
{ })t(x  is the displacement vector, { }))t(x),t(x(g �

is the non-linear restoring force vector, which is a
function of the displacement and velocity, and
{ })t(f  is the excitation force vector. Depending on
the nature and magnitude of the non-linear forces
in { }))t(x),t(x(g �  and the vibration level of the
system, the non-linear term can be ignored and a
linear modal analysis can be performed with
negligible errors. However, in this study, cases
are addressed in which the non-linear effects can
not be neglected.

The non-linear force vector can assume
different forms. Without loss of generality, a
formulation will be developed for a one-D.O.F.
system with cubic stiffness and mixed damping
(viscous and dry friction damping). In this case,
Eq. (3) is written in the following way:

( ) )t(f)t(xsign f

)t(x K)t(x K)t(x C)t(x M

d

3
3

=+
++++

�

��� (4)

where 3K  is the cubic stiffness coefficient, df  is
the dry friction force and ( ))t(xsign �  is defined as:

( )
�
�

�
�

�

<−
=
>+

=
0(t)xfor    1
0(t)xfor     0 
0(t)xfor    1

(t)xsign
�

�

�

� (5)

Let 3)t(x)t(y =  and ( ))t(xsign)t(z �= ,
substituting in Eq. (4), results:

)t(f(t)z f)t(y K
)t(x K)t(x C)t(x M

d3 =++
+++ ���

 (6)

Integrating Eq. (6) twice in the interval [ ] t; 0 ,
one can obtain:

( )

{ }� � ττ=

=� � ττ+� � ττ+� � ττ+

+��
�

�
��
�

� −� ττ+−−

t

0
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d
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0
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0

2
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d)(f

d )(z fd )(y Kd )(x K

t )0(xd )(x Ct )0(x)0(x)t(xM �

(7)

where )0(x  and )0(x�  are, respectively, the
displacement and velocity initial conditions.

The signals )t(x , )t(y , )t(z  and )t(f  are
expanded in truncated orthogonal function series
with r terms, i.e.:

{ } { } )1,r(r)(1, )t( X)t(x φ≅

{ } { } )1,r(r)(1, )t( Y)t(y φ≅ (8)

{ } { } )1,r(r)(1, )t( Z)t(z φ≅

{ } { } )1,r(r)(1, )t( F)t(f φ≅

where { }X , { }Y , { }Z  and { }F  are the vectors
containing the coefficients of the series
expansion.

Substituting Eqs. (8) in Eq. (7), one obtains:
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Considering that { } { } 1)t(e T =φ  and

{ } [ ]{ })t(Pet T φ=  [5], where { } )1,r(e  is a vector

with constant elements whose form depends on
the orthogonal function used. For instance, for
Fourier, Chebyshev, Legendre, Jacobi and Walsh

series { } { } T001e �=  and for the Block-

Pulse function { } { } T111e �= . Substituting
these expressions in Eq. (9), results:
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(10)

Applying the property for the integration of
orthogonal functions (Eq. 2)and equating the
coefficients of { })t(φ  in Eq. (10), one can obtain
the following algebraic equation:
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Equation (11) can be written in the following
compact form:

[ ] [ ] [ ] )r,1()r,7()7,1( EJ H = (12)

The expression below gives an estimate of
matrix [ ]H  by using the least square method:

[ ] [ ] [ ] [ ] [ ]( )J JJEH T 1T −= (13)

Equation (13) is solved by using the Singular
Value Decomposition Method and it is possible to
determine the unknown parameters, as well as the
displacement and velocity initial conditions.

As presented above, Eq. (12) is valid for a
one-D.O.F. system with cubic stiffness and mixed
damping (viscous and dry friction damping). If
only one type of non-linearity holds, the term
referred to the other type of non-linearity is
neglected and Eq. (12) remains valid. When
multi-degree of freedom systems are concerned,
the development of the formulation follows the
same procedure adopted above, except for the
case in which cubic stiffness is considered. In that
case, the formulation is slightly changed, since
various non-linear terms appear in the equations
of motion (the relative motion of the different
masses have to be computed). However the
general technique applied is the same.

In the case of free systems, the procedure is
similar and the following algebraic equation is
obtained:
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or, in a compact form:
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One can observe, from the equations above,
that the unknown parameters can not be identified
separately but as a combination of them.
However, if the mass or another parameter is
previously known, all other parameters can be
determined separately.

CASE STUDIES

One-D.O.F. Mechanical System With
Mixed Damping (Viscous And Dry Friction
Damping)

This case corresponds to the system
represented by Eq. (4), for which the term
associated with the non-linear stiffness is not
taken into account, with the following parameters:
 kg 1M = , mNs 20C = , mN 10000K = ,

N 3 and 1f d = .

At first, a swept-sine excitation with an RMS
value of 10 N ( N 0.10Frms = ) from 10 to 20 Hz
was used. The response, considering N 1f d = ,
was sampled at a frequency of 1700 Hz using the
fourth-order Runge-Kutta method. The
parameters and dry friction force identified are
shown in Tables 1.1 and 1.2.

Table 1.1. Swept-sine excitation – One-D.O.F
system (fd = 1 N)
Orthogonal

Function
M [kg] C [Ns/m]

Fourier
(r=51)

0.996 (0.5%)(1) 20.18 (0.9%)

Chebyshev
(r=30)

0.995 (0.5%) 20.10 (0.5%)

Legendre
(r=35)

0.993 (0.7%) 20.40 (2.0%)

Jacobi
(r=30)

0.994 (0.6%) 20.33 (1.7%)

Block-Pulse(2)

(r=512)
0.993 (0.7%) 20.18 (0.9%)

Table 1.2. Swept-sine excitation – One-D.O.F
system (fd = 1 N)
Orthogonal

Function
K [N/m] fd [N]

Fourier
(r=51)

10029 (0.3%) 1.005 (0.5%)

Chebyshev
(r=30)

10019 (0.2%) 1.020 (2.0%)

Legendre
(r=35)

10003 (0.0%) 0.993 (0.7%)

Jacobi
(r=30)

9997 (0.0%) 1.079 (7.9%)

Block-Pulse(2)

(r=512)
10045 (0.5%) 1.004 (0.4%)

Obs.: 1) ( •  ) relative error
2) Walsh functions presented the same
results as the Block-Pulse functions

When the value of the dry friction force is
increased keeping the same excitation force, i. e.,
increasing the ratio (fd/Frms) the errors in the
identified parameters, in general, are greater. This
is shown in Tables 2.1 and 2.2 for N 3f d =  and
the same excitation force ( N 0.10Frms = ).

Analyzing Tables 1.1, 1.2, 2.1 and 2.2, one
can say that, in general, Fourier series had the
best performance. On the other hand, Jacobi
polynomials presented difficulties with respect to
dry friction force identification.

It was also applied a random force in the range
10 to 25 Hz using the same intensity of excitation
level ( N 0.10Frms = ) and two different values for
the dry friction force. The results, only for Fourier
series, are shown in Tables 3.1 and 3.2. The
response predictions are presented in Fig. 1 and 2,
for N 1f d =  and N 3f d = , respectively.
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Table 2.1. Swept-sine excitation – One-D.O.F
system (fd = 3 N)

Orthogonal
Function

M [kg] C [Ns/m]

Fourier
(r=51)

0.990 (1.0%) 20.42 (2.1%)

Chebyshev
(r=30)

0.987 (1.3%) 20.82 (4.1%)

Legendre
(r=35)

0.987 (1.3%) 20.13 (0.6%)

Jacobi
(r=30)

0.987 (1.3%) 19.27 (3.6%)

Block-Pulse
(r=512)

0.987 (1.3%) 20.47 (2.3%)

Table 2.2. Swept-sine excitation – One-D.O.F
system (fd = 3 N)

Orthogonal
Function

K [N/m] fd [N]

Fourier
(r=51)

9995 (0.1%) 2.990 (0.3%)

Chebyshev
(r=30)

9974 (0.3%) 2.914 (2.9%)

Legendre
(r=35)

9957 (0.4%) 3.103 (3.4%)

Jacobi
(r=30)

9946 (0.5%) 3.378 (12.6%)

Block-Pulse
(r=512)

10012 (0.1%) 2.980 (0.7%)

Table 3.1. Random excitation – One-D.O.F
system
Orthogonal

Function
M [kg] C [Ns/m]

Fourier
(fd = 1 N, r=91)

0.978 (2.2%) 19.41 (3.0%)

Fourier
(fd = 3 N, r=101)

0.957 (4.3%) 19.54 (2.3%)

Table 3.2. Random excitation – One-D.O.F
system
Orthogonal

Function
K [N/m] fd [N]

Fourier
(fd = 1 N, r=91)

9967 (0.3%) 1.059 (5.9%)

Fourier
(fd = 3 N, r=101)

9859 (1.4%) 3.045 (2.9%)

The results shown in the Tables above indicate
that the accuracy in the identification was higher
when swept-sine excitation was used. However,

even for random excitation (Tables 3.1 and 3.2),
the results obtained for the response prediction
(Fig. 1 and 2) can be considered acceptable.
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Figure 1. Response prediction – One-D.O.F
system (fd = 1 N)
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Figure 2. Response prediction – One-D.O.F
system (fd = 3 N)

One-D.O.F. Duffing Oscillator With Mixed
Damping

In this application, all terms presented in Eq.
(4) are considered. The parameters of the system
are given by kg 1M = , mNs 20C = ,

mN 10000K = , 39
3 mN 105K ×=  and

N 1f d = .
A harmonic excitation force such as

( )tf2sin F)t(f 00 π=  with Hz 21f0 = ,
N 20Frms =  and a sampling frequency of

Hz 5115  was used. The results with the identified
parameters and the respective relative errors for
the Duffing oscillator are shown in Table 4.

Measured
Estimated

Measured
Estimated
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Table 4. Identified parameters – One-D.O.F.
Duffing oscillator with mixed damping

Fourier
(r=75)

Block-Pulse
(r=512)

M [kg] 1.000 (0.0%) 0.997 (0.4%)
C [Ns/m] 18.71 (6.4%) 18.70 (6.5%)
K [N/m] 10041 (0.4%) 10030 (0.3%)

K3 [N/m3] 5.004x109 (0.1%) 5.001x109 (0.0%)
fd [N] 1.037 (3.7%) 1.035 (3.5%)

Two-D.O.F. Mechanical System With
Mixed Damping

A two-D.O.F. mechanical system was tested
in order to illustrate the application of the
methodology to multi-degree of freedom systems.
The corresponding physical model is presented in
Fig. 3.

Figure 3. Two-D.O.F. mechanical system with
mixed damping

The physical parameters are given by:

kg 0.1MM 21 == , mNs 0.10CC 21 == ,
mN 0.10000KKK 321 === , N 0.1ff 2d1d ==

A swept-sine excitation in the band 10 to 23
Hz is applied to mass 1 and another force in the
band 17 to 30 Hz is applied to mass 2. The
response was sampled at a frequency of 1023 Hz.
For both excitation forces N 0.20Frms = . The
identified values for the parameters and the dry
friction force are shown in Tables 5.1 and 5.2.

A band limited (10 to 30 Hz ) random
excitation force ( N 0.10Frms = ) was also applied
to the above two-D.O.F. Mechanical system.
Some identified parameters presented greater
errors when compared with the previous case, as
shown in Table 6. However, comparing the
predicted and measured responses, a reasonable
agreement was found, as shown in Figures 4 and
5.

Table 5.1. Swept-sine excitation – Mixed
damping two-D.O.F system

Fourier
(r=75)

Legendre
(r=51)

M1 1.002 (0.2%) 1.001 (0.1%)
M2 0.996 (0.4%) 0.995 (0.5%)
C1 9.49 (5.1%) 9.55 (4.5%)
C3 9.99 (0.1%) 10.00 (0.0%)
K1 10155 (1.6%) 10168 (1.7%)
K2 9965 (0.4%) 9926 (0.7%)
K3 9896 (1.0%) 9904 (1.0%)
fd1 1.047 (4.7%) 0.973 (2.7%)
fd2 1.026 (2.6%) 1.043 (4.3%)

Table 5.2. Swept-sine excitation – Mixed
damping two-D.O.F system

Jacobi
(r=46)

Block-Pulse
(r=512)

M1 0.998 (0.2%) 1.000 (0.0%)
M2 0.996 (0.4%) 0.994 (0.6%)
C1 9.67 (3.3%) 9.48 (5.2%)
C3 10.04 (0.4%) 9.99 (0.1%)
K1 10147 (1.5%) 10163 (1.6%)
K2 9917 (0.8%) 9972 (0.3%)
K3 9916 (0.8%) 9900 (1.0%)
fd1 0.973 (2.7%) 1.054 (5.4%)
fd2 1.048 (4.8%) 1.027 (2.7%)

Table 6. Random excitation – Mixed damping
two-D.O.F system

Legendre
(r=105)

M1 1.098 (9.8%)
M2 1.009 (0.9%)
C1 9.13 (8.7%)
C3 10.11 (1.1%)
K1 10082 (0.8%)
K2 10002 (0.0%)
K3 9242 (7.6%)
fd1 1.098 (9.8%)
fd2 1.009 (0.9%)
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Figure 4. Response prediction x1(t) – Two-D.O.F
system (random excitation)
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Figure 5. Response prediction x2(t) – Two-D.O.F
system (random excitation)

CONCLUSIONS
A technique for parameter identification of

non-linear systems, based on orthogonal
functions, has been developed. It can be applied
to systems with different types of non-linearity,
since the mathematical model of the system is
known.

The studied cases show that good results can
be obtained either for free and forced systems.

Among the orthogonal functions tested,
Fourier, Legendre, Block-Pulse and Walsh series
presented a superior performance when compared
with Chebyshev and Jacobi polynomials.

The efficiency of the methodology encourages
further studies related to inverse problem
identification, particularly the case of force
identification.
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¾{·�«�¼�·Z«�¯(Ê=°�¯�­3Á8µ;ª8¶�·	­{®)­�¼
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¼�µ$ª=¯�«�Á#­�®�¶�·	°�¶-°UÃ=°�®I¶M«�¼
²�­^¼3°�ªÂµ$ª�²�³ïÊ=­[¯�¼�°�¶�¶M­�®�­3Á¤¶�µ
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ABSTRACT 

When the piezoelectric film is glued on the 
surface of a cracked material subjected to 
mechanical load, change in electric potential 
distribution is observed on the surface of film. 
Based on this phenomenon, the passive electric 
potential CT (computed tomography) method can 
be developed, which does not require electric 
current application for identifying cracks. This 
method may be applied to develop an intelligent 
structure with a function of self-monitoring of 
flaws and defects. For the crack identification 
from electric potential distribution, an inverse 
method based on the least residual method was 
applied, in which square sum of residuals are 
evaluated between the measured electric potential 
distributions and those computed by using the 
finite element method. Numerical simulations 
were carried out on identification of a through-
thickness transverse crack. It was found that the 
location and size of the crack can be 
quantitatively identified by the proposed passive 
electric potential CT method. 
 
NOMENCLATURE 
a         half length of crack 
[C]     stiffness matrix 
{D}    electric displacement vector 
[e]      piezoelectric coefficient matrix  
{E}    electric field vector 
Eelas    Young’s modulus of substrate material 
{F}    mechanical load vector 
[g]     dielectric constant matrix 
Gelas    shear modulus of substrate material 

h         crack depth 
H      distance between locations taking peaks of 

electric potential  
[Kuu]   mass matrix 
[Kuφ]   displacement electric stiffness matrix  
[Kφφ]   electric stiffness matrix 
M        number of measuring point 
{Q}    electric load vector 
Rs      square sum of residual between  measured 

and computed potential  
tpiezo    thickness of piezoelectric film 
xc        crack location  
 
Greeks 
{ε}     strain vector 
φ              electric potential  
φ0            remote value of electric potential  
φi

(c)   electric potential values at i-th measuring 
point computed by the FEM 

φi
(m)  measured electric potential value at i-th 

measuring point 
φmax    peak value of electric potential 
νelas    Poisson’s ratio of substrate material 
ρ        density 
{σ}    stress vector 
 

 
INTRODUCTION 

Non-destructive and real-time damage 
monitoring technique is important for 
maintenance of in-service structures such as, 
aircrafts, space structures or nuclear power plants. 
Non-destructive crack identification is recognized 
as a domain/boundary inverse problem [1] which 
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deals with the estimation of an unknown 
boundary. Conventional NDT (non-destructive 
testing) methods such as ultrasonic method, 
radiation method, electric-potential method may 
not be applied for the purpose, since they have 
some limitations in their applications for 
automatic inspection, non-contact inspection or 
remote inspection in severe environment. 
Development of an ‘intelligent structure’ [2], 
which has a function of self-damage detection and 
monitoring, is required for solving the problems. 
The intelligent structure with self-damage 
monitoring will provide us continuous and real-
time assessment of structural integrity and also 
gives us warning signals of damage propagation 
before catastrophic failure of the structure. 

Piezoelectric film is a sensing device that 
generates an electrical charge proportional to a 
change in mechanical strain. Several 
investigations have been conducted on the 
development of intelligent structures using 
piezoelectric materials. Galea et al. [3] showed 
the possibility of the use of piezoelectric  PVDF 
(poly vinylidene fluoride) film as a sensing device 
for detecting and monitoring damages in 
composite materials. Yin et al. [4] carried out 
numerical analyses to demonstrate the feasibility 
of applying PVDF film for damage detection in 
composites. Li et al. [5] made theoretical and 
numerical investigation on the development of 
crack identification technique for the structures on 
which piezoelectric material was installed. 

The present authors proposed the active 
electric potential CT (computed tomography) 
method [6-8] for quantitative identification of 
two- and three-dimensional cracks, by using 
electric potential distributions observed under 
electric current aplications. The purpose of our 
study is the development of passive electric 
potential CT method for quantitative crack 
identification based on a change in distribution of 
electric potential observed on the surface of 
PVDF film, when a cracked material is subjected 
to mechanical load. In this paper, the effects of 
crack location and size on the electric potential 
distribution are investigated by the FEM (finite 
element method) analyses. Numerical simulations 
are carried out on the estimation of location and 
size of through thickness transverse crack, based 
on the FEM inverse analyses. 
 
FINITE ELEMENT ANALYSIS 

When cracked material is subjected to 
mechanical load and PVDF film is glued on the 

surface of the material, a change in electric 
potential distribution is observed on the surface of 
PVDF film. The FEM computer analysis scheme 
was developed [9] for coupled elastic and electric 
potential problem to investigate the relationship 
between crack parameters and electric potential 
distribution on PVDF film. The governing 
equations of the piezoelectric material can be 
written as [10]; 
 

{ } [ ]{ } [ ] { }EeC T
−= εσ                                (1) 

{ } [ ]{ } [ ]{ }EgeD += ε                                 (2) 
 
where  {σ} and {ε} are stress and strain vector, 
[C], [e] and [g] are stiffness matrix, piezoelectric 
coefficient matrix and dielectric constant matrix, 
respectively. {E} is electric field vector. {D} is 
electric displacement vector. The static FEM 
equation, based on Eqns. (1) and (2), is obtained 
as, 
 
[ ]{ } [ ]{ } { }
[ ]{ } [ ]{ } { }QKduK

FuKduuK

=+

=+

φφφφ

φφ
                            (3) 

 
where [ ] [ ]φuKuuK ,  and [ ]φφK  are the mass 

matrix, displacement electric stiffness matrix and 
electric stiffness matrix, respectively. {F} and 
{Q} are the mechanical load vector and the 
electric load vector, respectively.  
 

 
Table 1. Properties of the piezoelectric film 

 
c11 23.82×10-10

c12 3.98×10-9 
c13 2.19×10-9 
c33 10.64×10-9 

Elastic properties 
(×1010N/m2) 

c44 2.15×10-9 
d31 25×10-12 
d33 2×10-12 

Piezoelectric 
properties 

(C/m2) d15 35×10-12 
g11 1.15×10-10 Dielectric 

properties 
(×10-9C/Vm) 

g33 1.15×10-10 

Density (103kg/m3) ρ 1.75 

Thickness (mm) tpiezo 0.04 
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Table 2.  Properties of the elastic substrate 

material  
 

Eelas Gelas νelas ρ 
70.56 
(GPa) 

26.46 
(GPa) 

0.33 7.6  
(103 kg/m3)
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Fig. 1.  Model used in analyses 
 
 
 

From Eqn. (3), coupled property between an 
elastic field and an electric potential field is given 
in [Kuφ].  

A model shown in Fig. 1 is employed for the 
FEM analyses. This model consists of an elastic 
substrate material and a PVDF film.  

Crack parameters are chosen as follows: a is 
half length of the crack, h is crack depth from 
surface of the plate and xc is crack location in the 
x-direction. The properties of the piezoelectric 
material [11] and the elastic material are shown in 
Tables 1 and 2, respectively.  It was assumed that 
the potential on the interface between the elastic 
material and PVDF film is 0. Mechanical load 
was applied in the x-direction. 

For evaluating the effect of crack length a on 
electric potential distribution, electric potential 
distributions for three combinations of crack 

parameters, i.e. (a, h) = (1, 2), (2, 2) and (3, 2) 
with h keeping constant, are compared. 
Furthermore, electric potential distribution on 
PVDF film was obtained in the case of no crack 
for investigating the effect of the existence of 
crack on the electric potential distribution.  

The results of FEM calculations are shown in 
Fig. 2. It is found in Fig. 2 that the electric 
potential value is higher than the remote value φ0 , 
which is the same as the value for the case of no 
crack. The electric potential values show a 
symmetrical change with respect to the crack 
location x = xc = 10.5.  The electric potential 
distribution has two peaks taking a peak value 
φmax.  The location of local minimum between the 
two peaks of potential coincides with location of 
the crack. It is also found in Fig. 2 that the peak 
value of electric potential φmax increases with 
increase in crack length a.  

For examining the effect of h on electric 
potential distribution, the electric potential 
distributions for five combinations of crack 
parameters, i.e. (a, h) = (2, 1), (2, 2), (2, 3), (2, 4) 
and (2,5) with keeping a constant, are compared. 
The results of FEM calculations are shown in Fig. 
3. It is found that the peak value of electric 
potential φmax decreases with increase in crack 
depth h. It is also found that the distance between 
two peaks H increases with increase in crack 
depth h. 

From Figs. 2 and 3, the following features 
were found in the relationship between electric 
potential distribution and crack parameters. 

 
(a) When the plate has a crack, the electric 

potential values on PVDF film are higher 
than that of the plate without crack, and show 
a characteristic distribution.  

(b) Electric potential distribution shows 
symmetrical shape with two peaks, and the 
location of transverse crack coinciding with 
the point of local minimum between the two 
peaks. 

(c) The value of electric potential at the peak    
φmax changes with the crack length a: φmax is 
larger for the longer crack. 

(d) The value of electric potential at the peak 
φmax changes with the crack depth h: φmax is 
larger for the smaller crack depth. The 
distance between two peaks H is larger for 
the larger crack depth.  

 
 

h2a

xc=10.5

x
O

h2a

xc=10.5

x
O
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Fig. 2. Effect of crack length on electric 
potential distributions 
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Fig. 3. Effect of crack depth on electric 

potential distributions 
 
 
 
CRACK IDENTIFICATION 

As the inverse analysis method for 
identification of cracks, the least residual method 
was applied. In this method, computed values 

( )cφ  are compared with the measured values 
( )mφ  to determine the most plausible crack 

location and size. As a criterion for crack 
identification the following square sum Rs of 
residual is calculated.  
 

( )( ) ( )( )∑ −=
M

iS
m

icxhac
icxhaR

2
,,),,( φφ     (4) 

 

Here )(m
iφ  denotes measured electric potential 

value at the i-th measuring point, and 
),,()(

c
c

i xhaφ  denotes the electric potential 
values at the i-th measuring point computed by 
the FEM, in which crack parameters are assumed 
to be a, h and xc.  M is the total number of 
measuring points. The combination of crack 
location and size, which minimized Rs, was 
determined as the most plausible one among all 
the assumed combinations of the crack location 
and size. In the numerical simulation of crack 
identification, crack parameters (a, h, xc) were set 
to be (3.2, 2.1, 11.3).  

In the actual applications, )(m
iφ  are obtained 

experimentally. In the present computer 
simulation, the measured values are obtained by 
the FEM analysis. Artificial noise was added to 
the computed values. Several noise levels, i.e.    
±0.5%, ±1.0% and ±5.0%, were selected. On 
the surface of PVDF film, electric potential was 
measured at 49 points placed with an interval of 
0.5mm as shown in Fig. 4.  

For effective inverse analysis, the following 
hierarchical calculation steps were introduced. 

 
(a) In the first step, crack parameters are roughly 

estimated. The crack location in the x-
direction xc is determined to be 11.5 from the 
location of local minimum between two 
peaks in the electric potential distribution. In 
the estimation of a and c, Rs is calculated for 
the combinations of three crack lengths and 
three crack depths as shown in Fig. 5. It is 
assumed that Rs is approximated by the 
following quadratic function of a and h.  

 

( ) 22,, FhEhDaCahBaAxhaR cs +++++=    
                                  (5) 

Coefficients A, B, C, D, E and F are 
determined by the least-squares method from 
the values of Rs for the combinations of three 
crack lengths and three crack depths. The 
combination of a and h, which minimized 
this approximate function for Rs, is employed 
as the plausible combination in the rough 
estimation of crack parameters. 

(b) In the second step, the combination of crack 
parameters, which gives the minimum Rs, is 
searched by using the modified Powell 
optimization method [12]. The crack 
parameters obtained in the above rough 
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estimation are used as the initial values of 
the crack parameters for the modified Powell 
method.  

 
 
 

0 5 10 15 20 25
3

4

5

6

7

8

Location X (mm)

El
ec

tri
c 

po
te

nt
ia

l (
V

)

0.5%
1%
5%

φ
m

ax

H

0 5 10 15 20 25
3

4

5

6

7

8

Location X (mm)

El
ec

tri
c 

po
te

nt
ia

l (
V

)

0.5%
1%
5%

φ
m

ax

H

  
Fig. 4. Measured electric distributions       

 
 

 

2 3 4 
1 

2 

3 

a 

h 

Rs = 65.38 

Rs = 27.46 

Rs =67.52 

Rs = 221.6 

Rs =  
2.959 

Rs = 73.01 

Rs = 459.6 

Rs = 180.8 

Actual Parameters Initial estimate 

2 3 4 
1 

2 

3 

a 

h 

Rs = 65.38 

Rs = 27.46 

Rs =67.52 

Rs = 221.6 

Rs =  
2.959 

Rs = 73.01 

Rs = 459.6 

Rs = 180.8 

Actual Parameters Initial estimate 

 
 

Fig. 5. Values of residual (Noise level 
of 5%) 

 
 
 

The estimated crack parameters using the least 
residual method with the modified Powell method 
are shown in Table 3.  

The combination of initial estimate of 
parameters used in the modified Powell method is 
shown by a circle in Fig. 5. Rs values are shown at 
the grid points of crack parameters. It is found 
from the table and the figure that the crack 
parameters can be estimated in a good accuracy 
and crack parameters can be identified within the 

error of 1.0%, when the noise level of observed 
electric potential distribution is lower than 1.0%.  

The error in the estimated value of xc is found 
to be smaller when compared with those in the 
other crack parameters, a and h. This is due to the 
relationship between crack parameters and 
electric potential distribution on PVDF film 
discussed in the foregoing: crack location xc can 
be determined from the point of local minimum 
between two peaks of the electric potential 
distribution, so the accuracy in the estimation of 
xc is not affected by absolute values of the electric 
potential value φmax at the peak. On the other hand, 
crack length a and depth h were determined from 
the distance of peaks H and magnitude of  φmax . 
Therefore, the accuracy in the estimation of crack 
parameters a and h is prone to the noise in 
measurements. 

 
 

 
Table 3. Estimated parameters of cracks 

 
Crack parameters 

(mm)  
a h xc 

Noise
level

Actual 3.2 2.1 11.3 

Residual
Rs 

Estimated 3.203 2.095 11.30 ±0.5
(%) Error (%) 0.100 0.222 0.008 

8.286 
×10-03

Estimated 3.206 2.091 11.30 ±1.0
(%) Error (%) 0.202 0.441 0.016 

3.314 
×10-02

Estimated 3.231 2.054 11.29 ±5.0
(%) Error (%) 0.970 2.226 0.008 

8.286 
×10-1 

Error is defined as the ratio of the difference ⊿ 
between actual and estimated values to actual 

value. 
 

 
 

CONCLUSIONS 
The passive electric potential CT method was 

proposed, in which two- and three-dimensional 
cracks were identified. This method is based on a 
change in distribution of electric potential 
distribution observed on PVDF film glued on 
cracked material subjected to mechanical load. 
The electric potential distribution on PVDF film 
was investigated by the FEM. It was found that 
the electric potential distribution showed a 
characteristic change with crack location and size. 
This fact can be used for the identification of the 
crack. Numerical simulations were carried out for 
the estimation of location and size of through-
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thickness transverse crack. It was found that crack 
parameters can be identified within the error level 
of 1.0%, when the noise level of observed electric 
potential distribution was lower than 1.0%. 

Experimental examination on the applicability 
of the proposed method to the identification of 
cracks in a homogeneous body and bonded 
dissimilar bodies is now underway. 
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ABSTRACT 

The purpose of this paper is to present an 
efficient inverse solution based on the use of an 
inverse sequential technique to estimate the 
unknown time-dependent mass flux release of a 
contaminant source into 2-D aquifers. One 
example was chosen to demonstrate the feasibility 
of such estimates using exact, noisy and noisy 
filtered input data to numerically simulate 
experimental measurements. 

 
INTRODUCTION 

Usually most simulations in the application of 
groundwater models are calibrated using trial and 
error instead of through the use of automated 
inverse modeling. Inverse modeling [1] has been 
used to estimate parameters, such as transverse 
and longitudinal dispersivities, from field-scale 
tracer experiments [2-4].  

Other type of inverse problem involves the 
reliable assessment of water contamination due to 
unknown pollution releases, requiring the use of 
methods to estimate the location or the release 
history of the contaminant source [5,6]. Major 
sources of contamination are landfills, radioactive 
and hazardous waste disposals, industrial 
facilities, and runoff of fertilizer on agricultural 
land.  

The solution of an inverse problem is 
commonly associated to the numerical solution of 
a forward problem. Throughout the last decades a 
great effort has been done in order to develop 
purely numerical and hybrid numerical-analytical 
techniques for the prediction of soil 
contamination. The Generalized Integral 
Transform Technique (GITT), fully described in 
reference [7], has been used as a reliable tool for 
both benchmark solutions and direct engineering 
simulations for different linear and nonlinear heat 
and mass transfer problems. Recently, the GIT 

technique has been applied to the solution of 
groundwater problems, such as the one-
dimensional solute transport in unsaturated 
porous media [8] and simulations of two-
dimensional contaminant transport in 
groundwater pathway [9]. 

The aim of the present work is to make use of 
an inverse sequential technique associated with 
the GIT technique to estimate the unknown 
release history of a contaminant source into 2-D 
aquifers. A test case was considered to simulate 
concentration measurements at given sampling 
locations by the solution of a direct problem. 
Then, the inversions are performed from these 
data, and the estimated mass flux and 
concentration profiles are compared with the 
imposed quantities. 
 
INVERSE PROBLEM FORMULATION 

Consider a finite section of an isotropic, 
homogeneous aquifer under saturated conditions 
with thickness H and length L, where the flow is 
horizontal and steady with an average pore 
velocity Vaq, as shown in Fig. 1. The contaminant 
source is located at the top and has a uniform 
width L2-L1. The following assumptions are 
made: 

1. A cartesian coordinate system is used, as 
shown below in Fig. 1; 

2. The mass flux being released from the 
source is an unknown function of time; 

3. Transport is limited to a single specie 
that may decay or degrade as a function 
of time; 

4. The properties of the medium are 
constant and known.  
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Figure 1. Schematic representation of the 

proposed inverse problem. 
 
 

The dimensionless governing equations for the 
mass transport problem are: 
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with the known initial and boundary conditions, 
respectively, as: 
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and with the unknown boundary condition at y=1: 
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The following non-dimensional groups have been 
used: 
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where the superscripts “ *” identifies the 
dimensional variables, the subscript “ 0 ” denotes 
reference values of the parameters, Ar is the 
aspect ratio, �  is the dimensionless decay rate 
constant, )(tφ  is the dimensionless time-
dependent injection function, us is the step 
function and the Darcy velocity is represented by 
q*. The dimensionless retardation factor dR  and 
the dispersion coefficients in the x and y 
directions, xD and yD  [m2/yr], are defined, 
respectively, as: 
 
 

aqx VD  Lα =  (3.a) 

 
 

aqy VD  tα =  (3.b) 

 

 
ε

ρ ds
d

K
R += 1  (3.c) 

 
The longitudinal and transversal dispersivities are 
represented by ;  and tL αα  sρ  is the soil bulk 
density; 

dK  is the distribution coefficient and the 
dimensionless effective porosity is given by ε . 

The inverse mass transfer problem herein 
considered consists in estimating the unknown 
contaminant release function, ( )tφ , based on 

concentration measurements, Cw(xk,yj,t), taken at 
given sampling locations. The input data for this 
inverse problem, instead of being measured 
concentrations, are predicted from the solution of 
a direct problem for a known set of boundary 
conditions. 
 
SOLUTION OF THE DIRECT PROBLEM 

The numerical solution of Eqs. (1) for a given 
function, ( )tφ , can be obtained through the use of 

the Generalized Integral Transform Technique 
(GITT). The detailed numerical solution and its 
validation is fully described in [9]. 

The GIT technique, is a hybrid numerical-
analytical approach based on the eigenfunction 
expansion of the original potential [7]. The hybrid 
nature of this approach allows for the automatic 
global error control along the solution process, 
towards an user prescribed accuracy target. The 
basic steps in applying the generalized approach 
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in the present work are: (a) choose the related 
auxiliary problem in y direction (a particular case 
of the classical Sturm-Liouville problem with 
second type boundary conditions); (b) develop the 
appropriate integral transform pair in y direction; 
(c) transform by a single integration the original 
PDE equation and its initial and boundary 
conditions into a system of PDEs; (d) numerically 
solve the PDE system by using the DMOLCH 
routine [10]; (e) invoke the inversion formula to 
construct the original potential.  

The appropriate auxiliary problem in the y 
direction is chosen as: 
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where the analytical solution yields 
eigenfunctions and eigenvalues, respectively, 
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as well as norms: 
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Problem (4) allows the definition of the 

integral transform pair: 
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The normalized eigenfunction )(
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yY �  is defined by 
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Following the formalism of the classical 

integral transform approach, a single 

transformation is operated in the differential 
equation (1) in y direction, i.e., dyyY  ...  )(

~1 

0 
∫ � ; and 

making the appropriate use of the inversion 
formula (9) and the orthogonality property, one 
obtains: 
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The same transformation procedure operated 

on the initial and boundary conditions provides: 
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where, �E  is an analytical coefficient, obtained as 
follows: 
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The expansion in Eq. (9) has to be truncated to 

a sufficiently large finite order Ny, so as to reach 
the requested accuracy target. The subroutine 
DMOLCH from the IMSL [10] was employed to 
numerically solve the resulting system of Ny 
partial differential equations, Eqs. (10). A first 
attempt was made to solve simultaneously the 
whole PDE system using DMOLCH. Due to 
workspace limitations and a high computational 
cost, another strategy was adopted. The PDE 
system was separated into small subsets of five 
equations and solved sequentially. Then, the Ny/5 
subsets were joined to furnish the complete 
transformed potential field.  

Once the transformed potentials ),( txC 
  are 

obtained for 
yN,.....,1=

� , the original 

dimensionless concentration field can be 
evaluated through the use of the inverse formula, 
Eq. (9). Note that the transformed potential 

),(0 txC  is the average concentration in y 

direction: 
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For 00 =η  Eq. (10.a) simplifies to the partial 

differential equation:  
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that does not depend on the other transformed 
potentials. This characteristic allows the 
estimation of ( )tφ  based on the inverse solution 
of the above equation. 
 
SOLUTION OF THE INVERSE PROBLEM 

The sensitivity coefficient for the proposed 
inverse problem is defined by: 
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where M is the total number of wells. 

Function ),( txZ  is calculated from its own 

partial differential equation, which can be derived 
from Eq. (13) to yield: 
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with the initial and boundary conditions: 
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Beck’s sequential method [11] was chosen to 

estimate the unknown function ( )tφ , using the 

observations of solute concentrations at given 
sampling wells. The data were averaged over the 
cross section perpendicular to the flow direction. 
The average concentration for well k is calculated 
from the measured concentrations at Nw equall y 
weighted observation locations: 
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where M is the total number of wells, and the 
sampling locations in y direction, yj, are given by:  
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The least squares error function, for M wells 

and r future times, and with the temporary 
assumption that a constant mass flux 

mφ  is 

applied over the time interval tm-1 ������� m+r-1, can 
be defined by: 
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Expanding the concentration field in a Taylor 
series about an assumed mass flux φt, the value of 
φm that minimizes ϕ  is given by: 
 
 

( )[ ] ( )

( )∑∑

∑∑

= =

= =
−+−+

∆

∆−
+= M

k

r

j
k

M

k

r

j
ktjmkjmk

tm

tjxZ

tjxZtxCwC

1 1

2

1 1
101,

,

,;,
ˆ

φ
φφ

  (19) 
 

The mass flux estimations can be compared 
with the true mass flux in order to evaluate the 
behavior of the proposed solution. The standard 
deviation between exact and estimated mass 
fluxes is given by the following expression: 
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TEST CASE 

A hypothetical test case was selected in order 
to verify the feasibili ty of the estimates taking 
into account the sampling locations listed in Table 
1. The following input data were selected: the 
domain length, 1000 m; aquifer thickness, 50 m; 
source length, 150 m, located at 150 m ≤ x* ≤ 300 
m on the top boundary (y*= 50 m); injection 
Darcy velocity, qinj

*= 1 m/year; aquifer Darcy 
velocity, qaq

*= 20 m/year; porosity, ε =0.3; 
longitudinal and transversal dispersivities, 
respectively, αL= 10 m and αt= 0.5 m; retardation 
factor, Rd= 1 (Kd= 0). The dimensionless 
concentration being injected Cinj is equal to 1 and 
no degradation effect was considered (λ= 0).   



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil , 2002 

Table 1. Position of the wells considered in the  
simulations. 

 

Well Position, *
kx  (m) 

1 300 

2 400 

3 600 

4 800 

5 1000 
 
 

The prescribed time-dependent function 
corresponding to the mass flux release, chosen to 
simulate the measurements at the sampling 
locations, is given by: 
 
 g(t)  )( injinj CVt =φ  (21) 

 
where g(t)  is given by, 
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Equations (22) are the exact solution of a leaching 
model corresponding to a radioactive waste 
repository where the contaminant is completely 
dissolved into liquid phase at t= ti, and where a 
linear fault of the engineer barriers occurs 
between t= ti and t=t0. The repository height is 
given by ‘h’ . The values here considered were: 
h*=  6 m, ti

*=  10 years and t0
*=  20 years.  

The simulated concentration measurements 
were obtained from the numerical solution of Eqs. 
(10) with Ny= 800, and by using subroutine 
DMOLCH with a user prescribed relative error 
criteria equal to 10-5, an equally spaced mesh of 
401 grid points, and with a time step ∆t=  0.5 yr. 
Three situations were considered for the 
estimation of the mass flux histories: exact data 
(predicted values), simulated experimental data, 
and noisy filtered data. Error-free average 
concentrations are directly obtained from the 
solution of Eq. (13): 
 
 ( ),,0, mkmk txCwC =   k=1,2,…,M (23) 

 

Random errors are added to the exact data in 
order to simulate experimental measurements at 
each sampling location [4]: 
 

( ) ( ) νσ±= mjkmjkn tyxCtyxCw ,,,, , k=1,2,…,M, 

   j=1,2,…,Nw (24) 
 
where ν  is the standard Gaussian random 
variable with zero mean and unit standard 
deviation, and σ  is the standard deviation of the 
errors added to the exact values, given by: 
 
 ( )mjkn tyxC ,, εσ =  (25) 

 
The relative error 

nε = 0.05 was used in this study. 
It has been shown [12] that better results can 

be obtained if the data are smoothed prior to the 
inversion. The measured concentrations are 
replaced by linear combinations of past and future 
measurements. The filtered concentrations are 
evaluated by the following expression: 
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where w, the width of the filter, is an odd integer 
and Zs are the weighting coefficients. The width 
w=  11 was used in this work. The coeff icients for 
the Gaussian filter used to smooth the 
contaminated data are: 
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This filtering technique is equivalent to the 
moll ification procedure that has been used to 
stabili ze some inverse problems. 

Once the error contaminated concentrations, 
Cwn and Cwf, are obtained, the average 
concentrations for each well are calculated by Eq. 
(16).  
 
NUMERICAL RESULTS 

The performance of the proposed inverse 
method for different numbers of future times, r, 
considering the measurements taken at the first 
well (x*= 300 m), was investigated first. Table 2 
summarizes the values of the standard deviations 
of the estimated mass fluxes, Se, Sn and Sf, given 
by Eq. (20), for exact, noisy, and noisy filtered 
data, respectively. The values of Se correspond to 
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the deterministic bias of the inverse solution. For 
this inverse method, the introduced bias increases 
with r, and, in this case, it is much more 
important than the error introduced by the 
contaminated data. The smoothing filter does not 
contributed to the results obtained with the noisy 
data. In this test case, the smoothing has an 
opposite trend, increasing the bias of the inverse 
solution due to the linear combination of past and 
future observations. One can also observe that a 
proper choice of the number of observation 
locations at each sampling well, Nw, is much more 
important for the estimates. For lower values of r, 
the results obtained with Nw= 5 are much more 
accurate than those obtained with Nw= 3.  
 
 
Table 2. Standard deviation of the estimates 

considering measurements at x*= 300m. 
 

Sn Sf r Se 
Nw=3 Nw=5 Nw=3 Nw=5 

3 1.786 18.71 7.127 21.45 9.780 

5 5.404 18.53 7.511 21.73 10.90 

7 12.89 21.04 13.40 23.88 15.49 

9 20.80 25.73 20.74 27.90 21.91 

11 28.66 31.54 28.28 33.08 28.91 

13 36.32 37.82 35.75 38.88 36.02 
 
 

Figure 2 shows a comparison between true 
and estimated fluxes at x*= 300 m for Nw= 5. It is 
interesting to note that smoothed estimates can be 
obtained through two different strategies: by 
filtering of the contaminated data (w= 11) or by 
increasing the number of future times (r= 13). 
Higher values of r lead to an advance in time of 
the estimates. 

Table 3 shows the values of the standard 
deviations of the estimated mass fluxes, Se, Sn and 
Sf, for r= 7 considering all the possible 
combinations of the 5 wells. The best estimates 
are obtained with the measurements taken from 
the wells close to the source. Results are not 
available for the cases 4, 5 and 15, because the 
solution is not sufficiently stable to perform 
estimations from the data provided by wells 4 and 
5 due to the low sensitivity coefficients at these 
locations. The information provided by wells 4 
and 5 do not affect significantly the results 
obtained with the other wells. The best estimates 
were obtained in cases 6 and 16, corresponding to 

the simultaneous use of the sampling data 
provided by wells 1 and 2, and 1, 2, and 3, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Comparison between true and estimated 

mass fluxes at x*= 300 m.  
 
 

The chosen filtering strategy have not 
improved the results shown in Table 3. The only 
enhancement was observed when using the 
measurements from well 3. The estimated fluxes 
obtained in case 3 are shown in Fig. 3, for exact 
and noisy filtered data. One can observe that even 
when the true values of the average 
concentrations are used, the solution is unstable. 
This is due to the existence of small inaccuracies 
in the solution of the forward problem, which are 
amplified by the inverse solution. One can notice 
that the filter largely attenuates these instabilities, 
indicating that it can be much more efficient when 
considering wells far from the source. Figure 3 
also shows that the estimated flux is advanced in 
time for distant wells. 
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Table 3. Standard deviation of the estimates from 
different observation locations. 

 
Case Wells Se Sn Sf 

1 1 12.89 13.40 15.49 
2 2 27.58 27.04 27.01 
3 3 74.25 481.9 67.13 
4 4 - - - 
5 5 - - - 
6 1,2 9.925 10.23 12.64 
7 1,3 13.25 13.66 15.64 
8 1,4 12.89 13.40 15.49 
9 1,5 12.89 13.40 15.49 

10 2,3 28.13 27.54 27.41 
11 2,4 27.59 27.05 27.01 
12 2,5 27.58 27.04 27.01 
13 3,4 74.30 482.7 67.25 
14 3,5 74.26 481.9 67.13 
15 4,5 - - - 
16 1,2,3 9.832 10.14 12.58 
17 1,2,4 9.926 10.23 12.64 
18 1,2,5 9.925 10.23 12.64 
19 1,3,4 13.25 13.66 15.64 
20 1,3,5 13.25 13.66 15.64 
21 1,4,5 12.89 27.54 15.49 
22 2,3,4 28.13 27.54 27.41 
23 2,3,5 28.13 27.54 27.41 
24 2,4,5 27.59 27.05 27.01 
25 3,4,5 74.27 482.7 67.25 
26 1,2,3,4 9.832 10.14 12.58 
27 1,2,3,5 9.832 10.14 12.58 
28 1,2,4,5 9.926 10.23 12.64 
29 1,3,4,5 13.25 13.66 15.64 
30 2,3,4,5 28.13 27.54 27.41 
31 1,2,3,4,5 9.832 10.14 12.58 

 
 

The fluxes estimated in case 6 for noisy and 
noisy filtered data are presented in Fig. 4. Figure 
5 presents a comparison between exact and 
estimated contour maps of the 2-D solution at t= 
20 yr, t= 30 yr and t= 40 yr. The 2-D profiles 
were obtained through the GIT solution, Eqs. (9) 
and (10)), using the mass flux estimated in case 6, 
with noisy filtered data. A vertical exaggeration in 
graphical scales was used for the contour maps 
presented in order to facilitate their interpretation.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Comparison between true and estimated 

mass fluxes for case 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison between true and estimated 

mass fluxes for case 6, using noisy and 
noisy filtered data.  
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Fig. 5. Comparison between true (solid lines) and 

estimated (dotted lines) concentration 
contours at t= 20 yr, t= 30 yr and t= 40 yr, 
for r= 7, using noisy filtered data provided 
by wells 1 and 2 (case 6).  

 
CONCLUSIONS 

An efficient inverse solution based on the use 
of a sequential method associated with the 
numerical solution of a one-dimensional partial 
differential equation was proposed to estimate the 
unknown time-dependent mass flux release of a 
contaminant source. An example was chosen to 
investigate the performance of the proposed 
inverse solution as a function of the number of 
future times and well locations, using exact, noisy 
and noisy filtered data to numerically simulate 
experimental measurements. The feasibility of 
such estimates was studied, and showed that the 
use of a filtering strategy can be useful when 
considering data collected far from the 
contaminant source. It was also showed that the 
estimated fluxes are advanced in time when 
increasing the number of future times or the 
distance between the sampling location and the 
source. 

Finally a comparison between 2-D exact and 
estimated concentration profiles at given times 
was made, showing that multidimensional 
estimates can be obtained by such efficient 
method. 
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ABSTRACT 

Compaction of a collapsible substratum due to 
effective stress increase may give rise to the 
formation of the well-known trap-door 
mechanism (Terzaghi 1936, Vardoulakis et al. 
1981). According to early works, large-scale 
subsidence over a yielding underground 
geostructure is seen as a stochastic (Markov) 
process (Litwinszyn 1974, Dimova 1990). This 
process leads to the Einstein-Kolmogorov (E-K) 
integral equation. Under certain physical 
conditions and transformations of the coordinate 
system the E-K integral equation satisfies some 
partial differential equation of parabolic type, 
where the vertical coordinate replaces time. Initial 
condition of the direct problem is the base 
subsidence and solution yields the surface 
subsidence. The solution depends on a diffusivity 
coefficient, which determines the formation of the 
subsidence trough inside the body as well as on 
the surface. This is the Direct Subsidence-
Diffusion - Convection (DSDC) problem. 
Considering the results of the DSDC problem in 
this paper we present the inverse SDC problem 
using two kinds of regularization (Lattés 
and Lions, 1969). In particular Lion’s uxxxx- 
method is compared to the presently proposed 
uxzz-method. Stability, in the sense of the von 
Neumann condition is ensured where the 
amplification factor depends on the regularization 
parameter ε. A first approach to convergence is 
done in the sense of the norm of the amplification 

factor. Another convergence study is given in 
terms of the truncation error (Richtmyer and 
Morton, 1967). 

 
NOMENCLATURE 

B(m) : Half width of the trap door 
      B*(m): Transformed depth, B*=f(H/2B) 
      b : Dimensionless height, maximum value 
of variable z  

c : Diffusion coefficient depending on soil 
properties 

f∆x  : Stability coefficient-function for the 
uxxxx-regularization  

H(m): Height of the depression trough 
Im : Imaginary part of a complex number 
Ln : Coefficient of the numerical algorithm 

depending on time (depth) 
S  : Sum of roots of the stability equation 

for the uxzz-regularization 
n
j

u~ε   : Discretized form of the exact solution 

w0 : Normalized trap-door displacement 
z1  : Complex number depending on the 

numerical parameters of the uxzz-regularization 
β(deg): Angle of the depression trough 
ε  : Regularization parameter 
κ : Coefficient of the von Neumann 

method of stability 
ρ : Factor of amplification, considering 

von Neumann condition 
Φ : Truncation error 
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INTRODUCTION 
Compaction of a collapsible substratum due to 

oil-production (effective stress increase) and/or 
water-injection (capillary action) may give rise to 
the formation of the well-known trap-door 
mechanism [1] as shown in Figure 1.   
 

Fig1: Trap-door experiment 
 
 

1g-experiments with sand ([2], [3]) have 
indicated that the trap-door displacement is 
convected practically upwards through a 
mechanism that localizes the soil displacements 
above the trap-door (Fig. 2). The boundaries of 
the subsidence trough are inclined inwards, 
reducing the extend of the depression in the 
vertical direction. The angle β of the trough 
boundaries is evolving as function of trap-door 
displacement. In particular it is found that the 
angle β of the trough boundaries is decreasing 
with trap-door displacement [2]; i.e. with 
increasing trap-door displacement the boundaries 
of the trough tend to become vertical. The trap-
door displacement w0 is causing the formation of 
a trough, which is a function of the position in 
vertical direction. 
 

 
Fig.2: Trap-door mechanism 

 
 

According to an early work of J. Litwinszyn 
([4], [5]) we assume that large-scale subsidence 
over a yielding underground geo-structure is a 
stochastic (Marcov) process. In simple terms we 
assume that the displacement of a particle in 
vertical direction (i.e. in the direction of gravity) 
causes movement of particles mainly lying above 
it in a manner that particle vertical displacement 
is spread also horizontally. This assumption 
results in a mechanism of subsidence convection-
diffusion, which leads to the Einstein-
Kolmogorov integral equation [6]. It can be 
shown, that under some mathematical and 
physical conditions, the solution of the (E-K) 
equation satisfies a partial differential equation of 
parabolic type for the displacement, which 
corresponds to subsidence function w(x,z) in the 
space of the trough: 
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∂
∂

=
∂
∂          (1) 

 
This is a diffusion equation, with the vertical 

coordinate z playing the role of time. Introducing 
a set of dimensionless variables considering 
several transformations of the mathematical 
quantities we end-up with the following initial, 
boundary value problem [7]:  
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∂
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for 
 

β





−=≤<≤≤ cot

B
Hb,bz01x0     (2a) 

 
and 
 

1)0,x(u =      (i.c.)     (2b) 
0)z,1(u =±   (b.c.)     (2c) 
0)z,0(u x =   (b.c.)     (2d) 

 
      This is a diffusion-convection partial 
differential equation with variable coefficients. 
The model contains a free parameter, the 
diffusivity coefficient c, which is fitted to the 
experimental results [7]. Below we show a typical 
computational example, concerning the numerical 
solution of the i.b.v. problem, inside a prescribed 
trough (H, 2B, and β). The data that have been 
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used for this example refer to small-scale model 
tests performed by the authors [3]. In particular 
we use data corresponding to H/2B=2, w0=0.062 
and β=105o (Fig.3). 

This initial – boundary  value problem will be 
used for posing the corresponding inverse SDC 
problem.  

 

Direct SDC 
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Fig.3: Results of the direct problem 

 
 
STABILITY OF THE DSDC PROBLEM  

In the DSDC problem the formation of the 
subsidence trough depends on angle β. For large 
values of this angle the trough boundaries  
converge below the surface. In this case the 
differential equation cannot be solved near the 
point of intersection, because of unbounded 
coefficients of the derivatives of x, equation (2). 
For bounded coefficients, the numerical solution 
of second order linear parabolic problems, using 
finite differences, admits a sufficient condition for 
stability [8]: 

 
( ) 1z,xa2 <λ         (3) 

 
λ= 2xz ∆∆  is depending on the discretization and 
a(x,z) is the coefficient of the second order 
derivative in x. In the considered problem this 
condition has the form: 
 

( ) 1
z1

c2 2 <
−

λ         (4) 

 

For any given value of the factor 1/(1-z)2 we 
may choose λ so that the above stability condition 
is met.  Here the numerical solution is obtanied 
for c=0.1, b ≈ 0.75 and λ=0.2. 

Compatibility of initial and boundary 
conditions is ensured also by interpolating values 
of trap-door subsidence for z=0 in x=1.    

 
INVERSE SDC PROBLEM 

Oil-production or water injection in situ, 
results in surface subsidence that can be large 
enough to cause severe damages in the surface 
constructions. The difficulty in large-scale 
problems lies in the fact that for given surface 
subsidence the corresponding base displacement 
is not known. The problem of computing the base 
displacement using as "initial" conditions the 
surface subsidence corresponds to the solution of 
inverse in "time" (depth) SDC problem.  

Inverse problems are in general 
mathematically ill-posed, which means that 
existence, uniqueness and stability of the solution 
cannot be ensured. Several regularization methods 
have been developed for this kind of problems. 
Due to the dual nature (diffusion-convection) of 
the considered problem  we introduce here mainly 
two methods of regularization (uxxxx, uxzz) of the 
Inverse Subsidence Diffussion-Convection 
problem (ISDC). Notice that the first 
regularization scheme is essentially motivated  by 
Lions' Method of Quasireversibility [9] . 

 
FIRST REGULARIZATION METHOD  

As initial condition for the ISDC problem we 
use the results of the corresponding DSDC. For 
inverse parabolic problems, Lions' Method of 
Quasireversibility suggests the use of the 4th order 
derivative in x, as regularization term. The initial 
- boundary value problem is described in treaties 
(5)-(5e) where u is the solution to the direct 
subsidence diffusion – convection problem and uε 
is the solution of the inverse problem: 
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for                    
 

bz0;1x0 ≤<≤≤      (5a) 
 
and 
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)b,x(u)0,x(u =ε     (i.c.)     (5b)  
0)z,1(u =±ε            (b.c.)     (5c) 

0)z,1(u =±∆ ε          (b.c.)     (5d) 
( ) 0)z,0(u x =ε          (b.c.)     (5e) 

 
Due to the increased order of the governing 

equation for the inverse problem, extra boundary 
conditions are needed. Condition (5d) is proposed 
by Lions, and reflects a zero curvature 
requirement [9].    

 
NUMERICAL CONSIDERATIONS AND 
RESULTS 

The numerical solution of the above-
mentioned inverse initial, boundary value 
problem is obtained by the finite differences 
method. The following explicit algorithm has 
been used: 
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    (6) 

 
The results of the ISDC problem are obtained 

for 0.005< ε < 0.01. For values of regularization 
parameter outside this interval the solution of the 
inverse problem diverges significantly from the 
corresponding solution of the direct problem. We 
remark that the central subsidence (x=0) 
approaches the solution of the direct problem for 
small values of ε. However, independent of ε and 
from the start of the inverse solution, the 
curvature of displacement line close to the right 
boundary diverges from the results of the direct 
problem. This observation will be elaborated 
below. 

As is mentioned by Lions [9] the explicit 
algorithm (6) is deficient: For large values of the 
time-like variable (depth), the solution ISDC 
problem diverges significantly from the data of 
the corresponding DSDC. Let b be the depth for 
which the direct problem has been solved. Due to 
the aforementioned divergence of results, the 
initial condition of the inverse problem could not 
be placed "earlier" as the value z ≈ 0.25 b. The 
limited time solution of the ISDC problem, using 
Lions' regularization method, results from the 
strong diffusive character of the 4th order 

regularization term, uxxxx. This pathology is 
depicted in Figures 4 and 5, where we show the 
comparison between the solutions of direct (solid 
line) and the regularized inverse problem (dotted 
line). Notice that the x-coordinate re-scaled by the 
factor B*= (H/2B)B =2B.  

In future works an implicit algorithm for the 
above-mentioned i. -b. value problem will be 
considered. 

 

Method uxxxx, ε=5*10^-3
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Fig. 4:  Comparison of direct and inverse 
subsidence solution using Lion's regularization 

 
 

Method uxxxx, ε=1.*10^-2
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Fig. 5:  Comparison of direct and inverse 

subsidence solution using Lion's regularization 
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SECOND REGULARIZATION METHOD 
Above observations have prompted the use of 

a mixed regularization term that has derivatives 
due to both x and z. The choice that has been 
made is a uxzz-regularization, considering 
appropriate initial and boundary conditions: 
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for 
 

bz0;1x0 ≤<≤≤      (7a) 
 
and 
 

)b,x(u)0,x(u =ε      (i.c.)     (7b) 
( ) 0)0,x(u z =ε          (i.c.)     (7c) 

0)z,1(u =ε              (b.c.)     (7d) 
( ) 0)z,0(u x =ε         (b.c.)     (7e) 

 
It can be observed that the difference in the 

conditions between the direct and the inverse 
SDC problem, is concerning (7c). This choice is 
preferred because, in numerical terms, this results 
in a pure downward subsidence for the first level 
of the trough.    

 
NUMERICAL ASPECTS - RESULTS 

The numerical solution of the above-
mentioned initial, boundary-value problem, 
equations (7)-(7e), was obtained using the method 
of finite differences. The algorithm that has been 
used is the following: 
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   (8) 

As already mentioned, as initial condition are 
used the results of the solution of the direct 
problem. Unlike the first regularization method, 
in the present one the "depth" of the solution used 
as initial data equals to the whole "depth" of the 
solution of the direct problem. i.e. z=b. 
 

Method uxzz, ε=10000

-0.15

0.00

0.15

0.29

0.44

0.59

0.74

0 0.1 0.2 0.3 0.4 0.5x/B*

z/
H

 
Fig.6:  Comparison of direct and inverse 

subsidence solution using uxzz regularization 
  

 

Method uxzz, ε=7000
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Fig7:  Comparison of direct and inverse 

subsidence solution using uxzz regularization 
 
 

The results of the ISDC problem using uxzz-
regularization are shown in Figures 6 and 7. 
These results are obtained for values of the 
regularization parameter ε between 6000 and 
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10000. A choice of the regularization parameter 
greater than 10000 gives approximately the same 
results in accuracy of 10-5 with the one of ε 
=10000. For values of ε lower than 6000, the 
numerical results diverge significantly from the 
direct solution.  
 
VON NEUMANN CONDITION  

The von Neumann condition claims that the 
stability of the numerical solution, can be insured, 
if, under certain conditions which depend on the 
numerical parameters of the problem, holds [10]: 

 
z1 ∆κ+≤ρ         (9)  

 
with 
 

M0 ≤κ≤       (10)  
 
for ∆x, ∆z sufficiently small and with ρ  being 
the absolute value of the amplification factor. The 
right-hand inequality corresponds to the stability 
condition and the left-hand one corresponds to 
first study of convergence due to the expanding 
character of the initial–boundary value problem. 

  
APPLICATIONS TO THE ISDC 
1. The uxxxx- Regularization  

The von Neumann stability condition imposes 
as variables the increments ∆x and ∆z. Within a 
stability analysis, the time-like variable (1-b+z) 
and the space-like variable x of the original 
problem are treated as parameters. Thus for given 
discretization and at the "time" step n and for the 
"space" point j we denote with Ln the variable (1-
b+z) and with xj the variable x.  

In equation (6) we set  
 

ximjnn
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Following the formulation given above by 

equations (5) - (5e) we get similarly that: 
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where 
 

Ln ∈ [0.18, 1.0]                  
c = 0.1        (13) 
ε ∈  ],[ ∞+−∞      
xj∈  [0 , 1.0]     
 

For the left-hand side of the inequality (10) to 
be true we must insure that:   
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The measure of f∆x is a decreasing function of 

∆x in the interval (0, 1). Thus the lower upper 
bound of the measure of f∆x is:   
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The previous quantity is an indicative 

amplification coefficient for the time-depth 
change of the uε(x,z). The bigger previous 
coefficient is the more divergence exists between 
the numerical solution and the real solution. 

Since we have insured the stability of the 
problem, we are going to study the rate of 
convergence of the algorithm. It is obvious that 
the factor with which the rate of convergence 
becomes measurable is the measure of f∆x, which 
depends on sin(∆x). So it can be proved that  
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2. The  uxzz - Regularization  

Considering equation (11) in equation (8) we 
result in: 

 

( )

( )

( ) 01e
zx

2
xsin

xL
c4

1e
xL

x
zx

2
z

1

1e
zxz

1

xi
2

2
22

n

xi

n

j
2

2xi
2

=



 −

∆∆
ε

+

+ρ













 ∆

∆
+

+ρ





















−








∆

+
∆∆
ε

−
∆

−+

+ρ



 −

∆∆
ε

+
∆

∆

∆

∆

  (18) 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

 
Let ρ1,2 be the complex roots of equation (18). 

According to the stability condition we are 
interested in the behavior of these roots as ∆x and 
∆z are tending to 0. For this limit, the roots of 
equation (18) tend to 1, and therefore | ρ1,2 | does 
the same. Thus the condition (9) reduces to the 
right hand side of the inequality (10), as soon as 
the coefficient κ is positive. 

First we observe that this coefficient is 
bounded as ∆x and ∆z are tending to 0: 
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since the measure of the above quantity is 
bounded for big enough ε without restrictions 
rising from the limit of ∆x and ∆z to 0. This 
ensures stability. 

Secondly we have to examine if the 
coefficient κ is positive, i.e. if 
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The prove of this consideration is concerning the 
sum of roots of the equation (18) and simply 
refers that 
 

2,1i1max2S i21 =≥ρ⇒≥ρ+ρ=    (21) 
 
which is proved based on the derivation 
 

1z2S += ,      Re(z1) > 0    (22) 
      
TRUNCATION ERROR OF INVERSE 
PROBLEM - CONVERGENCE 

We are interested for the rate of convergence 
between numerical and exact solution as well as 
for the rate of convergence of the solutions 
individually. In previous paragraphs the rate of 
convergence was examined in the terms of the 
values of the absolute value of the amplification 
factor ρ.  

In this paragraph the rate of convergence will 
be examined in the terms of the truncation error 
[10]. The truncation error for:  
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b) the uxzz -regularization method is: 
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where n

j
u~ε  corresponds to the discretized form of 

the exact solution.  
According to the stability condition for the 

direct problem ∆z<<∆x. Considering the 
equations (23) and (24) we can conclude that the 
main factor, which influences the truncation error, 
is the one that concerns ∆x. The point in space, 
which is influenced significantly by the numerical 
truncation error, is that close to the right 
boundary. At this point the 2nd derivative in x for 
uxzz-regularization and the 4th derivative in x for 
uxxxx-regularization are important, since for small 
"times" the time parameter Ln has small enough 
values. This can be verified in the graphs of the 
solution close to the right boundary, where there 
is significant difference between the solution of 
the inverse and direct problem. Notice that central 
subsidence is not affected of the truncation error.  
 
CONCLUSIONS 

 In summary we can mention the following: 
• The numerical solution of the ISDC 

concerning uxzz – regularization can be 
derived for larger depth comparing with 
uxxxx-regularization due to the strong 
diffusive character of the 4th order 
derivative in x. In future works an 
implicit scheme for the numerical 
solution of the uxxxx-regularization must 
be concerned.   

• Stability in the sense of the von 
Neumann condition for both 
regularizations is ensured due to right 
choices of ε and "time" b of the problem 
that affects the parameter Ln.  
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• The measure of the coefficients κ, f∆x is 
not concerning only the stability of the 
algorithm but also the rate of 
convergence between numerical and 
exact solution. It is affected in turn from 
the above-referred parameters.  

• Convergence in the terms of the 
Truncation error, is satisfactory except of 
the boundary x=1, where both 
regularization methods have significant 
differences concerning the solution of 
the direct problem.  
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ABSTRACT
The first objective is presenting a novel

interferometric method, the quasi-binary
holography, developped to assist the hybrid,
experimental-numerical identification of material
properties. The quasi-binary electronic
holography is a vibration measurement method
extending the vibration amplitude measurement
range by a factor of two with respect to the well-
known time-average method. The fringe contrast
is also highly improved, so the reliability is
higher, and the full laser power is available for the
measurement, without losses as in stroboscopic
techniques. The second objective is to evaluate
the importance of the number of vibration modes
used in the identification. Finite element updating
using the first 5, 10, 20 or 40 eigenfrequencies of
a uniform rectangular plate allows finding an
optimal number of nodes in the mesh and the
material properties. The whole updating process
is converging towards material properties values
for which the average eigenfrequency error of the
numerical model is less than 0.2 %.

NOMENCLATURE
C(x,y) local contrast in the image plane
I(x,y) intensity distribution of the object image
with interference fringes
x,y coordinates in the image plane
α arbitrary phase shift
ϕ optical phase of object wave with respect
to reference wave in the detector plane
λ laser light wavelength

( )y,xI OBJ intensity distribution of the

object image without interference fringes
( )zJ 0 first-order, zeroth kind Bessel function

of argument z

INTRODUCTION
A great deal of work has already been

reported on the subject of identification of
material parameters by numerical/experimental
methods applied to vibrating objects.
Experimental data may be obtained by using
microphones [1], piezo-electric transducers [2],
coherent optical techniques [3], or other means.

Vibration measurement by full-field, nob-
contact coherent optical techniques presents the
interest of not disturbing the tested object, while
simultaneously acquiring a large amount of data
to be used in the identification process. They are
taking into account the true properties of the
vibrating structure and also allow damage
detection. The most widely used coherent optical
technique, electronic holography, achieves real-
time measurement of the full-field out-of-plane
vibration amplitude field at the surface of steady-
state vibrating structures, and is simultaneously
providing the values of the eigenfrequencies. The
amplitude informations are presented as fringe
patterns superimposed on the object image.

The fringe visibility and the processing of the
fringe pattern in order to quantitatively calculate
the vibration amplitudes are greately reduced by
two factors. The first one is the fringe pattern
being eventually locally undersampled, as in the
case of nodal lines running close to each other.
The second reason is the limited spatial resolution
of the speckled pattern and its low fringe contrast,
determined by the fringe function. The fringe
function, whose argument is linearly related to the
vibration amplitude at any object point, represents
the function which is modulating the intensity of
the object image. Its relative minima and maxima
are the centers of the loci of  iso-amplitude points
at the object surface. The type of fringe function
is given by the interferometric method being used.
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ELECTRONIC HOLOGRAPHY
Phase stepped electronic holography (also

known as Electronic Speckle Pattern
Interferometry, or Digital Speckle Pattern
Interferometry) is an interferometric whole-field
displacement measuring technique [4] based on
recording with the help of a CCD camera the
primary interference fringes in an on-axis
interferometric setup. The general principle is
illustrated by the lay-out in Figure 1.

Figure 1. Electronic holography setup

The holographic system uses a continuous
wave laser whose output is separated into the
object illumination beam and the reference beam.
On the path of either one or the other of these
beams there is a mirror attached to a piezo-
electric actuator.  A staircase voltage applied to
the actuator is producing equal successive

pathlength variations of magnitude 
4
λ

.

Accordingly, a 
2
π

 phase shift is produced

between the reference wave and the object wave
which interfere on the CCD camera during each
frame.

Assuming that the object undergoes a steady-
state harmonic vibration at a frequency either
great enough with respect to the frame acquisition
frequency (25 Hz) or an integral multiple of this,
the current i-th image )y,x(Ii  is described by
the relation:

( ) ( )
( ) ( )[ ] ( )[ ]{ }y,xJy,xcosy,xC1

y,xIy,xI

d0

OBJi

ϕα+ϕ+×
×=

( )
2

1i π−=α , i = 1, 2, 3, 4 (1)

In electronic holography with directions of
object illumination and observation close to the
normal, the phase dϕ  is direcly related to the out-

of-plane vibrational amplitude d(x,y) at any
visible point of the object surface by the
approximate relation:

( ) ( )y,xd
4

y,xd λ
π

=ϕ (2)

The holographic processor calculates and
stores the two differences 1C  and 1S , given by
eq. (3) and (4):

( ) ( ) ( )d0OBJ311 Jy,xIcosy,xC2IIC ϕϕ=−=
(3)

( ) ( ) ( )d0OBJ241 Jy,xIsiny,xC2IIS ϕϕ=−=
(4)

Fringe function for time-average method
In time-averaged electronic holography [5],

the real-time image displayed by the monitor is
given by:

2
1

2
1TAV SCI += (5)

Taking into account eq. (3) and (4), this
expression becomes:

( )[ ]y,xJCII d
2
0OBJTAV ϕ= (6)

The time-averaged interferogram displayed on
the monitor and described by eq. (6) is refreshed
after each four-frames cycle. It shows the image
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of the object covered by an iso-amplitude fringe
pattern corresponding to the Bessel-type fringe
function:

( ) ( )





λ
π= y,xd4JdF 2

0 (7)

Such a time-averaged hologram, representing
the vibration amplitude map of a rectangular
plate, is shown in Figure 2. The contrast of the
fringe pattern is decreasing with increasing fringe
order, which makes difficult the fringe processing
by tracking the dark and bright fringe centers. The
other current difficulty in fringe processing,
namely the existence of undersampled, high
fringe density regions, has deliberately been
avoided by choosing one of the lowest modes and
low vibration amplitudes, so as to produce a
hologram allowing the visual counting of fringes.
For higher modes and amplitudes, that is often
impossible.

Figure 2. Time-averaged hologram

Other fringe functions
The contrast of fringe patterns obtained in

vibration measurement may be improved by using
the stroboscopic principles [6], but this involves
using a much higher power laser to compensate

the important loss produced by strobing. The
fringe function in this case is given by:

( ) ( )





λ
π

= y,xd4cosdF 2 (8)

Phase imaging [7] is another useful method
providing directly the dϕ  modulo 2π distribution,

but the procedure is rather tedious and does not
work in real time, like the other methods.

Quasi-binary holography
This new interferometric method [8] produces

in real-time a fringe pattern given by:

( ) ( )[ ]{ }y,xJsgnBAy,xI d0QUB ϕ×+=
(9)

A and B are constants. Figure 3 shows the
image obtained from a quasi-binary hologram for
the same vibration state (same amplitudes and
same  frequency) already shown in Figure 2.

Figure 3. Quasi-binary hologram

As shown by Eq. (9), the fringe pattern in the
image presented in Figure 3 is quasi-binary; the
limits of each fringe are defined only by the zero
crossings of the Bessel  function ( )d0J ϕ .
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The number of fringes is halved with respect
to that of the image in Figure 2,, so fringe
counting becomes possible in those regions of the
object where the time-averaged speckled fringe
pattern would otherwise be spatially
undersampled. The contrast is constant  for any
fringe order, which makes possible an efficient
quantitative processing of the fringe pattern,
while in the image in Figure 2 the contrast is close
to zero for the higher order fringes, in the two
upper corners, and the signal-to-noise ratio is
about unity.

Comparison of the quasi-binary method
with the time-averaged method

The two most important metrological
characteristics, fringe contrast and spatial
sampling frequency of the fringe pattern, are
shown in Figure 4, as obtained through numerical
simulation.

Figure 4. Simulated fringe profile

The upper drawing in Fig. 4 shows the model.
The three output screens in the lower part of

Fig. 4 represent: the upper one – the speckle
noise, the middle one – the profile of Bessel –
type (time average holography) fringes, and the
lower one – the profile of quasi – binary
holography fringes.

These simulated characteristics are entirely
confirmed by the experimental results presented
in Figure 5

Figure 5. Experimental fringe patterns

The two images in the upper part of Figure 5
present a time-averaged hologram with a medium
fringe density (a total of 14 noisy cyles per 90
pixels), and its intensity profile along a vertical
line. The other two images, in the lower part of
Figure 5, represent the equivalent quasi-binary
hologram and the profile of the same vertical line.

By using simple linear filtering and
thresholding procedures, the image obtained by
the quasi-binary method may be transformed to a
binary image, allowing further morphological
processing in order to obtain the full-field
vibration amplitude field.
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The new interferometric method was used
during the material properties identification work
for measuring experimentally the vibration
amplitude distributions. The high contrast of the
resulting interferograms allowed a precise
recognition of each mode shape.

MATERIAL PROPERTIES IDENTIFICATION
The general principle used in identifying the

material properties is updating a finite element
model so as to make its results converge toward
the experimental results obtained by quasi-binary
electronic holography. By using a sufficient
number of vibration modes of a uniform
rectangular plate, not only the material properties,
but also the optimal number of nodes and the
shape factor of the finite elements used in
discretization may be found.

The experimental data used in the
identification were the resonant frequencies,
provided that the order of the numerically found
modes and their  shapes are the same as in the
holographic results.

The numerical normal mode shapes and
frequencies are found as solution of the
undamped eigenvalue problem.

Experimental data
The first 40 vibration modes and their

frequencies were computed numerically, using a
general software program [9]. The experimentally
measured amplitude maps were obtained by
quasi-binary electronic holography. The
excitation was provided by a small loudspeaker
placed behind the tested plate. The position of the
loudspeaker was adjustable, so as to be able to
avoid coupling of modes whose frequencies are
very closed

The fine frequency adjustment of the
numerical signal generator was used to measure
the resonant frequencies, and make sure a single
mode is excited.

The first three modes of the plate are shown in
the images presented in Fig. 6. Some of the higher
modes are presented in Fig. 7 and Fig. 8.

The images on the left column are the quasi-
binary holograms corresponding to the
numerically predicted modes illustrated on the
right column. The experimentally measured
frequencies are indicated under each experimental
amplitude distribution. For the higher modes, the
number of elements may become a limiting factor
for the correct representation of the numerically
calculated modes.

Figure 6. First three modes

Figure 7. Modes 11 - 12
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At medium frequencies (modes 11 - 12) the
finite element representation is still correct, as
shown in Figure 8. At higher frequencies, as
shown in Figure 9, only the nodal lines were used
for recognizing in the numerical model the mode
shapes and theit order, and the time-averaged
holography was used instead of quasi-binary
holography, because of its higher sensitivity.

Figure 8. Mode 39

Along with the amplitude distributions, the

first 40 eigenfrequencies were calculated ( ( )i
EFf )

by the finite element program and measured

(
( )i
expf ) by holographic measurement.

The material parameters to be found for the
rectangular steel plate are the Young modulus E
and the Poisson coefficient ν. For the finite
element mesh using tria3 elements, the
parameters are the number of nodes along each
dimension of the plate.

The discrete cost function being minimized
during the parameters optimization procedure is
the mean value of the relative error, as in eq. (10).

 

( ) ( )

( )

N

f
ff

e

N

1i
i

exp

i
EF

i
exp

mean N

∑
=

−

=  (10)

The mean value is a global function
integrating the overall quality of the model. The
maximum value of the relative error given by eq.
(11) was also tested with good results:

( ) ( )

( )
i

i
exp

i
EF

i
exp

max f
ff

maxe
N 









 −
=  (11)

Parameters identification
An initial identification procedure was carried

in order to find the values of E and ν assuring
values of 

40meane and 
40maxe  of about 1 %. These

values were then used in a full optimization
procedure in an attempt to find the best shape of
the tria3 elements used in the discretization.

Optimum Mesh.  The graph in Figure 7
shows the values of 

40meane  as a function of the

number of nodes along each side of the plate, NX
and NY. As expected, the smallest values of

40meane and 
40maxe  occur when the values of NX,

NY are so that the rectangular discretizing
elements become isosceles. Those values are
situated near the right line superimposed on the
graph.

The absolute minimum value of

40meane corresponds to NX=11 and NY=12 nodes.

Such a mesh is dense enough to allow a fair
representation of the highest frequency modes.

Figure 7. Optimum mesh

Material properties.  Several minimization
procedures for 

Nmeane and 
Nmaxe were carried

out, for N = 5; N = 10; N = 20 and N = 40
vibration modes, in order to examine the
influence of the medium and high frequency
modes on the material properties values and on
the two error functions. The results obtained for

Nmeane are shown in Table 1.
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Table 1. Influence of modes number N on
identification

N 5 10 20 40
E (GPa) 203.8 203.8 205.2 205.5
ν 0.256 0.258 0.256 0.257

Nmeane (%) 0.13 0.16 0.18 0.19

The four values of N included in Table 1
correspond, respectively, to maximum
eigenfrequencies of 407 Hz, 1010 Hz, 2570 Hz
and 5350 Hz.

The material properties values converged, in
all cases, towards optimum values very close to
each other (less than 1 % difference for both E
and ν).

As an example, Figure 8 presents the isovalue

contours of 
20meane , whose minimum value, 0.18,

corresponds to an abscissa of value E = 205.2
GPa and to a value of Poisson coefficient of

0.256. When using 
Nmaxe instead of 

Nmeane  as

function to be minimized, the curves converge
towards a point (E, ν) slightly different from the

previous one. The isovalues of 
20maxe  are shown

in Figure 9.

Figure 8. Isovalues of 
20meane

Figure 9.  Isovalues of 
20maxe

The values of E and ν are, in this case, 204.5
GPa (less than 0.5 % difference with respect to

the value found on the basis of 
20meane ),

respectively 0.265 (about 3 % difference).

Verification. The values of E and ν found by
using the hybrid procedure described before have
been checked using an experimental procedure
inspired by [3], based on measuring the
eigenfrequencies of the "O" and "X" modes of a
free square uniform plate (Figure 10).

The method may be applied for isotropic and
for orthotropic materials. The procedure also
involves the use of the values of two particular
eigenfrequencies, 20f  and 02f , having two nodal

lines parallel to one side or another.
The measurements of amplitude distributions

for the free plate have been done by using time-
averaged electronic holography.

Figure 10. The "O" and "X" modes of a free
square plate

Since the "O" mode whose frequency is
needed to calculate 20f  and 02f  has a very wide

resonant curve, the accuracy of these
eigenfrequencies determination has been
increased by taking into account, within a least
squares procedure, the frequencies of several
higher modes whose resonant curves are less
wide; the amplitude maps corresponding to some
of those higher modes are illustrated in Figure 11.

Figure 11. Higher modes of the free plate

The value of Young modulus thus found,
E=206 GPa, is very close (less than 1 %
difference) to the values already presented in
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Table 1, and the Poisson coefficient value,
ν=0.29, is  about 12 % higher.

The scales shown in the plots in Figures 8 and
9 show that the accuracy characterizing the value
of Poisson coefficient is lower than that
concerning the Young modulus.

From the experimental point of view,
measuring by holography the vibration
amplitudes of a "freely" suspended plate may
prove difficult, imposing some very strict
precautions to be taken to prevent from air
currents and other laboratory disturbances, like
thermal gradients or vibro-acoustic perturbations.

CONCLUSIONS
A novel interferometric method, the quasi-

binary holography, has been described. The
experimental tests prove the theoretical
predictions [8] concerning its higher fringe
contrast and wider measurement range.

When necessary, fringe processing of the
quasi-binary patterns may be done easily through
the fringe tracking method followed by the
interpolation of the values corresponding to the
limits of the bright and dark fringes.

The use of the quasi-binary holographic
method along with the time-average method and
the finite element modelling had lead to very
accurate experimental data. These data were used
for material properties identification as well as for
the finite element mesh optimization. The
complete understanding of the optimal mesh,
illustrated in Figure 7, needs more investigation.

Overall eigenfrequencies errors below 0.2 %
have been obtained for the frequency range of 47
Hz – 5350 Hz, corresponding to the 40 first
vibration modes, while the use of only five modes
further reduces that error to 0.13 %, at the
expense of higher errors for the unused modes.

Both discrete cost functions tested, 
Nmeane

and 
Nmaxe , lead to similar results; however, the

first one provides more sensitivity, as suggested
by Figure 8, and integrates better the over-all
behaviour.

The quantitative results for the materials
properties E and ν have been confirmed by a
different, direct identification procedure, using
time-average electronic holography and
appropriate processing of formulas for the
eigenfrequencies of a free square plate. They had
also been confirmed by another direct
identification procedure using beams.
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�Âà ª�o á/f å���ª ��á/à
Ð�¯}²DÃVÈh³#¯}­	´;½z¬�­ Á ½+¾	¯F½�¿�²DÅ#¿ Ë ¯}­	®3¯�®3±}­ Å=¯Q²�¯>Ç�²)¯�ÀÈ�¯}­#½�¯3³dÅ Í � ¯ Í ­	´ Ë ³�È!µ Ë ¿�×�¯�È�ÉVÐ�¾	¯/Ç�²)´#®3¯�ÈwÈK½�´QÇ=±}²�±�ÀÃ8¯}½�¯}²�¬+Ñ$¯e½�¾	¯ � ¯ Í ­	´ Ë ³#ÈM½�¯}­=È�´$²�Èd¬zÈQ®3± Ë�Ë ¯3³¥½�¾	¯p® Ë ´�ÀÈ�¿#²)¯-Ç�²)´$Å Ë ¯�ÃdÉ�Þ¶­d½�¾	¯Hµ¶¬�²�Èu½�´;²)³#¯}²�® Ë ´�Èu¿#²)¯$Æ�½�¿#²¶Å�¿ Ë ¯�­�½

µ Ë ¿�×�¯�È�±}²)¯ Á ¬�¼�¯�­!Å Í ½�¾�¯�Ç�²)´#³;¿	®}½=Å=¯}½�Ö-¯3¯�­�½+¾	¯ Á ²)±�³�¬zÀ¯�­�½6´#µ�½+¾	¯HÃ/¯3±�­�Õ$¿	±�­�½z¬�½ Í ±�­�³Q±�­�¯3³#³ Í ³�¬Âµ¶µz¿=È�¬�¼�¬�½ Í ÉÊÎ­	¯}Ö µD´;²DÃ!¿ Ë ±�½Â¬Â´;­!µD´;²sµ¶¬�²�È�½2´;²)³#¯}²s® Ë ´#È�¿#²)¯�¬ÂÈ0®�´$­=È�½z¬ÂÀ
½�¿#½�¯3³Q®3´;­=È)¬Â³#¯}²�¬�­ Á ½+¾	¯8®�´$­#½�²�¬�Å�¿#½Â¬Â´;­F´#µ6½+¾	¯8®�´$¿#­#½�¯}²�À
Á ²)±�³�¬Â¯}­#½�½�¯}²DÃhÉ6«�¬�­	®3¯ °K¯�±}²)³#´;²)µ¶µ �"!$#�¾	±$È�³�¯�²�¬�¼�¯�³8±}­¯
×;Ç�²)¯$È�È�¬Â´;­ µD´$²H®3´;¿#­�½�¯}²�À Á ²�±3³�¬�¯�­�½6½z¯�²DÃ ±�­�³e¾	¯Q± Ë È�´
Ç=¯}²�µD´;²DÃ/¯�³'È�´;Ã8¯6¯�×�Ç=¯}²�¬�Ã8¯}­#½z± Ë Ç�²)´#®3¯3³;¿#²)¯�½�´r¬�³#¯}­#½z¬Âµ Í½�¾�¬zÈr½z¯}²uÃ ¬�­#½�¯}­=È�¯!²)¯�È�¯3±}²)®�¾d¾	±�È�Å=¯3¯}­�³#´;­	¯�É Ð�¿#²¶Å�¿=À
Ë ¯}­	®3¯e¬zÈM± Ë Ö-± Í ÈHÇ�²)¯$È�¯�­�½ ¬�­X½�¾	¯&% Ë ±}­	¯}½�±}² Í ø ´$¿#­	³�À±�² Í(' ± Í ¯}²F·)% ø ' »�Æ�Ör¾�¯�²)¯XÈ�¯}¼	¯}²�± Ë Èu½�±>Å	¬ Ë ¬�½ Í ®3´;­	³�¬zÀ½z¬Â´;­	Èd±}²)¯�µD´;¿#­�³�Ôe®3´;­#¼�¯�®}½z¬�¼	¯$Æ6­	¯}¿#½�²)± Ë Æ6±�­�³XÈ�½�±>Å Ë ¯�É
	 ´;²6®3´;­#¼	¯3®}½z¬�¼	¯-®3´;­	³�¬�½z¬Â´;­	È>Æ�½�¾	¯ Ë ±}² Á ¯�È�½�½+²�±}­=ÈDÇ=´;²D½z¬�­ Á¯�³�³�¬Â¯�ÈHÃ8± Í ¾	±}¼	¯e±pÈ�¬�Ã/¬ Ë ±�²dÈ)¬+Ñ$¯�±�È8½+¾	¯hÅ=´$¿#­	³#±}² ÍË ± Í ¯}²r¾	¯
¬ Á ¾�½6¬�½¶È�¯ Ë µr±}­	³�Æ�¬�­FÇ=±}²D½z¬Â®}¿ Ë ±}²uÆ2½�¾	¯8µ Ë ¿�×�®3±�­Å=¯M¬�­�½�¾	¯d´$Ç�Ç=´�È�¬�½�¯h³�¬�²)¯3®}½z¬Â´$­¥´#µ�½�¾	¯ Ë ´�®�± Ë Á ²)±�³�¬Â¯}­#½´#µ�½�¾	¯�Ã/¯�±}­eÕ$¿	±}­#½z¬�½ Í É 	 ´;²�­	¯}¿#½�²)± Ë ±�­�³QÈ�½�±>Å Ë ¯H®�´$­=À³�¬�½z¬�´;­=È>Æ6½+¾	¯�µ Ë ¿#×�´�µH±�Õ;¿�±�­#½Â¬�½ Í ¬ÂÈ/Ç#²�´�Ç=´;²D½z¬Â´$­	± Ë ½z´
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½�¾	¯ Ë ´#®3± Ë Á ²)±�³�¬Â¯}­#½H´#µ!½�¾�±�½!Õ;¿	±}­#½z¬�½ Í É Þ¶­ µu±3®}½DÆ'½�¾	¯®3´;¿#­#½z¯�²�À Á ²)±3³�¬Â¯}­#½=²)¯>Ç�²)¯�È�¯}­#½¶È0­�´;­ Ë ´�®�± Ë ¬�­	µ Ë ¿	¯}­	®3¯�È(´;­½�¾	¯�Ã/¬�×�¬�­ Á Å Í ½+¿#²¶Å�¿ Ë ¯}­	®3¯$Æ�±}­	³-±�È�½+¾�¬zÈs½�¯}²DÃ ¬ÂÈ�ÈuÃ8± Ë�Ë¬�­XÈ�½�±>Å Ë ¯h®3´;­�³�¬�½z¬�´;­=È>Æ0¬�½'¬ÂÈ>Æ�½�¾	¯}²)¯3µu´$²�¯$Æ�­�¯ Á Ë ¯3®�½z¯�³F¬�­½�¾	¯�È�¯^®3´;­	³�¬�½Â¬Â´;­=È*�)¸}è+#�É
, ´ Ë ½¶È Ë ± Á ±�­�³ ßp´�¯�­ Á ��¸$¸-#H· , ßp¹k¸}»H³#¯}²)¬�¼	¯3³�±®3´;¿#­#½z¯�² Á ²)±�³�¬Â¯}­#½8½z¯�²DÃ µz²)´;Ã ½+¿#²¶Å�¿ Ë ¯}­#½!¾	¯3±}½dµ Ë ¿#×=Æ

±}­	³�½�¾�¯3¬�²�Ç	±�²)±}Ã8¯}½�¯}²�¬+Ñ$±}½z¬Â´$­XµD´;²�½�¾	¯d½�²)±}­=ÈuÇ=´;²D½�½�¯}²uÃ
¬zÈ�Å=±�È�¯3³8´;­8½+¾	¯K²)¯�È�¿ Ë ½¶È�µz²)´;Ã Ë ±}² Á ¯-¯3³#³ Í È�¬�Ã^¿ Ë ±}½Â¬Â´;­· ' ç(«�»�É Ý ¿�¬ Ó�Ç=¯}²�È6±}­	³ , ´ Ë ½¶È Ë ± Á �/.0#0· Ý1, ¹02$» Á ¯}­	¯}²�± Ë À¬+Ñ$¯3³�½�¾�¯e¯�×�Ç�²)¯�ÈwÈ�¬�´;­S´#µK½�¾	¯ , ßp¹2¸/Å Í Ör²�¬�½z¬�­ Á ½�¾	¯­	´;­ Ë ´#®3± Ë ½�¯}²DÃO±$ÈF±Xµz¿#­	®}½z¬Â´$­ ´#µH¼	¯}²u½Â¬Â®3± Ë ¼	¯ Ë ´#®
¬�½ Í¼	±}²�¬Â±}­	®3¯^±}­	³8±}­d¬�­#½�¯ Á ²)± Ë µD´;²DÃ µu´$²�½�¾�¯^µ Ë ¿�×�É
Ðk¾	¯ Ç�¿#²¶Ç=´�È�¯^´#µ(½+¾�¬zÈ6Ç=±}Ç	¯�²�¬zÈ�½�Ö-´hµD´ Ë ³=É 	 ¬�²�È�½ Ë Í Æ±^­	¯}Ö ±>Ç#Ç�²)´#±3®}¾d½z´Q®3´;¿#­#½�¯}²�À Á ²)±3³�¬Â¯}­#½�½�¯}²DÃ ¬ÂÈK¬�­#½+²�´#À

³;¿	®3¯3³=ÉHÐk¾	¯/­	¯}Ö µD´;²DÃ!¿ Ë ±�½Â¬Â´;­�¬zÈKÅ=±�È�¯3³F´;­e½�¾	¯!Ç=±�À
²)±}Ã8¯}½�¯}²�¬+Ñ$±}½z¬Â´;­MÇ�²)¯�È�¯}­#½�¯3³8¬�­3�/.0#�Æ�¾	´$Ö-¯�¼�¯�²6½+¾	¯H®3´;­=À
¼	¯3®}½z¬�¼�¯^È�®3± Ë ¯-µD´;²�±^È�®3± Ë ±}²(¬zÈ�±-ÈuÇ=±3®3¯-±}¼	¯}²)± Á ¯-´#µs½+¾	¯Ã8¯3±}­dÕ;¿	±}­#½Â¬�½ Í ¬�­=È�¬Â³�¯�´#µ�½�¾�¯4% ø '65 ±3³#³�¬�½z¬Â´$­	± Ë+Ë Í Æ�½+¾	¯Ã/¬�×�¬�­ Á Ë ¯�­ Á ½�¾V¬zÈ�®3´;Ã�Ç�¿#½�¯3³�Å Í Ð�± Í Ë ´;²-7�È�½�¾�¯�´$² Í �98:#�É«�¯�®3´;­�³ Ë Í Æ�½+¾	¯�®3´;¿#­#½z¯�²�À Á ²)±3³�¬Â¯}­#½'½z¯�²DÃ ¬zÈM¬Â³#¯}­#½z¬�µ¶¬Â¯3³
Å Í ­#¿#Ã8¯}²�¬Â®3± Ë Ç�²)´#®3¯3³;¿#²)¯$ÈwÆ�µz²)´;Ã ¯�×�Ç=¯}²�¬�Ã/¯�­�½�± Ë ³�±�½z±;Æ
Å=±�È�¯3³V´;­h±�­d¬�­#¼	¯}²�È�¯KÇ�²)´$Å Ë ¯}Ã Ã8¯}½�¾	´�³#´ Ë ´ Á�Í É
Êr­/¬�Ã�Ç Ë ¬Â®
¬�½�¬�­#¼	¯}²�È�¬�´;­H½z¯�®}¾#­�¬�Õ;¿	¯�¬ÂÈ(¿=È�¯3³!µu´$²(³#¯�À

½�¯}²DÃ/¬�­�¬�­ Á ½�¾	¯Q®3´;¿#­#½�¯}²�À Á ²)±3³�¬Â¯}­#½�½�¯}²DÃ Å Í ±d­#¿�Ã8¯}²�À¬Â®3± Ë È�®}¾	¯}Ã8¯�ÉÙÐ�¾	¯h¬�­�¼	¯}²�È�¯MÇ#²�´�Å Ë ¯}Ã ¬ÂÈ8µD´;²DÃ!¿ Ë ±�½z¯�³
±�ÈV±�­S´�Ç�½z¬�ÃH¬+Ñ$±}½z¬Â´;­ÙÇ�²)´$Å Ë ¯}ÃMÆ(Ör¾	¯}²)¯d½+¾	¯e´�Å
Ów¯3®}½z¬�¼	¯
µz¿#­	®}½z¬�´;­!¬zÈ�³�¯�µ¶¬�­	¯3³-±$Ès½�¾	¯ Ë ¯3±�È�½¶ÀDÈ�Õ;¿�±�²)¯�È0µ¶¬�½=Å=¯}½�Ö-¯3¯}­
Ã8´�³#¯ Ë ²)¯�È�¿ Ë ½�ÈK±}­	³h¯�×�Ç=¯}²�¬�Ã/¯}­#½�± Ë ³�±�½z±�É6Ê È�½z±>Å	¬ Ë ¬�Ñ;¯}²
·¶´;²6²)¯ Á ¿ Ë ±}²�¬+Ñ$±}½z¬Â´$­�»6´$Ç=¯}²)±}½�´;²�¬ÂÈ ±3³#³#¯3³H½�´M½�¾�¯H´$Å
Ów¯3®�À½z¬�¼	¯�µz¿#­	®}½z¬�´;­¥Ö ¬�½+¾Ù¾	¯ Ë ÇS´#µ�± ' ± Á ²)±�­ Á ¯hÃ^¿ Ë ½z¬4Ç Ë ¬�¯�²·¶± Ë È�´ ®�± Ë+Ë ¯3³Î²)¯ Á ¿ Ë ±}²�¬+Ñ$±}½z¬�´;­ÒÇ=±}²�±}Ã/¯�½z¯}²)»�É Þ�½�¯}²)±}½z¬Â´;­
Ç�²)´#®3¯3¯�³#ÈH¿#­#½z¬ Ë ´$Å�Ów¯3®�½Â¬�¼	¯pµz¿#­	®}½z¬�´;­�®�´$­#¼	¯}² Á ¯�È8½z´�±ÈuÇ=¯3®
¬Âµ¶¬Â¯3³ Ë ¬�ÃH¬�½�¼�± Ë ¿	¯�É0« Í ­#½�¾�¯�½Â¬Â®�³#±}½�±0Ö ¬�½�¾*;'±�¿=È�È�¬Â±}­Ör¾�¬�½�¯'­	´�¬zÈ�¯�®3´;²D²D¿�Ç�½z¬�´;­V±}²)¯'¿=È�¯3³^½�´VÈ)¬�Ã!¿ Ë ±}½�¯ ¯
×;Ç=¯}²�À
¬�Ã/¯}­#½�± Ë ³#±�½z±�É
àrã=< ¤?>�>�o á ¤�� � � á o ª �rã � á å à ª ã o @¢ o0¤ fA�Âã�à ªXª ã o â
Ðk¾	¯Ùµ¶¬�²�Èu½H´;²)³#¯}²d® Ë ´�È�¿#²)¯¥±>Ç#Ç�²)´#±3®}¾ ®3´;­=È)¬Â³#¯}²�¬�­ Á½�¾	¯�®3´;¿#­#½�¯}²�À Á ²)±3³�¬Â¯}­#½k½z¯�²DÃ ®3±}­/Å=¯^¯�×�Ç�²)¯�ÈwÈ�¯�³V±�È
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F ë DpúHG

·>¸}»

Ör¾	¯}²)¯ ���9� � ¬zÈ�½�¾	¯�¼	¯}²D½z¬Â®3± Ë ½�¿�²DÅ#¿ Ë ¯}­#½ � ¯ Í ­	´ Ë ³�È0µ Ë ¿�×=ÆI ý>ýd¬zÈ�¼	¯}²D½z¬Â®3± Ë ¯3³#³ Í ³�¬�µ¶µ�¿	È�¬�¼�¬�½ Í Æ úJG ¬ÂÈ�½�¾	¯H®3´;¿�­#½�¯}²�À
Á ²)±3³�¬Â¯}­#½s½�¯}²DÃMÆ � ¬zÈr½�¾	¯^¼	¯}²D½z¬�®�± Ë ®3´;Ã�Ç=´;­	¯}­#½�´#µ�½�¾	¯
¼	¯ Ë ´#®
¬�½ Í ´#µ�Ö ¬�­	³�Æ	±}­	³ � ¬ÂÈ�Ã8¯3±}­MÕ;¿	±}­#½z¬�½ Í ·ÂÃ/±$È�È�´;²½�¯}Ã�Ç=¯}²�±}½�¿�²�¯
»�É
Ý ¿�¬ ÓuÇ=¯}²�Èh±}­	³ , ´ Ë ½¶È Ë ± Á �/.0#^¾	±}¼	¯FÇ�²)¯�È�¯}­#½�¯3³X±}­

¯
×;Ç�²)¯$È�È�¬Â´;­QµD´;²�½+¾	¯^®3´;¿#­�½�¯}²�À Á ²)±3³�¬�¯�­#½¶Æ Á ¬�¼�¯�­8Å Í
úKGLB æ � ÿ � �M�� ÿ� ÷

·¶è�»
Å=¯
¬�­ Á ÷ ½+¾	¯N% ø ' ¾	¯
¬ Á ¾�½DÆ � ÿ� ¬zÈ ½�¾	¯8¼	¯ Ë ´�®3¬�½ Í ¼�±�²�¬zÀ±�­�®�¯$Æ � � ¬ÂÈr½�¾	¯/®3´;­#¼	¯3®}½z¬�¼�¯VÈ�®�± Ë ¯8µD´;²�¼	¯ Ë ´�®3¬�½ Í Æ æ ¬zÈ±!®3´;­=È�½�±}­#½�±}­	³ � � ¬zÈ'±HÈ�®3± Ë ¯�µu´$²�Ã8¯3±}­hÕ;¿	±}­#½z¬�½ Í Ô

� ��O P÷ � �
Q
R � � � �0S ë ·UT;»

Ý ´;Ã^Å	¬�­�¬�­ Á ç�Õ�È�É�·>¸}»)Æ�·�è#»8±}­	³�·VT�»V±�­Î¬�­#½�¯ Á ²)± Ë¯�Õ$¿	±}½z¬Â´;­�¬zÈ-²)¯$Èu¿ Ë ½�¯3³eµD´;²K½+¾	¯8½�¿#²¶Å�¿ Ë ¯}­#½6µ Ë ¿�× � � � � É
û ­	¯VÇ�²)´#®3¯�³$¿#²)¯/½�´Ù±}¼	´�¬�³�½�¾�¬ÂÈ/³�¬Âµ¶µ¶¬�®�¿ Ë ½ Í ¬zÈ^½z´Ù®�´;­	ÀÈ�¬Â³#¯}²(½�¾	¯^®3´;¿�­#½�¯}²�À Á ²�±3³�¬�¯�­�½2½�¯}²DÃ ±�È�Ñ;¯}²)´8¬�­V½�¾	¯�µD¬�²�È�½
È�½�¯>ÇQ´#µ0½�¾�¯K½z¬�Ã8¯^¬�­#½�¯ Á ²)±}½z¬Â´$­�Æ=±�­�³M±3µz½�¯}²0½�¾	±}½DÆ�¾	±}¼�¬�­ Á±�­e¯$Èu½z¬�Ã/±�½Â¬�¼	¯/µD´;²�½�¾	¯�½+¿#²¶Å�¿ Ë ¯}­#½�µ Ë ¿�×	Æ�½�¾	¯ � ¯ Í ­	´ Ë ³#Èµ Ë ¿�×�¯�È0®�±}­-Å=¯�®3´;Ã^Ç�¿�½�¯3³^µz²)´;Ã ç�Õ=É;·}¸>»�±}­	³�·�è#»2¿=È�¬�­ Á½�¾	¯!µ Ë ¿#× �W����� Ç�²)¯�¼�¬Â´;¿=È Ë Í ®3´;Ã�Ç�¿#½�¯3³X�)¸YT$#�É�Þ�­Q´;²)³#¯}²½�´�®
¬�²)®}¿#Ã^¼	¯}­#½r½�¾�¬zÈV®3´;­=Èu½�²)±
¬�­#½-¬�­X½�¾	¯eµ¶¬�²�È�½^È�½�¯>ÇÒ´#µ
½z¬�Ã/¯ ¬�­#½�¯ Á ²)±}½z¬Â´$­�Æ�±'­	¯}ÖÏµD´;²DÃ^¿ Ë ±}½z¬Â´$­VµD´;²(®3´;­#¼	¯3®}½z¬�¼	¯È�®3± Ë ¯ �A� ¬zÈ'Ç#²�´�Ç=´�È�¯3³=É-Þ�­e½�¾	¯^­	¯}ÖYµD´;²DÃ!¿ Ë ±�½Â¬Â´;­ �
�¬zÈ Á ¬�¼	¯}­VÅ Í
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Ð�¾	¯F®3´;­=È�½z±�­�½ æ ¬�­XçsÕ=É(·�è#»-¬�­ � ¯3µ�É\�/.0#-¬zÈ P^] _ ÆÖr¾	¯}²�¯3±�ÈV¬�­ ½�¾	¯F­	¯}Ö µu´$²uÃ^¿ Ë ±}½z¬�´;­ ½�¾�¬zÈd®3´;­=È�½�±}­#½-¬zÈ
æ Ba` ] `cb ÉÐ�¾	¯}²)¯ ±�²)¯ Ã8±}­ Í ¯�×�Ç�²)¯�ÈwÈ�¬�´;­=ÈÎµD´;²X½�¾	¯ ¼	¯ Ë ´�®$À
¬�½ Í ¼	±}²�¬Â±}­	®3¯ � ÿ� Æ�È�¯�¯d�98�ÆÒ¸$¸3ÆS¸e2f#¥±�­�³ Ê'Ç#Ç=¯}­=À
³�¬+×�É�°K¬Âµ¶µD¯}²)¯}­#½�±>Ç#Ç�²)´#±3®}¾	¯�È6µD´;²(½�¾	¯-®�´$¿#­#½�¯}²�À Á ²)±�³�¬Â¯}­#½½�¯}²uÃ ±}²)¯d³�¬zÈuÇ Ë ± Í ¯3³�¬�­ 	 ¬ Á ¿#²)¯Ù¸3Æs½+¾	¯ , ´ Ë ½�È Ë ± Á ±}­	³ø ´;¼�¬ Ë�Ë ¯:7�Èg�)¸}è+#�Ær· , ø À¶¹+T�»-Ç	±�²)±}Ã8¯}½z¯�²�¬+Ñ$±}½z¬�´;­S¬zÈh± Ë È�´
È�¾	´;Ör­2É
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γ CH−1998
γ HB−1993
γ New − σ

w
(DEA−1997)

γ New − σ
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(SOR−1989)

	 ¬ Á ¿�²)¯h¸;Ô(°K¬Âµ¶µD¯}²)¯}­#½2Ç=±}²)±}Ã8¯}½�¯}²�¬+Ñ$±}½z¬Â´;­	È'µD´;²(½�¾	¯K­	´;­³�¬�Ã/¯}­=È�¬Â´;­�± Ë ®3´;¿#­�½�¯}²�À Á ²�±3³�¬�¯�­�½�É
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ã ©�ª ��â ¤�ª ��á/à á � � á å à ª ã o @ ¢ o(¤ fA�Âã�à ª
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×;Ç=¯3®�½z¯�³�Æ�Å Í ¬�­	®}²)¯3±$È)¬�­ Á ½�¾	¯ Ë ¯�¼�¯ Ë ´#µ	­	´�¬zÈ�¯½�¾	¯/¬�­�¼	¯}²�È)¬Â´;­QÅ=¯3®3´;Ã8¯^Ç=´#´$²�¯}²uÉ!Ðk¾	¯H­�¿#Ã8¯}²�¬Â®3± Ë ¼	± Ë À
¿	¯�È-µD´;²�²�¯ Á ¿ Ë ±}²)¬�Ñ$±�½Â¬Â´;­hÇ=±}²)±}Ã8¯}½�¯}²�È ±}²)¯�Ô p ] _½¼uP ` � RµD´;²�¸-»c´#µ�­	´�¬zÈ�¯$Æ ² ] _3¼(P ` � R µu´$²8è�É !$» ´#µ�­�´�¬zÈ�¯$Æ
±}­	³ ² × P ` � R µD´;²*!$»\´#µ�­	´�¬zÈ�¯�ÉVÊ�ÈH¯�×�Ç=¯3®}½�¯3³�Æ�½�¾	¯
²)¯3®�´$­=È�½�²D¿	®}½z¬�´;­^¬zÈ(³#¯ Á ²)±3³#¯�³-±�È�½�¾�¯ Ë ¯}¼	¯ Ë ´#µk­	´�¬ÂÈ�¯'¯}­=À¾	±}­	®3¯�È�É
Þ�­Ù´;²)³#¯}²r½�´QÅ=¯3®�´$Ã8¯d® Ë ¯3±}²r½+¾	¯8²)´ Ë ¯d´�µ�²)¯ Á ¿ Ë ±}²�¬zÀÑ$±}½z¬Â´;­eÇ=±}²)±�Ã/¯}½�¯}² 	 ¬ Á É�T�È�¾�´;Ö�È�½+¾	¯d¯�È�½z¬�Ã8±}½z¬Â´$­XµD´;²½�¾#²)¯3¯8³�¬Âµ¶µD¯}²)¯�­�½ � É Ý Ë ¯3±}² Ë Í Æs±�È �u¾ ` È�´;Ã8¯MÈuÇ�¿#²�¬zÀ´;¿=È6È�´ Ë ¿�½z¬Â´;­	È�·¶´�È�®
¬ Ë�Ë ±�½Â¬Â´;­=È)»0±}Ç#Ç	¯�±}²�¬�­H½�¾�¯r¬�­#¼	¯}²�È�¬Â´$­

· 	 ¬ Á É\T�±
»)Ær¯}¼	¯}­ÎµD´;²dÈ�Ã/± Ë�Ë ¼	± Ë ¿	¯�Èh´#µ � · 	 ¬ Á É\T�Å	»)ÆµD´;² �¿¾ÁÀ ½�¾	¯Q´$Ç�½Â¬�Ã/¬�Ñ;±}½Â¬Â´;­X¬zÈ/´;­ Ë Í µD´#®}¿=È�¯�³�´;­½�¾	¯K²)¯ Á ¿ Ë ±}²�¬+Ñ$±}½z¬Â´;­8½z¯�²DÃ ·DÈ�¯3¯ 	 ¬ Á ÉKT�³�»�É
;r´#´�³M¬�­#¼	¯}²�ÀÈ�¬�´;­=ÈH±}²)¯M´�Å�½�±
¬�­	¯3³dÖ ¬�½+¾Ù±>Ç#Ç�²)´$Ç#²)¬�±}½�¯H¼�± Ë ¿	¯�È^µD´;² � Æ
±�È8È�¾	´$Ör­X¬�­ 	 ¬ Á ÉÂT�®�ÉQÊr­Ù¬�Ã�Ç=´;²D½�±}­#½rµu¯3±}½�¿#²)¯M¬ÂÈ/±

Á ´#´#³d®�¾�´�¬Â®3¯^´#µs½�¾	¯K²�¯ Á ¿ Ë ±}²)¬�Ñ$±�½Â¬Â´;­8Ç=±}²)±�Ã/¯}½�¯}²uÉ
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	 ¬ Á ¿#²)¯�è�Ô��^¯}Ö Ý ´;¿#­�½�¯}²�À Á ²)±3³�¬�¯�­�½�¯�È�½z¬�Ã8±}½z¬�´;­MÅ ÍÈ�¯3®�´$­	³�À¶´;²)³#¯}²�Ã/±
×#¬�Ã!¿�Ã ¯}­#½�²)´$Ç Í Ö ¬�½+¾ � ÿ � Á ¬�¼	¯}­hÅ Í«	´;²¶Å
Ó�±�­Î·>¸�¹Ã2;¹�»>Ô�·D±
»^­�´�¬zÈ�¯Î¸-»hÆ�Ö ¬�½�¾ � B p ] _ ×
P ` � R Æ�·�Å	»'­	´�¬zÈ�¯dè�É !$»hÆ�Ö ¬�½�¾ � BÄ² ] _ × P ` � R Æ(±}­	³·D®
»�­	´�¬zÈ�¯?!$»hÆ�Ö ¬�½�¾ � Bt² ] ` × P ` � R É
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	 ¬ Á ¿�²)¯ÅT=Ô�Þ�­	µ Ë ¿	¯}­	®3¯Q´#µ ½�¾	¯Q²)¯ Á ¿ Ë ±�²�¬�Ñ;±}½z¬�´;­¥Ç=±�À²)±}Ã8¯}½�¯}²H½�´ ¸-»Ì´#µ-­	´�¬zÈ�¯#Ô ·D±
»-Ö ¬�½�¾�´;¿#½-²)¯ Á ¿ Ë ±�²�¬�Ñ;±�À½z¬�´;­ 5 ·�Å	» � B P^] ` ¼¿P `+Æ 5 ·¶®
» � B p ] _t¼ÇP ` � R 5·¶³�» � B P$] p ·&¼rP ` ��� É

ßp±}­ Í È�®}¾	¯}Ã/¯$È�¾�±�¼�¯rÅ=¯3¯}­/Ç�²)´$Ç=´�È�¯�³�½�´Vµ¶¬�­	³!½�¾�¯¼	± Ë ¿	¯H´#µ(½+¾	¯�²)¯ Á ¿ Ë ±}²�¬+Ñ$±�½Â¬Â´;­VÇ=±}²)±�Ã/¯}½�¯}²�Ör¾�¬�®�¾ Á ¬�¼�¯$È±'µ¶¬�­	¯0Å=± Ë ±}­	®3¯0Å=¯}½�Ö-¯3¯}­!È�Õ;¿	±}²)¯6³�¬Âµ¶µD¯}²)¯}­	®�¯�±}­	³�²�¯ Á ¿	ÀË ±}²)¬�Ñ$±�½Â¬Â´;­'½�¯}²DÃhÉ(«�´;Ã/¯�´#µ�½�¾�¯$È�¯�½�¯3®}¾#­�¬ÂÕ;¿�¯$Èk±}²)¯�Ôkßp´�À
²�´;Ñ;´$¼=7�Èr³�¬ÂÈ�®}²)¯}Ç	±�­	® Í Ç#²)¬�­	®
¬�Ç Ë ¯��)¸3Æs¸Y!$#�Æ�½�¾�¯ ' À¶®}¿#²D¼	¯±�­�³ ½�¾	¯ Á ¯}­	¯}²)± Ë ¬+Ñ$¯�³S®}²�´#ÈwÈh¼	± Ë ¬Â³#±}½Â¬Â´;­¹�)¸-#�É , ¯}²�¯$Æ
½�¾	¯ , ±}­=È�¯�­=7�È�Ç�²)´#®3¯3³;¿#²)¯?�)¸-�:#�Æ�¯$È�È�¯}­#½z¬Â± Ë�Ë Í ½+¾	¯ Ã/±
×�À¬�Ã!¿�Ã ®}¿#²D¼	±}½+¿#²)¯�´#µs½�¾	¯ ' À¶®�¿#²D¼	¯$Æ�Ö-±�È6¿=È�¯3³^Ç�²)´#³;¿	®�À¬�­ ÁMÁ ´#´#³H²)¯�È�¿ Ë ½uÉ 	 ¬ Á ¿#²)¯¦.d³�¬zÈDÇ Ë ± Í È�½�¾	¯ ' À¶®�¿�²u¼�¯�µD´;²³�¬Âµ¶µD¯}²)¯�­#½ ' ± Á ²)±}­ Á ¯�Ã^¿ Ë ½z¬4Ç Ë ¬�¯�²�È>Æ�µu´$²(¯$Èu½z¬�Ã/±�½Â¬Â´;­8Ö ¬�½�¾¸-»c´�µ-­	´�¬ÂÈ�¯�É 	 ²)´;Ã\½�¾	¯MÇ Ë ´;½ ¬�½-®�±}­¥Å=¯eÈ�¯3¯}­Ù½�¾	±}½
�Lwtp ] _X¼ÂP ` � R ¬zÈ'± Á ´#´�³d®}¾	´�¬�®�¯�É
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	 ¬ Á ¿#²)¯È.2Ô ' À¶®}¿#²D¼	¯\µD´;² ²)¯3®�´$­=È�½�²D¿	®}½z¬�´;­ ´#µ
®�´$¿#­#½�¯}²�À Á ²)±�³�¬Â¯}­#½kÖ ¬�½�¾Ù¸-» ´#µs­	´�¬ÂÈ�¯�É

> ã or� á o â ¤ à � ã á �¥ª �rã àrã�< � á å à ª ã o @¢ o(¤ fA��ã�à ªÒ� á o â årä=¤�ª ��á8à
Ð�¾	¯SµD´;²DÖ-±}²)³SÇ�²)´$Å Ë ¯}Ã ³#¯�È�®}²�¬�Å=¯3³SÅ Í çsÕ�È�Ér·V!�»±�­�³�·Dº�»�Ö-±�ÈH± Ë È�´Q¿=È�¯3³Q½�´Q¼	¯}²)¬�µ Í ½�¾�¯/Å=¯}¾	±}¼�¬Â´;¿�² ´#µ½�¾	¯F­	¯}Ö ®�´$¿#­#½�¯}²�À Á ²)±3³�¬Â¯}­#½ ±>Ç#Ç�²)´#±3®}¾ Á ¬�¼	¯}­XÅ Í ¯�×	ÀÇ�²)¯$È�È�¬Â´;­	ÈK·�è#»(±}­	³M·[.#»wÉ
ÊÄ²)¯ Ë ¯}¼	±�­�½�²)¯}Ã8±}²DØ ¬zÈd½�´S­�´;½�¯�½�¾	±}½^½+¾	¯}²�¯�¬ÂÈF±

È�Ã8± Ë�Ë ³�¬�µ¶µu¯}²)¯}­	®3¯8Ör¾	¯}­Ù½�¾	¯F®3´;­	®3¯}­#½�²)±}½z¬Â´$­X¬zÈV®3´;ÃVÀ
Ç�¿#½�¯3³Mµ�²)´;Ã ®3´;¿#­�½�¯}²�À Á ²�±3³�¬�¯�­�½�¬�­hÖr¾�¬Â®}¾ � � ¬ÂÈ Á ¬�¼�¯�­Å Í çsÕ=Ék·VT�»�´$²�Ö'¾	¯�­d½�¾	¯H®3´;¿#­�½�¯}²�À Á ²�±3³�¬�¯�­�½0¬ÂÈ ®3± Ë ®�¿	ÀË ±}½�¯3³QÅ Í çsÕ	É�·).�»�É8Þ�­Ù´$¿#²^È�¬�Ã!¿ Ë ±�½Â¬Â´;­�Æ�½�¾	¯/¼�±�²�¬�±�­�®�¯´#µ-½+¾	¯h¼	¯}²D½z¬�®�± Ë ¼	¯ Ë ´�®3¬�½ Í ±>Ç#Ç	¯�±}²�¬�­ Á ¬�­SµD´;²DÃ!¿ Ë ±�·�è#»¬zÈ6½�¾	±}½�®�± Ë ®�¿ Ë ±}½�¯3³8±�®3®3´;²)³�¬�­ Á ½z´V° ¯ Á ²)±�Ñ�¬Â±^¯}½�± Ë Éc�98:#�Æµ�²)´;Ã ±�­�± Ë Í ½z¬�®�± Ë ¬�­#½�¯ Á ²)±}½z¬Â´$­�´#µ�½�¾	¯8ÈuÇ=¯3®}½�²D¿#Ã ´#µ6Ø�¬zÀ
­	¯}½z¬Â®8¯�­�¯�² Á;Í É û ½+¾	¯�²rµD´;²DÃ^¿ Ë ±�È-µD´;²�½�¾	¯^¼	±}²�¬Â±}­	®3¯/±�²)¯
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	 ¬ Á ¿�²)¯�º=Ô Ý ´$­	®�¯}­#½+²)±�½Â¬Â´;­!Ç#²�´�µ¶¬ Ë ¯�È6µD´;²�½�¾#²)¯3¯�½z¬�Ã8¯Ç=¯}²�¬Â´#³�È�Ô�½�¾	¯/È�´ Ë ¬Â³ Ë ¬�­	¯�Ö ¬�½�¾�®3´;¿#­#½z¯}²�À Á ²)±3³�¬Â¯}­#½�½z¯�²DÃ
Á ¬�¼�¯�­FÅ Í ç�Õ�È�É�·�è#»)Æ�·[.#»'±}­	³e·ÂÊHÉ T;» 5 ½+¾	¯V³�±$Èu¾	¯�³ Ë ¬�­	¯½�¾	¯'®�´$¿#­#½�¯}²�À Á ²)±�³�¬Â¯}­#½�¬zÈ Á ¬�¼	¯}­^Å Í � ¯3µ�ÉK�/.0#s·�çsÕ�È�É�·�è#»)Æ·VT�»�±}­	³V·ÂÊHÉ è�»u»�É

	 ¬ Á ¿�²)¯u! È�¾	´;Ö�ÈQ½�¾	¯XÈ�¬�Ã!¿ Ë ±�½Â¬Â´;­ ´#µ8½+¾	¯ ³�¬�µ¶µz¿=ÀÈ�¬�´;­/Ö ¬�½+¾V±}­	³ Ö ¬�½�¾	´$¿#½2½+¾	¯6Ç�²)¯�È�¯}­	®3¯r´#µ�½�¾�¯K®�´;¿�­#½�¯}²�À
Á ²)±3³�¬Â¯}­#½8®3´;²D²)¯�®}½Â¬Â´;­2É ÞuµM½�¾	¯}²)¯X¬zÈF­	´Ò½�²)±�­	ÈuÇ=´;²D½/¬�­
½�¾	¯ ®�´$¿#­#½�¯}²�À Á ²)±�³�¬Â¯}­#½/³�¬�²�¯3®}½z¬Â´$­�Æ-½�¾	¯r% ø ' Ö ¬ Ë+Ë Å=¯

¾	´;Ã8´ Á ¯}­	¯3´;¿=Èe¬�­ Ë ¯�ÈwÈdÇ=¯}²�¬Â´#³Î´#µV½Â¬�Ã/¯¥½�¾	±}­ Ör¾	¯}­½�¾	¯H®3´;¿#­#½z¯�²�À Á ²)±3³�¬Â¯}­#½�®3´;­#½+²)¬4Å�¿#½z¬�´;­d¬zÈ�Ç�²)¯�È�¯}­#½�¬�­d½�¾	¯Ç�²)´#®3¯$È�È�É 	 ¬ Á ¿#²)¯Mºh³�¬zÈuÇ Ë ± Í Èr½�¾	¯8®�´$­	®3¯�­�½�²)±�½Â¬Â´;­MÇ�²)´�ÀµD¬ Ë ¯S±}½H½�Ö-´ ½Â¬�Ã/¯$ÈwÆ!¿=È�¬�­ Á ½�¾	¯ Ý ¿�¬ ÓuÇ=¯}²�ÈwÀ , ´ Ë ½¶È Ë ± Á 7�È±}Ç�Ç�²)´#±3®�¾ çsÕ�È}ÉÄ·�è#»d±}­	³ ·UT;»�Æ ÖK¬�½�¾ � � Á ¬�¼	¯}­ Å ÍçsÕ=É2·ÂÊHÉ è#»�±�­�³8½�¾�¯!®3´;¿#­#½�¯}²�À Á ²)±3³�¬Â¯}­#½�½�¯}²DÃYÇ�²)´$Ç=´�È�¯3³
¾	¯}²�¯
Ê çsÕ�È}ÉV·�è#»S±}­	³ ·[.#»�ÆFÖ ¬�½�¾ � � Á ¬�¼	¯}­YÅ ÍçsÕ=É�·ÂÊHÉ T�»�ÉQÊ È�Ã/± Ë+Ë ³�¬Âµ¶µD¯}²)¯}­	®3¯V¬zÈ8È�¯�¯}­Ùµ�²)´;Ã 	 ¬ Á À¿#²)¯!º	É

� á8à �-ä�å6© ��á/à
Ð�¾	¯8Ã/¯}½�¾	´#³�´ Ë ´ Á�Í Ç�²)´$Ç=´�È�¯�³eµD´;²�¯�È�½Â¬�Ã/±�½Â¬�­ Á ½�¾	¯®�´$¿#­#½�¯}²�À Á ²)±�³�¬Â¯}­#½d½�¯}²DÃ Ö-±�ÈS¯�µ¶µD¯3®}½z¬�¼�¯Î½�´ Ç#²�´�®�¿�³#¯

­�¬Â®3¯�²)¯�®3´;­	È�½�²D¿	®}½z¬Â´$­=È�´#µk½�¾�¬zÈ�µ�¿�­	®}½z¬Â´;­�É�;r´#´#³^²)¯�È�¿ Ë ½¶È
Ö-¯�²)¯!´�Å�½�±
¬�­	¯3³M¯�¼�¯�­QµD´;²'±�¾�¬ Á ¾ Ë ¯�¼�¯ Ë ´#µ(­	´�¬ÂÈ�¯�Ö ¬�½+¾È�¯3®�´$­	³8´;²)³#¯}²(Ðk¬�Ø#¾	´;­	´;¼H²)¯ Á ¿ Ë ±}²�¬+Ñ$±�½Â¬Â´;­8±�­�³8È�¯3®�´$­	³�À´;²)³#¯}²MÃ/±
×#¬�Ã!¿�ÃO¯�­�½�²)´$Ç Í Ç#²)¬�­	®
¬�Ç Ë ¯$Æ È�¾	´;ÖK¬�­ Á ½�¾	±}½½�¾	¯^¬�­#¼	¯}²�È�¯-Ã8´�³#¯ Ë ¬ÂÈ�²)´$Å�¿=Èu½�²�¯ Ë ±}½z¯�³H½�´8½�¾	¯K­	´�¬zÈ�¯!¬�­
¯
×;Ç=¯}²)¬�Ã8¯}­#½�± Ë ³#±}½z±�ÉsÐ�¾�¯-³�¯�½z¯�²DÃH¬�­	±}½z¬�´;­M´#µs½�¾	¯'²)¯ Á ¿=ÀË ±}²)¬�Ñ$±�½Â¬Â´;­KÇ	±�²)±}Ã8¯}½�¯}²�Å Í�' À¶®}¿#²D¼	¯;Æ$µu´ Ë�Ë ´;Ö ¬�­ Á ½�¾	¯�Ç#²�´#À®�¯3³;¿�²�¯�Ç�²)¯�È�¯}­#½z¯�³�Å Í , ±}­=È�¯�­N��¸Ë�:#�Æ
Ç=¯}²uÃH¬�½+½�¯3³'½�´-µ¶¬�­	³´;¿#½r±}­Ù±}Ç�Ç�²)´$Ç�²�¬Â±}½�¯3³d¼	± Ë ¿	¯hµD´;²'Å=´;½�¾�²�¯ Á ¿ Ë ±}²)¬�Ñ$±�½Â¬Â´;­´$Ç=¯}²)±�½z´;²�È�É
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z5y;«��/�,�J�>w�y+¤>�ÈÊ)ËÀÌ&Í1�;�
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|&�/�+�Öx×�����+|5�WØ¦ËÀÌ5Í"�/�ÙyÚ�3y+��|Jy;z&w�y»���9|��>wG·³y���|��
xu��y��/�Û�>�+z�|5�Ü�{�~Ý��{�����É}"w�¨�y;����x×����������|��uy{|¶y{z�w�y
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|&�/�+�)�é�
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���ë|��>wb�>�{z�|��uw�z&�ë·9y;��|��êy;z&w�yT�;�"�+y;x�y{�çÃ#��w�w
µ���¨�«>z�wì��Ã#y�Å�Å � Î wÛy;z�wë¨�����wC� Î y3|�w�zí¤u�����5�uy{z�¨�w
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ABSTRACT
Evolutionary identification of multiple 

material defects (voids and cracks) in mechanical 
systems under dynamical loads is presented. The 
identification belongs to inverse problems and is 
treated here as an output (measurement) error 
minimization, which is solved using numerical 
optimization methods. The output error is defined 
in the form of a functional of boundary 
displacements. An evolutionary hybrid algorithm 
with the gradient mutation is employed to 
identification of internal defects. Numerical tests 
of identification internal defects for 2-D and 3-D 
problems are presented.

INTRODUCTION
Most of the catastrophic failure of mechanical 

structures were caused by appearance of material 
defects. There are several non-destructive 
methods, explored in condition monitoring to 
identification of such defects but only a few of 
them are able to find internal defects, which in 
some cases are very hardly detectable.

The goal of the proposed work is to develop 
and examine a solution technique for non-
destructive crack and void identification. This 
technique is based on minimization approach 
performed by the evolutionary algorithm and 
using the boundary element method. Evolutionary 
algorithms were used in identification problems in 
[2], [3], [4], [7] and [8]. The paper deals with the 
identification of multiple internal defects in 
mechanical systems being under dynamical loads. 
In order to solve the defect identification problem 
the evolutionary hybrid approach is proposed [5]. 

This approach is based on a coupling of the 
evolutionary algorithm and the gradient 
algorithm. A special gradient mutation is 
employed, in which shape sensitivity information 
is used. 

FORMULATION OF THE PROBLEMS
Consider a bounded body B with an external 

boundary S, containing an internal defect in the 
form of a void V of the boundary Γ (Fig. 1a) or a 
crack with the crack surface Γ (Fig. 1b). Let Ω
denote the actual body (i.e. containing the defect): 
Ω = B\V or Ω = B\Γ and ∂Ω = S ∪ Γ. The 
displacement u, strain εεεε and stress σσσσ are related 
by well-known field equations of linear 
elastodynamics in the time domain:

div 0 ρ− ��u =σσσσ

  :  σ = C εεεε                        (1)
( )1

2
T∇ + ∇u uε =ε =ε =ε =

where ρ - a material density, C – a fourth-order 
elasticity tensor. Eqs (1) are completed with 
boundary and initial conditions. The given 
traction p is imposed on a part of the external 
boundary S, while on the rest of S the 
displacement u  is known. The boundary Γ is 
traction-free and the initial rest is assumed. The 
traction vector = np σσσσ  is defined in terms of the 
outward unit normal n to boundary S. In the crack 
case the displacement u is allowed to a jump 
across Γ; � � + −= − ≠ 0u u u .
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If the body undergoes free vibration the 
governing equation is described as follows:

2div 0ω ρ+ =uσσσσ                  (2)

where ω denotes a circular eigenfrequency of 
the body.

Fig. 1. A body with an internal defect:
a) void, b) crack

Consider the problem of finding the shape and 
position of an internal defect using 
elastodynamics experimental (or, for instance 
presented in this paper, simulated) data. The lack 
of information about V and Γ is compensated by 
some knowledge about u on S or ω  (redundant 
boundary data). The usual approach for finding Γ
is the minimization of some distance J between u
or ω computed for an arbitrary internal defect and 
û  or ω̂  measured or simulated (computed for the 
actual defects), e.g.:

1 1 2 2J w J w J= + (3)

where w1 and w2 are weight coefficients, J1 and J2
are defined as follows:

( )2
1

1

1 ˆ
2

N

i i
i

J ω ω
=

= −∑                 (4)

( )

( ) ( )

2
0

2

0

1 ˆ
2

m

T

S

T

S

J t dSdt

t t dSdt

ϕ= =  

= −  

∫ ∫

∫ ∫

u x,

u x, u x,

        (5)

where iω  indicates i-th circular eigenfrequency 
of the body, ( ), tu x  is a displacement vector of 
the point x on the boundary S at time t.

The minimization of J with respect to Γ needs 
in turn, for efficiency, the evaluation of the value 
of J and its gradient with respect to perturbations 
of Γ.

EVOLUTIONARY IDENTIFICATION 
METHODS
A hybrid evolutionary algorithm is applied to the 
identification of an internal defect with 
a boundary Γ. The hybrid algorithm, which 
connects evolutionary and gradient algorithms 
together [5], is considerably more efficient than 
the classical genetic algorithm and its application 
makes the results more accurate. The objective 
function (3) is called a fitness function. The 
hybrid algorithm minimizes the fitness function 
with respect to defect shape parameters. A vector 
chromosome characterizes the solution: 

{ }1 2, i nz z z z= … …z             (6)

where zi are genes which parameterize the defect.
The genes are real numbers on which constraints 
are imposed in the form:

iL i iRz z z≤ ≤    ; i=1,2,...n           (7)

The evolutionary algorithm starts with an 
initial generation. This generation consists of 
N chromosomes generated in a random way. 
Every gene is taken from the feasible domain. 
Evolutionary operators: mutation and crossover 
modify the initial generation. The next stage is an 
evaluation of the fitness function for every 
chromosome and the selection is employed. The 
selection is performed in the form of the ranking 
selection or the tournament selection [6]. The next 
generation is created and operators work for this 
generation and the process is repeated. The 
algorithm is stopped if the chromosome, for 
which the value of the fitness function is zero, has 
been found. An effectiveness of the evolutionary 
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algorithm depends on its operators, which can be 
defined in a different way.

The crossover operator swaps some 
chromosome of the selected parents in order to 
create the offspring. Simple, arithmetical and 
heuristic crossover operators are used.

The simple crossover needs two parents and 
produces two descendants. The simple crossover 
may produce the offspring outside the design 
space. To avoid this, a parameter α∈[0,1] is 
applied. For a randomly generated crossing 
parameter i it works as follows (chromosomes 
z1, z2 are parents):

{ }
{ }

1 1 2

2 1 2

p1:  , , , , ,      

p2 :  , , , , ,
i n

i n

z z z z

e e e e

=

=

z

z

… …

… …
       (8)

d1:
{ }'

1 1 1 1, (1 ) , , (1 )i i i n nz , ,z e z e zα α α α+ += + + − + −z … …     (9)

d2:
{ }'

2 1 1 1, (1 ) , , (1 )i i i n ne , ,e z e z eα α α α+ += + + − + −z … … (10)

The arithmetical crossover gives two 
descendants, which are a linear combination of 
two parents

'
1 1 2(1 )α α= + −z z z ;   '

2 2 1(1 )α α= + −z z z   (11)

The heuristic crossover produces a single 
offspring: 

'
1 2 1 2( )r= − +z z z z  (12)

where r is a random value from the range [0,1] 
and J(z2) ≤ J(z1).

Four kinds of mutation operators: uniform, 
boundary, non-uniform and gradient mutation, are 
used: 

before mutation: { }1 1 2 , ,i nz ,z ,z z=z … …
after mutation: { }'

1 1 2 , ,i nz ,z ,z z= 'z … …             (13)  

The uniform mutation: children are allowed to 
move freely within the feasible domain and the 
gene '

iz  takes any arbitrary value from the range 
[ziL, ziR]. 

The boundary mutation: the chromosome can 
take only boundary values of the design 
space, '

i iLz z=  or '
i iRz z= . 

The non-uniform mutation: This operator depends 
on generation number t and is employed in order 
to tune of the system

( )
( )

'
,        if a random digit is 0

,        if a random digit is 1
i iR i

i
i i iL

z t z z

z t z z

+ ∆ −= 
− ∆ −

z   (14)

where the function ∆ takes value from the range 
[0, e].
A special type of mutation, so called the gradient 
mutation, is applied. This mutation is 
characterized by a full genetic interference, which 
means a modification of genes making use of 
information about the fitness function gradient. 
This single-argument operator changes any 
chromosome on the ground of the fitness function 
gradient:

' = + ∆z z z  (15)

where ∆z = βh, while β is a coefficient 
determining a step increment in a search direction 
h. The search direction h = h(∇∇∇∇zJ) depends on the 
fitness function gradient ∇∇∇∇zJ. In the paper the 
steepest descent method is proposed for 
evaluation the direction h = -∇∇∇∇z J.

The sensitivity of J with respect to shape 
parameters of the defect is calculated using the 
adjoint variable method and the boundary element 
method. For the case of the void the first 
derivative can be obtained according the 
following formulas:
- for free vibration:

( ) ( ) ( )

1

1

1ˆ
2

d

N
q

i i k k m
i i

dJ
dz

n dSω ω θ2

= Γ

=

 − − ⋅ − ω ρ ⋅ ω∑ ∫ u u u uσ εσ εσ εσ ε

 (16)

- for transient vibration:

2

0

[ ( ) : ( ) ρ . ]  dSdt.
TdJ

dz Γ

= ∇ −∫ ∫ θ n� �σ u v u v (17)

where: θθθθ is a shape transformation velocity 
defined at points on the boundary Γ for defect 
shape parameters z, v is a solution of the adjoint 
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problem, described by Eq. (1) with the following 
boundary and terminal conditions:

.

( )    on S;  ( )     on ;   

                         in , at t T

ϕ∂
= − = Γ

∂

= = Ω =

v v 0
u

v v 0

p p       (18)

Eq. (17) can not be used for the defect in 
a form of a crack because of the singularities, 
which arise at crack tips. Assume that the 
dynamic stress intensity factors (DSIF) at tip xi

associated with the solutions of the primary and 
adjoint problems, respectively, are known: 

( ; ),  ( ; ),  ( ; ),  ( ; )u i u i i i
I II I IIK t K t K t K tν νx x x x . Now 

the sensitivity expression for the crack can be 
derived using DSIF [1], [7]:

(19)

( ) ( )
( ) ( )

2

0

2

1 0

d [[ ( ) : ( ) . ]] . d d
d

; ( ; ) ; ( ; )1 d
; ( ; ) ; ( ; )

T

u i i u i iT
I I II II

u i i u i i
i I II II I n

J
z

K t K t K t K t
t

K t K t K t K t=

= ∇ −

 +−  
 − + 

∫ ∫

∑ ∫

θ n

x x x x

x x x x

� �

i

i

σ u v ρu v   S t-

( ) ( )  

( ) ( )  

ν νν νν νν ν
ττττ

ν νν νν νν ν

ΓΓΓΓ

where i i, nτ are the tangent and normal 
components of the crack tip transformation 
velocity. 

DEFECT PARAMETRIZATION

The material defect is parametrized as an elliptical 
flaw (Fig. 2). In this case the chromosome, for the 
i-th flaw, consists of  five genes

zi={z1, z2, z3, z4, z5} (20)

where z1=x and z2=y are co-ordinates of the 
center of the flaw, z3=r1 and z4=r2 are radii of the 
flaw and z5=α is an angle.

Fig.2 The elliptical flaw

From the elliptical flaw one can obtain special 
material defects as:
• circular void if r1=r2=r and α=0,
• crack if r2£rmin, where rmin is a prescribed 

admisible small value.
In the case if r1£rmin  and r2£rmin the defect does 
not exist.
For the case when the body contains n defects the 
chromosome takes the form

z={z1, z2, ..zi. ,zn} (21)

where zi is the vector which contains genes for the 
i-th elliptical flaw.

NUMERICAL EXAMPLES

Numerical tests of identification have been 
carried out for 2-D and 3-D structures with 
internal defects. An identification procedure of 
the defect is based on the evolutionary 
programming and employs information on the 
gradient of the objective functional.

Example 1

A 2-D structure, showed in the Fig. 3 contains 
two internal defects. The actual parameters of an 
elliptic void are: z2=z(2)={50, 25, 5, 2.5, 2.5}, 
where the first two parameters are co-ordinates of 
the ellipse center, next - two radii of the ellipse 
and the last one – the angle between the x1 axis 
and first radius. The actual crack parameters are: 
z1=z(1)={20, 30, 5, 0, 0.25} and are defined as for 
the ellipse. The identification task is to find a 
number of defects and their shape having 
displacements ( )ˆ ,tu x  in 33 sensor points, 
showed in the Fig. 3. 

Fig.3 The 2D structure with an internal crack and 
void
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The structure is loaded by p(t)=p0sinωt (p0=40 
kN/m, ω=15708 rad/s) in time t∈[0, 600µs] and 
has the following material properties: the Young 
modulus E = 0.2E12 Pa, the Poisson’s ratio ν = 
0.3 and the density ρ = 7800 kg/m3. The multiple 
defect identification has been solved with the 
assumption, that the body contains: 
2 defects, 1 defect or no defect. The proposed 
hybrid algorithm was used to solve this example. 
The chromosome consists of 10 genes, where first 
5 parameterize first ellipse, and last 5 the second 
ellipse. In the case if one of genes, which is an 
ellipse radius is less than rmin = 2mm, the ellipse 
becomes a crack, when the both radii are less than 
rmin the ellipse disappears. The population 
contains 2000 chromosomes. The tournament 
method of selection was used. The solution was 
obtained for the case with no noise in a 100 
generations and for noisy data in 120 generation. 
A value of the fitness function for the best 
chromosome found in each generation is showed 
in the Fig. 5, while Fig. 4 presents the best 
solution of the first and the last generation.

a) b)

c)

Fig. 4 Identification results: a) 1st generation,  b) 
100th generation, c) 120th generation  (noisy data)

fitness function

0
10
20
30
40
50
60
70
80
90

0 20 40 60 80 100

generation

Fig. 5 The fitness function for the best 
chromosome of each generation

Example 2

The 2-D structure, showed in the Fig. 3 
contains now two circular voids and one elliptical. 
Their actual shape parameters are the following: 
z1={70, 20, 3, 3, 0}; z2={20, 70, 2, 2, 0}; 
z3={20, 20, 6, 3, 1}. The identification task is to 
find a number of defects, their size and 
coordinates having: (i) eigenvalues ωi, i=1,2,3; 
(ii) displacements u(x,t) in 21 boundary sensor 
points. The chromosome had 15 genes, because 
algorithm could find max 3 voids. If its value of 
radius is less than the critical value rmin then the 
void vanishes. The population consists of 3000 
chromosomes. A value of the fitness function for 
the best chromosome of each generation is 
showed in the Fig. 6, but the best solutions in four 
various generations are shown in Fig. 7.

0

5

10

15

20

25

30

0 20 40 60 80 100

generation

fitness 
function

Fig. 6 The fitness function for the best 
chromosome of each generation

a) b)

c) d)
 Fig. 7 Identification results for generation 

number: a) 1st, b) 10th , c) 50th  and d) 100th .
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Example 3

A 3-D structure – the cube with a 20 [cm] 
side, showed in the Fig. 8, has one wall 
supported, while the opposite one is subjected to 
the harmonic load p=posinwt. The load is 
uniformly distributed on the wall and has 
different direction in each quarter 
(p0=15000[N/m2], w=31[rad/s]). The mass density 
of the structure is r=100[kg/m3], the shear 
modulus G=1*106[Pa] and the Poisson’s ratio 
n =0.25. The structure contains two internal 
defects in a form of spherical voids, which 
parameters – coordinates of centers and radii – are 
given in the Tab. 1 as actual parameters. The 
hybrid algorithm, using values of amplitudes in 
64 sensor points, placed uniformly on four walls, 
carried out the identification of defects. The 
population contains 200 chromosomes. The 
result, obtained in the 200 generations, is 
presented in the Fig. 9.

Fig. 8 The 3-D structure: 
loads and location of the sensor points

Table 1. Parameters of the defects
defect parameter actual final

x1(1) 5.00 4.99
x2(1) 15.00 14.98
x3 (1) 15.00 14.98
r(1) 2.00 2.00
x1(2) 15.00 15.83
x2(2) 5.00 4.25
x3 (2) 15.00 14.22
r(2) 2.00 2.12

Fig. 9 Identification results 
of two spherical defects

CONCLUSIONS
In the present work the problem of 

evolutionary identification of the internal defects 
was presented. The evolutionary hybrid algorithm 
based on the gradient mutation is employed in 
identification of voids and cracks. The gradient 
mutation operators were evaluated using 
sensitivity analysis of the fitness function. The 
presented results of defect identification are very 
accurate for displacement data simulated 
numerically for actual positions and shapes of 
defects. Even in the case of noisy data used for 
evolutionary calculation, the results remain 
reasonably accurate. This algorithm is 
considerably more efficient than the simple 
evolutionary algorithm and its application makes 
the results more accurate.
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ABSTRACT
In this paper we are interested in the recovery

of cracks from boundary measurements. We will
be making use of a function that we will call
point-source reciprocity gap function, which
comes as a particular case of the reciprocity gap
functional, applied to point sources. This function
can be calculated in each point of the outer
domain, and we will show that the analytic
continuation of this function to the inner domain
may provide a tool to the identification of the
cracks inside, especially using functions that we
will call cracklets.

INTRODUCTION
Identifying the location and shape of cracks

inside a material is an inverse problem with major
applications in industry, related to other non
destructive inverse problems. We will state the
problem as an inverse heat conduction problem in
the steady-state case (electric conduction inverse
problems, for instance, would obviously be
treated in the same way). The main idea is to
consider the reciprocity gap functional,
introduced in [1], in the special case of point-
sources. This allows the introduction of a function
instead of a functional, the point-source
reciprocity gap function, which can be used to
retrieve the crack, and some numerical methods
are suggested.

The inverse problem here addressed has been
treated in [2], and more recently in [3], where
conditions to the uniqueness of identification, for
insulating cracks, is proven. In the case of
conductive cracks, also in [4] the result was
proved for any connected crack, imposing
positive boundary Dirichlet data and measuring a
single flux. This was proved using a maximum
principle argument.

It is well known that not all fluxes are
identifying, as has been stated in [2]. A sufficient
condition for a flux to be identifying is that the
singular part of the solution does not vanish (cf.
[5]). In that case, it has been proved in [6] that the
subset of the crack where the jump vanishes can
be neglected.

An identifying flux is the starting point of any
recovery task. It has been proved that a flux
producing a singularity is a necessary condition
for stability (e.g.. [5], [7]). In fact, fluxes not
producing singularities are those orthogonal to a
dual singular function, which are thus highly
unlikely to meet.

We will slightly address the problem of
identification and suggest numerical methods to
retrieve the shape and location of a single crack.
Numerical experiments are presented and show
that the method using cracklets allows an a priori
location of  the crack and its main orientation,
even if a significant amount of noise is added.

CRACK RECOVERY PROBLEM
Let Ω  be an open bounded set in Rd  (d = 2 or

3), with boundary Γ , and let σ be a crack inside
the body. By crack we will understand any
piecewise C1 curve (orientable surface, in R3). We
are interested in recovering this unknown crack
by means of boundary measurements, that is by
setting some flux φ on the boundary and
measuring the resulting temperature f. It has been
noticed in [1] that the presence of cracks
generates a so called reciprocity gap, a suitable
handling of which may give rise to fast recovery
algorithms. However this has mostly been worked
out so far in the case of 3D planar or 2D line-
segment cracks. In such cases, the reciprocity gap
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provides us with explicit formulae that localize
the host plane or line, and this constitutes the
starting point for the numerical part of the
algorithm (e.g. [5], [6]). In the present paper, we
are investigating an alternative use of it,
extending its generality to other crack shapes.

Let us first recall some definitions. The steady
state heat problem we are dealing with is the
following:

 ∆ uσ = 0  in Ω \σ

 ∂n uσ = φ  on Γ  ((PP)) {{
 ∂n uσ = 0  on σ

where φ is a known flux prescribed on the
boundary Γ , and we hold some measurements on
the boundary, that is, we assume that:

uσ  = f    on   Γ , (1)

is known. Our goal is to retrieve the crack σ from
the pair (φ,  f ).

Ω

σ

φ = ∂nu imposed on Γ
Γ

 f = u measured on Γ

Figure 1. The unknown crack σ inside Ω.

Definition 1. Let φ be a flux and f1, f2 the two
measurements produced by any two cracks,
σ1 and σ2 (respectively). We say that the flux φ  is
an identifying flux, if  f1 = f2  ⇔ σ 1 = σ 2. 

This definition means that no other crack
(picked up in a suitable class of admissible cracks
to be precised later on), than the actual one, may
produce the same measurements on the boundary.
Since we assume that a crack σ is orientable, we
can consider it as having two sides. On each one
of these sides a trace of u is defined, and they will
be called u− and u+. Using this notation, the jump
of the solution on the crack σ  is [uσ ] = u−− u+.

We can easily deduce the following result on
the jump.

Lemma 1. Assume that φ  is an identifying flux,
then supp[uσ ] = σ .
Proof. Suppose that [uσ] vanishes in some open
subset ω of σ , and let τ be the crack σ deprived
of ω . Since uσ  is continuous across ω, as well as
its normal derivative, it is harmonic in Ω\τ and
hence solves:

 ∆ uσ = 0  in Ω \τ

 ∂n uσ = φ  on Γ{{
 ∂n uσ = 0  on τ

as well as uσ   =  f  on Γ . The flux φ is therefore
not an identifying one since the crack τ is
producing the same measurements on the
boundary as the ones of σ. ♦

Thanks to the above lemma, the set
σ º = σ \ ∂σ

(i.e. the crack without its boundary) can be
characterized by σ º = {x ∈ σ  : | [uσ ](x) | > 0}.

Now, given any function v, harmonic in Ω, the
reciprocity gap states that the scalar

∫Γ (φ v − f ∂nv) ds
is not vanishing as it would be if the domain was
safe of cracks, and moreover its value can be
related by a simple integration by parts to an
integral on the crack itself, involving the jump of
the solution uσ :

∫Γ (φ  v − f ∂nv) ds = ∫σ [uσ ]∂nv ds,
(2)

∀v ∈ {w ∈ H1(Ω): ∆w = 0 in Ω }.

POINT-SOURCE
RECIPROCITY GAP FUNCTION

Reciprocity gap algorithms are based on the
choice of an appropriate set of harmonic functions
v in order to derive relevant information on the
crack from formula (2). We now remark that
given any point x ∈ Ω C, which is the open outer
domain (without the boundary), the point source
defined by the Green function G is harmonic in
the inner domain Ω, and formula (2) applies.
Note that, in the 2D case,

G(x, y) = −1/2π log|x− y|, (3)
and in the 3D-case,

G(x, y) = 1/4π |x− y| . (4)
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Definition 2. We introduce the point-source
reciprocity gap as a function defined by

gσ (x) = ∫Γ  (φ (y)G(x,y) − f(y)∂nyG(x, y))dsy     (5)

The above function is harmonic in Ω ∪Ω C, since
it is the sum of a single layer and a double layer
potential, with densities on Γ. It should be pointed
out that this part does not depend on the crack,
but only on the given and measured data on the
external boundary Γ. It is the restriction of the
reciprocity gap functional, as introduced in [1], by
considering only the Green functions placed at
the points x ∈ Ω C. Note that in this case the
reciprocity gap is a function and not a functional.
It is clear that this function gσ verifies

∆gσ  = 0  in Rd \ Γ,

with the jumps [gσ ] = f,  [∂ngσ ] = φ on Γ, and
appropriate asymptotic conditions (depending on
the dimension d) when r = |x|→ ∞ .

Now, let vσ  be the analytic function defined
(for any x ∈ Rd \σ ) by

vσ (x) = ∫σ  [uσ ](y)∂nyG(x, y) dsy . (6)

This is the double layer representation for an
exterior Laplace problem, generated by the crack
σ  with the density of  [uσ ].

Lemma 2. We have gσ = vσ in Ω C. Thus, the
analytic extension of gσ  from Ω C to Ω \σ  must
be vσ .
Proof. If x ∈ Ω C then G(x, y) is harmonic for all
y ∈ Ω , and from (5) it follows gσ(x) =vσ(x). ♦

Theorem 1. In Rd we have gσ + uσ χ Ω  = vσ .
Proof. From Lemma 2 the equality follows in Ω C.
Note also that

gσ (x) = ∫Γ (φ (y) G(x, y) − f(y) ∂nyG(x, y)) dsy

= ∫Ω−σ (∆uσ(y) G(x, y) − uσ(y) ∆yG(x, y)) dy +

+ ∫σ [uσ](y)∂nyG(x, y) dsy

= ∫Ω−σ uσ(y)δ (x, y)dy + ∫σ [uσ](y)∂nyG(x, y) dsy

Thus, if x ∈ Ω \σ , we have

gσ (x) = − uσ (x) + vσ (x).

Therefore, in Γ, gσ
+ = vσ  and gσ

− = − uσ +vσ ,
meaning that [gσ ]Γ = gσ

+− gσ
− = uσ = f, as

mentioned before. Also,

[∂ngσ] Γ  = (∂ngσ)+ − (∂ngσ )− = ∂ n uσ = φ .

Finally, in σ, we have [gσ]σ = [vσ]σ − [uσ]σ  = 0. ♦

We used the notion of analytic singular support
(e.g. [8]), singAsupp(gσ ), as the complement of
the largest open set in Rd where gσ is an analytic
function. It is clear that

singAsupp(vσ ) ⊆ σ    and  that  [vσ ] = [ uσ ] ,

therefore sing Asupp(vσ ) =  supp [uσ ].

From Lemma 2, gσ
*, the unique analytic extension

of gσ from  Ω C  to σ C is vσ , and we conclude the
following result.

Corollary 1.  If we impose an identifying flux φ
then the crack σ  is perfectly determined by

σ = sing A supp(gσ
* )      (7)

Proof.  Immediate, by Lemma 1, because
singAsupp(gσ

* ) = singAsupp(vσ )
= supp [uσ ] = σ . ♦

Remarks:
(i) Note that even if the flux is not identifying we
can conclude that

sing Asupp(gσ
* ) = ς ⊆ σ .

This means that on σ \ς we have null jump, [uσ] =
0, and therefore the function is analytic there. A
way to overcome this problem is to impose that
the jumps belong to the space

C(σ ) = {q ∈ H00
1/2(σ ): q(x) ≠ 0 a.e. on σ }     (8)

Notice that is not a major restriction. Fluxes not
producing singularities are those orthogonal to a
dual singular function (cf. [9]), which are thus
highly unlikely to meet. In addition, if missing, a
component in the dual singular function will
anyway arise from computational errors.
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Therefore, if the chosen flux φ  only generates
jumps [uσ] ∈C(σ ), then the crack σ  is perfectly
determined by σ  = singAsupp(gσ

*).

(ii) From Theorem 1, we also conclude that the
solution u is the sum of a function −gσ , harmonic
in Ω , with a function vσ . Thus, when doing the
extension of gσ from Ω C,  the function obtained
gσ

* coincides with uσ only if uσ=vσ . In the
following, when we consider solutions uσ of the
type vσ , then we are really recovering uσ , if the
analytic extension of gσ  is made. ♦

Example 1.
To show the effect of this procedure, we consider
Ω  = ]−1, 1[2 and

σ  = {1/5 (−4+7 t, 4−7 t ): t ∈ [ 0, 1]}

Given the pairs (φ1, f1) and (φ2, f2) generated by
two different solutions,

u1(x) =∫σ ∂ nG(x, y)dsy ,  
and  

u2(x) =  u1(x) + (x1 
2−x2 

2)/20

In Figure 2 we plotted the solution u2 in [−3,3]2. It
becomes clear that the information that we will
retrieve in the pair (φ2, f2) will be added to the
undesirable effect of the harmonic function

h(x1 , x2 ) = (x1 
2 − x2

2)/20 .

This effect could be much worse, if we added a
more significant harmonic function (in fact, the
division by 20 was done just to keep the jump
visible in the plot, on Figure 2). However, this
effect will disappear if we calculate gσ . The
reciprocity gap function will act like a filter,
keeping only the relevant information, on the
jump (that identifies the crack), and suppressing
the harmonic part.

In fact one can see this as a consequence of
Theorem 1, since we have a decomposition of the
solution in terms of

u =  vσ + h
where vσ is defined as in (6) and h is an harmonic
function in Ω . We note that by Theorem 1, h is
given by −gσ.. Thus, in numerical terms, the
computation of the reciprocity gap function gσ
appears to be important not only in the outer, but

also in the inner domain, in order to suppress the
harmonic part.
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Figure 2. Plot of u2 , extended outside Ω.

In Figure 3 we plotted g2 associated to u2, and in
Figure 4 we plotted g1 associated to u1. The only
difference between the plots of g1 and g2 lies
inside Ω , as predicted in Theorem 1. Since u1

will be of the form vσ , as in (6) with [uσ] = 1, we
will have a null g1 in Ω . Again, we remark that
this reduction to vσ situations will help the
reconstruction, because a less clear jump on u2

will became more evident on u1.
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Figure 3. Plot of g2, the reciprocity
gap function associated to u2.
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Figure 4. Plot of g1, the reciprocity
gap function associated to u1.
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FLAT CRACKS
In the case σ is a plane crack (or a line crack

in 2D), i.e. σ ⊂ Π , where Π is the plane of the
crack, we can establish a criteria which is similar
to a plane crack identification result derived in
[10], in the context of wave scattering.

Theorem 2. 
σ  is a plane crack in Π  ⇔  gσ (φ) (x) = 0,

∀ x ∈ Π \ σ , ∀ φ .

Proof.
(⇒) For instance, in the 2D case, suppose ν is the
normal to Π  ⊃ σ , then

gσ (x) =  ∫σ  [uσ](y) ν⋅ (x− y) / (2π |x− y|2) dsy

Therefore, if x ∈ Π \ σ , for all y ∈ σ ⊂ Π, we get
ν⋅⋅(x− y) = 0.

(⇐) If σ  is not a plane crack, we can always take
a flux φ  that produces a jump [uσ ] not orthogonal
to ∂nyG(x , ⋅⋅ ) in L2(σ ). ♦

Remark: Likewise, if σ is an almost plane crack,
with |ν⋅⋅(x− y)/|x− y|| ≤ ε , for all y ∈σ , x ∈ Π \ Ω,
we were able to derive the following estimate

∃ Κσ  > 0 :   |gσ (x)| ≤ Κσ  ε .

Thus, one expects |gσ(x)| to be small when
x ∈ Π \σ.  ♦

Example 2.
Consider a domain Ω = ]−1, 1[2 and a non flat
crack defined by
σ = { 1/5 (−4+6 t +3 cos (4t), 4−6 t ): t ∈ [ 0, 1]}.

We take measurements on Γ = ∂Ω given by the
traces and normal traces of

u(x) = ∫σ  ∂ny G(x, y) dsy.

In Figure 5 we plotted the solution u and its
extension to [−3, 3]2. In that plot one clearly sees
the jump of the solution field in the crack. Since σ
is an almost flat crack, and by the previous
remark, one expects |gσ | to be almost null along
some line Π  that approaches the crack σ. This
fact can be seen in Figure 6, where the |gσ | is
plotted in [−3, 3]2. Inside the domain Ω = ]−1, 1[2

the field g is null, as predicted in Theorem 1.
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Figure 5. Plot of the solution u of Example 2 and
the analytic extension outside Ω .

In Figure 7 we show the same results obtained in
Figure 6, but now using a density plot, and also
tracing a line that allows to put into evidence that
the minimal values of |g| are along a curve that
crosses the (non planar) crack.
The inner white square corresponds to Ω and the
crack is plotted inside this square. Although we
will be taking squares for the domain Ω one
should keep in mind that this not a restriction to
any of the methods that we are presenting. They
hold for any regular shape of Ω.
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Figure 6.  3D-plot of |gσ|. Note that g is null inside
Ω  and almost null along a predicted line Π .
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Figure 7. Density plot of |gσ|. The predicted Π  is
plotted to point out that it crosses the crack σ .
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LOW SENSIBILITY TO NOISY DATA
The data given by the reciprocity gap function gσ
smoothes the possible noise that arises in the
measurement of f or even the noise in the input
field φ . In fact, suppose that the values with noise
are φφ = φ + εφ  and f = f + ε f , then

gσσ (x) = gσ (x) +

    +  ∫Γ (εφ (y)G(x, y) − ε f(y) ∂ny G(x, y)) dsy.

Since we assume the noise to be random, we
consider ∫ Γ

 εφ  and  ∫ Γ εf   to be almost null. Thus,
if dist(x,Γ) is not too small, we can avoid the
singularity of the integral, bounding |G(x, y)| and
|∂nyG(x, y)|. Thus,

| gσσ(x) − gσ (x)| ≤ max |G(x, y)| |∫Γ ε φ  (y) dsy|
+ max | ∂ny G(x, y)| |∫Γ ε f (y) dsy|

may be quite small. In the next example we
present a case in which the result is not too
perturbed even adding up 40% random noise.

Example 3.
Consider the same domain as before, and a planar
crack defined by

σ = {1/5 (−4+7 t, 4−7 t ): t ∈ [ 0, 1]}

like in Example 1. We have added up to 40%
noise in the measurements of f and also in the
input data φ, given by the solution

u(x) = ∫σ
 ∂nyG(x,y)dsy.

Since the solution is of the form vσ we notice that
we are in a favorable situation. Any significant
harmonic perturbation would lead to worst
results, since the noise would be added to the
proportions of the "non filtered data".

-2

0

2

-2

0

2

-0.75

-0.5

-0.25

0

0.25

-2

0

2

Figure 8. Plot of the solution u of Example 3.

In Figure 8 we plotted the solution in [−3, 3]2, and
in Figure 9 we plotted |gσσ|. One can see an almost
null field on the direction of the line crack, which
becomes more clear in the density plot shown in
Figure 10.

We should also note that in Figure 9 the
values of |gσσ | are not too much perturbed by the
high random noise. We only see small
oscillations, and in the inner domain Ω  the |gσσ | is
almost null (as it should be if there was no noise).
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Figure 9. 3D-plot of |gσσ | of Example 3.

In fact, if we were not in the favorable
situation, of having picked up a solution of the
form vσ we would get valuable information also.
In that case, a 40% random noise could generate a
huge perturbation on the data pair (φ,  f ),
compromising the direct use of those values, but
not the use of the reciprocity gap function gσσ  . In
fact, the values of gσσ  in the inner domain Ω would
be a perturbation of the harmonic part, and this
could be used to bring us again to the vσ case, by
subtracting that harmonic contribution. Thus, we
may keep ourselves in these favorable situations.
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Figure 10. Density plot of |gσσ | of Example 3.
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In Figure 10 we plotted not one, but two lines,
corresponding to the small values of |gσσ|, and the
only significant difference appears on the line
more distant to the crack (the extension of that
line would not cross exactly the crack region).
This is a natural effect of noise, because the crack
is more distant to that region (the small values of
the field will be more affected by the noise).

USING CRACKLETS
We now propose a different approach to this

problem that consists in fitting the reciprocity gap
function, in some points on the outer domain Ω C,
to a type of functions that we will call cracklets.

If one uses only piecewise constant densities,
we get vσ approximated by

vh(x) =
  N

∑
i,j=1

qij ∫
σ ij

∂nyG(x, y)dy =

 n

∑
i,j=1

qijξ ij(x),

and those functions ξ ij will be called cracklets.

For instance, in the 2D case, one can explicitly
calculate the functions with an elementary crack
τ = [(0, 0), (1, 0)].

In fact, given the elementary cracklet function

Ξ(x) =
 1

∫
 0

∂y2G(x, y)dy1= arctan( 1−x1

x2
)+arctan(  x1

x2
)

we can define any cracklet ξ[a,b] on the segment
[(a1, a2);(b1, b2)] by a rigid transform.

Minimization algorithm to find one single
crack

Given an unknown crack σ inside a domain Ω,
we take a discrete set of data points given by the
point-source reciprocity gap calculation,

D = {(xi, gσ (xi)): xi  ∈ Ω C }.

If we assume that the crack is almost flat, then it
makes sense to approach this data by nonlinear
least squares using the cracklets ξ[a,b]. The
simplest approach in this context is to use
functions of the form

ξc(x)= arctan (
 c0−c1−c2x1−c3x2

    c4+c5x1+c6x2
)+arctan(c1+c2x1+c3x2

c4+c5x1+c6x2
)

such that c = (c0, ..., c6) minimizes

Qσ (c)  = ∑ i | gσ (xi) − ξ c(xi) | 2,
for an arbitrary number of points xi in Ω C.
The parameters c0, ..., c6 were given by a standard
nonlinear minimization algorithm (we used the
routine NonlinearFit of Mathematica from
Wolfram Research).

Example 4.
We present our results for three different cracks
placed inside Ω = ]−1, 1[2 (note again that there is
no geometrical restriction on Ω, we only took a
square for simplicity).

σ 1 ={(−3/10 +
t
/2 +

3t
/8

 
sin(t), −3/10+

 t
/4): t ∈ [0,1]},

σ 2 = { (−1/2+
 t
/4 sin(4t), −1/2+ 

t
/2): t ∈ [ 0, 1] },

σ 3 = { 1/5(−4+ 6t +3cos(4t), 4−6t): t ∈ [ 0, 1] }.

In Figure 11 we plotted the field ξc that minimizes
Qσ 1(c), using 75 random points plotted in the
region [−3, 3]2\Ω.
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Figure 11. Density plot of the fitting for crack σ1.

The (bold) inner square defines the domain Ω and
the line crack is plotted inside (gray line).
Although the reconstruction of vσ  is very good, it
is not completely accurate (we obtained a bigger
jump instead of a larger crack). The crack is
placed in the jump area (transition between black
and white density, in the picture), and one may
see that the orientation is the correct one.
In Figure 12, we plotted  the same test for the
crack σ2, noticing that this crack can hardly be
considered as an "almost flat" one. Anyway, the
density plots put the jump in a zone that it is
basically the crack zone, and since we are
approximating vσ with a single crack, these can be
considered fairly good results.
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Figure 12. Density plot of the fitting for crack σ2.

Finally, in Figure 13, we plotted  the same test for
the crack σ 3, used in Example 2, which is larger
than the previous one, and it is clearly not flat.
Moreover, we also took a 5% random noise.
Again, we obtained good results, concerning the
identification of the crack zone, and also of its
main orientation. The predicted orientation is
similar to the one that we obtained in Example 2
while taking the minimum of |gσ| and a possible
approximation by Π. However, the reconstruction
is not completely accurate since it predicts a
bigger jump and a smaller crack.

This effect may be overcome in the future.
One possibility is in the choice of a more
adequate set of cracklets for the fitting. One other
possibility is  to impose more than one flux.

In fact, we notice that higher jumps will be
placed in heated zones of the crack. Different
fluxes will produce different zones of heating and
one may combine the information in a
reconstruction procedure.

One may see in these last three figures that the
central zones of the cracks were preferred for the
reconstruction. This may be related to the
vanishing behavior of the jump in the extremities
of the crack.
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Figure 13. Density plot of the fitting for crack σ3.

CONCLUSIONS
i) The point-source reciprocity gap function

allows to filter relevant information, not only
by vanishing noise but because at the same
time it filters the harmonic contribution that it
is not relevant for crack detection.

ii) In the case of almost flat cracks, the line for
which |gσ| is minimal may allow the
identification of the main direction of the
crack.

iii) The use of a single cracklet allows the
identification of the zone where the crack lies
and its main direction. Extensions, using
several cracklets may lead to the detection of
several cracks. Moreover, the reconstruction
was made using a single flux.

iv) These techniques are not limited to the
geometry of the domain, and they can be
extended to the 3D case. Applications to
other partial differential equations are also
possible, using their fundamental solution.
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ABSTRACT
An inverse method is developed in order to estimate
constitutive parameters of a material from compression
tests. The direct model used to simulate mechanical tests
is FORGE3. It solves a transient thermo-mechanical
problem using a finite element method. From velocity,
pression and temperature fields, any output of a
mechanical test can be computed and compared with
experimental data. A Gauss-Newton algorithm is
implemented to solve the least-square problem
associated with the inverse problem. The optimisation
module is coupled with a semi-analytical sensitivity
analysis method. This method is fast and stable when
using a remeshing algorithm. A confidence interval
estimator is proposed. The stability of the optimisation
module and the confidence interval estimation are tested
for numerical test cases. Finally, constitutive parameters
of a steel grade are estimated for two elastic-viscoplastic
constitutive laws.

KEYWORDS   
Parameter estimation, semi–analytical derivatives,
confidence intervals, mechanical tests.

NOMENCLATURE
cD computed data
eD measured data

 E elasticity tensor
 G Gauss-Newton matrix
 h global heat transfer coefficient
 k conductivity
 n outward normal vector
 NbMeas number of measurements
 NbPar number of parameters
  p pressure field
 R discrete mechanical residual
 T temperature

extT external temperature

iT interface temperature

pT sample temperature

  v velocity field
 diev die velocity

nX coordinate vector of the mesh at time nt

λ thermo-mechanical parameter vector

φ cost function

ε& strain rate tensor
vpε& viscoplastic strain rate tensor
eε& elastic strain rate tensor

ε& generalised strain rate
ε generalised strain
σ Cauchy stress tensor

Fσ flow stress

τ shear stress
cρ heat capacity

)(tΩ domain defined by the sample at time t

FΩ∂ free surface of the sample

CΩ∂ contact surface between the sample and the dies

INTRODUCTION
Numerical simulation of metal forming processes
requires thermo-mechanical data such as rheological,
tribological or thermal parameters. Therefore, the
identification of these parameters is crucial. This paper
deals with a method able to determine the parameters of
a thermo-mechanical model taking into account the
evolution of the geometry, the forces and the temperature
during a mechanical test involving large strain.
Classical thermo-mechanical parameter estimation
techniques from laboratory tests are based on simple
analytical models assuming that the material flow is
homogeneous. When inhomogeneous material flow is
involved in a mechanical test, these classical techniques
cannot be used. The inverse analysis approach consists in
coupling a direct model with an optimisation module
allowing the simultaneous and automatic identification
of the whole set of thermo-mechanical parameters.
Optimisation module is generally based on zero order
methods (genetic algorithms [1], simplex methods [2]) or
gradient methods [3]. The computation of the cost
function gradient can be done using an analytical method
[4], a finite difference method or a semi-analytical
method [5][6].
In this work an inverse analysis technique based on a
finite element model is used for the identification of
thermo-mechanical parameters from test measurements.
The 3D finite element model, FORGE3, solves a
strongly coupled thermo-mechanical equilibrium
problem using an incremental approach. Since the
discrete system is non–linear, it is solved using an
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iterative procedure based on Newton-Raphson algorithm.
State variables are updated using a Lagrangian
formulation, and automatic remeshing algorithm is
employed to avoid element degeneracy.
The inverse model is defined as the minimisation of an
objective function representative of the difference
between the experimental information (force, geometry,
temperature) and the corresponding computed values,
formulated in a least square sense. The optimisation
procedure is based on a Gauss-Newton algorithm
completed by an accurate computation of the sensitivity
matrix. The differentiation is done using a semi-
analytical method, which only requires linear problem
resolutions. Confidence intervals are provided for each
identified parameter. Validation of the proposed
approach is first done using an artificial experimental
data base. A comparison with the finite difference
evaluation of the sensitivity matrix is also provided
especially when remeshing is necessary, i.e. for large
strain. In a second step, a set of actual experimental
results is analysed in terms of constitutive laws varying
from a simple one with low number of parameters to
more sophisticated laws with large numbers of
parameters.

DIRECT MODEL
The aim of the inverse method proposed in this paper is
to estimate rheological parameters from a mechanical
test. The direct model used to link measurements with
the parameters values is Forge3, a finite element based
software devoted to the simulation of forming processes.
A quasi-static thermo–mechanical problem has to be
solved to simulate the mechanical tests.
 Mechanical problem :
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Problem (1) has to be completed by a constitutive
equation (2) and by a friction law (3).
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Thermal problem :
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An explicit Euler scheme is used for time discretisation.
Mechanical and thermal problem are coupled because
the velocity and the temperature are unknown in
problems (1) and (4). Then, global problem (1)+(4) is
solved using a splitting method (i.e. (1) is solved and its
solution is used to solve (4)). At each time increment,
problem (1) solution is obtained from a P1+/P1 mixed
finite element method in velocity and pressure [7] and
problem (4) is solved using a P1 finite element method
[8]. Then, the unknowns are the discrete velocity (Vn),
pressure (Pn) and temperature (Tn) at time nt . The

thermo–mechanical discrete problem can be written as:
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The discrete mechanical problem is highly non-linear
and solved with Newton-Raphson algorithm.
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lsα  is a real obtained from a line search algorithm. Most

forming processes simulated by Forge3 involve high
strain and the elements can degenerate. To prevent the
mesh from degenerating, an automatic remeshing
algorithm is used [8]. Once (Vn,Pn,Tn)n=1,Nincr has been
computed, the software provides the evolution of
measurable data (load, torque, shape, etc…). The link
between the computed data and the experimental data is
done using the inverse model.
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PARAMETER ESTIMATION TECHNIQUE
Parameter estimation methods aim at obtaining
computed data which fit experimental data using a
mathematical or a numerical model. The accuracy of the
parameters depends  strongly on the accuracy of the
direct model results. The use of a realistic model is then
very important. The parameter estimation problem is
expressed as weighted least-square problem
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where cD  and eD  are the computed and the
experimental data and W a weight matrix (symmetric
positive-definite and generally chosen such as

IW
2

1

eD
= ). This problem is solved using a Gauss–

Newton algorithm
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where G (Gauss-Newton matrix) is an approximation of
the hessian matrix of φ . This method is of the first order

and requires the computation of 
λ
λ

d

dD k
c )(

, .i.e.

sensitivity matrix obtained from the sensitivity analysis.

SENSITIVITY ANALYSIS

Finite difference method
The finite difference method is the simplest approach to
compute the sensitivity matrix. In this method, the direct
model is simply considered as a ‘black box’ and the
derivative is estimated from a first order approximation.
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with kλ∆  is a perturbation vector.

For NbPar parameters, it is necessary to perform
NbPar+1 simulations. Then, this method is slow because
the direct model is highly non-linear (and then each
computation of the direct model requires Newton-

Raphson iterations). But this method is useful to validate
more complex sensitivity analysis methods for simple
test cases (without remeshing for example).

Semi-analytical method
Semi-analytical sensitivity analysis method is also based
on a first order approximation of the sensitivity matrix
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 is obtained solving a tangent system (11)

associated with (5).
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Finally, 
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λ
ελελ

λ
ελ

∆
−

≈
∂

∂

−−

−

),,,,(),,,,(

),,,,(

11,

1

nnnn
k

npnnnp
k

nnnn
k

TPVRTPVR

TPVR

(12)

and

λ
ελελ

λ
ελ

∆
−

≈

),,(),,(

),,(

,, nn
k

pnpnp
k

nn
k

VQVQ

d

VdQ

(13)

with

k

n

k
npn

d

d

λ
ελεε ∆+=, (14)



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

The scheme gathering systems (10), (11), (12) (13) and
(14) is called a semi–analytical method because it mixes
finite difference schemes with analytical derivatives.
Even though problem (5) is highly non–linear, tangent
problem (11) is always linear. Moreover, all the terms
used in the semi–analytical scheme are computed by the
direct model : no formal derivative has to be calculated.
Then the sensitivity analysis module upgrades with the
direct model and is compatible with all the constitutive
laws used by FORGE3. An other advantage of this
formulation is its stability when remeshing is needed.
Some examples show that a standard finite difference
scheme is unstable with remeshing [6]. Moreover, if the
direct model is parallelized, no additional effort is
required to obtain a parallel sensitivity analysis.

CONFIDENCE INTERVAL ESTIMATION
The use of a first order inverse method for parameter
estimation is interesting because it provides more
accurate results than an analytical model. But an other
interesting feature of the inverse approach is the
sensitivity matrix computation, which gives an idea of
the quality and efficiency of the inverse model. For
example, if we assume that the difference between the
optimal computed data and the experimental data is due
to additive un-correlated Gaussian perturbations with
zero means and constant deviations [11], it is then
possible to give a confidence interval of the parameters.
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Then, if we norm G-1, we obtain an estimation of the
respective correlations between the parameters.
Correlation is the main difficulty of parameter estimation
problems [10]. An important correlation between few
parameters can make the result of the estimation
meaningless. A solution to this problem can be to use an
optimal experiment procedure [10] [11] or to change of
constitutive law.
An other indicator of the quality of the estimation is
given by Gauss-Newton Matrix G :
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where the brackets represent the dot product of
NbMeasIR . Then the cosine between two derivatives is

expressed as follows :
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If the cosinus between two derivatives is close to 1 or –1,
then G is ill-conditioned and confidence intervals
become large. This means that the influences of both
parameters on the data are similar. If
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and G is not definite (only symmetric positive).

VALIDATION OF THE OPTIMISATION MODULE

Stability of the optimisation module
The inverse module is used to obtain constitutive
parameters from four uniaxial compression tests done on
cylindrical samples (Figure 1).

13 mm

20 m
m

vdie

Steel
sample

Figure 1. Geometry of the sample

An example of a simulation result for a compression test
is given in Figure 2.

Figure 2. Simulation result for the uniaxial compression
of a cylinder using FORGE3 (cylinder section)

The validation of the inverse model is done using an
artificial experiment which is generated by the direct
model.
The average strain rate , given by equation (18), is used

for piloting the dies ( avε&  is constant during the tests)

die

die
av h

v
=ε& (18)
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The experimental plan is given in Table 1.

Table 1. Experimental plan
0.02s-1 10.s-1

1000°C + +
1200°C + +

The first constitutive model used for the estimation is the
Norton-Hoff law.
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= &

(19)

Then, the data used for the estimation is the load
(denoted L). The values of the parameters used to
generate the experiment is called nominal values. The
optimisation module is initiated with a random set of
parameters. The nominal values are K=860KPa.s-m,
m=0.2, n=0.2, β =6250K-1. The aim of the test is to find

back the nominal values using the inverse method. The
values estimated by the optimisation module are
compared with the nominal values in Table 2 for
different initial parameter values.

Table 2. Results of the identification
ini

1λ =>
opt

1λ ini
2λ =>

opt
2λ ini

3λ =>
opt

3λ
K
 m
n

500=>860.12
0.05=>0.2000
0.4=>0.1998

 5000=>6249.3

 600=>861.39
0.5=>0.2000
0.5=>0.1999
 8000=>6247.6

3000=>865.7
 0.05=>0.2000
 0.05=>0.1997
 3000=>6241.3

finalφ 3.10-4 3.10-4 4.10-4

Iterations 8 7 6

These results indicate that the optimisation module is
stable and that the result of the estimation of Norton-
Hoff coefficients does not depend on the initial values.
The sensitivity analysis used to obtain these results is the
semi-analytical method. No convergence was obtained
with the finite difference method.  Figure 3 represents
the evolution of the derivative of the load with respect to
K versus time increment obtained with the semi-
analytical method and the finite difference method.
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finite differences

gap due to
instability with 

remeshing

Figure 3. Evolution of the derivative of the load with
respect to K

Before remeshing, the difference between the results
obtained with both methods is negligible. But when
remeshing is performed, the derivative obtained with the
finite difference method shows a gap. This example
indicates that the semi-analytical method is compatible
with the use of a remeshing algorithm, contrary to the
finite difference method. The semi-analytical method is
then a fast (because it solves a linear problem) and stable
method. Without remeshing, the accuracy of these
methods are comparable.

Accuracy of the estimated values
The sensitivity analysis is necessary to use a gradient
based method. But it gives also an important information
about the accuracy of the result obtained at the end of the
estimation. For example, if the data has a low sensitivity
to a parameter, the estimation will not be accurate. Some
problems can also be caused by an important correlation
between parameters. At the end of the estimation, the
cosine between the sensitivity vectors is computed :
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where L is the load. 
dK

dL
and 

βd

dL
are almost colinear.

This means that the optimisation module hardly
decouples the effects of K and β  on the data. The cost

function with respect to K and β  around the optimum

shows a ‘valley’ (Figure 4).
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Figure 4. Evolution of the cost function with respect to K
and 

The shape of the cost function makes the simultaneous
estimation of K and β  an ill–posed problem. It is linked

to the colinearity  of 
dK

dL
and 

βd

dL
. Figure 5 represents

the cost function versus K and m. There is no ‘valley’
and the optimum is easy to localise. The shape of the
cost function near the optimum is linked to Gauss-
Newton matrix (which estimates the hessian of the cost
function).
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Confidence interval validation
The artificial experiment is perturbed with independent
gaussian noise with zero mean and a constant deviation
(denoted { }ie ):

INi
cal
i

ex
i NbMeasieLL ],1[,)( ∈+= λ (20)

Hence, in this test, estimation (15) can be applied. We
introduce a normalised deviation (21) for the noise :
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where eσ  is the deviation and eσ  is the normalised

deviation. The test is done for eσ =2.3%. The estimation

of the constitutive parameters is given in Table 3.

Table 3. Result of the estimation
K m n β

885.26 0.2018 0.2002 6214.47

Nominal values remain within confidence intervals Table
4. It can be noticed that confidence intervals for K and
β  are relatively wide, contrary the ones for m and n.

This is due to the important correlation between K and
β (c.f. matrix C (22)).

Table 4. Confidence intervals
Confidence

Intervals
( ),919.4 851.1∈K

( )201.00.199,∈m

( )0.2050.198,∈n

( ),6262.1 6166.9∈β
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So, we can conclude that a low angle between two

sensitivity vectors (for example 
dK

dL
and 

βd

dL
) can cause

an important correlation between two parameters (for
example K and β ) and then wide confidence intervals.

The simultaneous estimation of K and β seems to be a

difficult problem. On the other hand, it is possible to fit
accurately the experimental data with the direct model.

ESTIMATION OF CONSTITUTIVE PARAMETERS
OF A STEEL
Compression tests are analysed to estimated constitutive
parameters of a steel. Figure 1 shows the geometry of the
samples. The experimental plan is given in Table 5.
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Table 5. Experimental plan
0.02s-1 0.5s-1 5s-1

950°C + +
1050°C + + +
1150°C + +

These tests can be analytically analysed assuming that
there is no friction between the dies and the samples and
that the test is adiabatic or isothermal. The inverse
module allows to study the influence of friction or
temperature on the measurements.  As we plan to
estimate constitutive coefficients, the load is measured
during the uniaxial compression tests.
The first constitutive model used for the estimation is the
Norton-Hoff law.
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The result of the estimation is given in Table 6.

Table 6. Results of the parameter estimation
K m n β

575.325 0.10756 0.650770 6842.49

The final cost function value is 7.2 10-2.  Figure 6 shows
that the difference between measured and computed data
at the end of the estimation is still important (the seven
curves correspond to the seven experiments defined in
Table 5). This is due to the fact that the model error is
not negligible. Then the confidence interval model (15)
cannot be applied.
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Figure 6. Computed and experimental load

Even though model (15) seems inadequate, confidence
intervals give an information about the accuracy of the
estimation. If a confidence interval is important, the
estimation is probably meaningless. Confidence intervals
are used here as a warning. If the parameters are too

much correlated one with an other, the confidence
intervals will be important.

Table 7. Confidence intervals
( ),655.7 494.9∈K

( )112.00.103,∈m

( )0.0750.055,∈n

( ),7024.1 6660.9∈β

Confidence intervals on K and β  are large because of

the correlation coefficient between K and β  (-0.99).

This means that it is difficult to differentiate their effects.
In this example :

9989.0),cos( =
βd

dD

dK

dD
.

The important model error implies that it is necessary to
use a most complex model to be able to represent
realistically the behaviour of the material.
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The use of the semi-analytical sensitivity analysis makes
the change of constitutive law easier because it is not
necessary to calculate new derivatives. Eight parameters
have to be simultaneously estimated. The final cost
function value is 4.8.10-2. Using model represented by
equation (24) improves the result of the estimation and it
is possible to see in  Figure 7 that computed data fit
better measured data than in  Figure 6.
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 Figure 7. Computed and experimental load
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This example shows that the choice of an adequate
model is important in mechanical parameter estimation.
The visualisation of the residue  (Figure 8) indicates that
the difference between experimental and computed data
is not due to a Gaussian noise but only to model error.
Dawning and Blackwell [12] assume that the model error
is negligible if there are almost N/2 changes in sign of
the residual (N is the number of measurements).
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Figure 8. Evolution of the residue

Moreover, confidence intervals for K, β , r, stK , stβ
are wide (Table 8). This means that it is difficult to
decouple their influences on the load. For example :

9988.0),cos( =
βd

dD

dK

dD
and 9959.0),cos( =

βd

dD

dr

dD
.

Table 8. Confidence intervals
( ),273.9 1628.5∈K

)1718.0,284.0-(0 −∈m

).109.2,2.1.10( -4-4
1 ∈m

( )0.29,0.38∈n

( ),6604.2 6109.3∈β
 ( ),-1.356 -1.576∈r

( ),3827.9 2161.9∈stK

( ),6467.9 5850.2∈stβ

We can conclude that two indicators are important to
estimate the accuracy of a parameter estimation : the
residue gives information about the quality of the model
and the Gauss-Newton matrix (cosine) gives information
about the correlation between the parameters.
Confidence intervals can be used as a warning, even if
model represented by equation (15) cannot be applied.
This example shows that the choice of a realistic model
is important to ensure a low value of the residue at the
end of the estimation. But the use of too complex a
model seems makes the correlation between the
parameters impossible since the problem is then ill-
posed.

CONCLUSION
An inverse method coupled with a semi-analytical
sensitivity module is presented and validated in this
paper. It is shown that the semi-analytical method is
stable and relatively fast (because it is a linear problem).
Moreover, it makes easy the change of constitutive law
because it only uses terms calculated for the direct

model. It has been shown also that an important
correlation between two sensitivity vectors can make the
estimation ill-posed : cost function shows ‘valleys’ and
confidence intervals at the end of the estimation can be
wide. On the other hand, the inverse method makes
possible an efficient fitting of experimental data by
computed data.
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ABSTRACT 

The aim of this work is to present a technique 
to identify elastic parameters of composite 
materials. The identification is based on the 
adjustment of coefficients in an optimization 
process in which the objective function is defined 
by the difference between the analytical natural 
frequencies and the measured ones. Such 
analytical natural frequencies are obtained by the 
finite element method while the experimental 
ones are determined by ordinary modal tests. The 
proposed technique is assessed by a number of 
different tests allows simultaneous identification 
of several global properties from a single test 
without damaging the structure. The proposed 
approach uses genetic algorithm to solve the 
optimization problem. Since genetic algorithms 
are not based on the gradient method, they do not 
require the expensive eigenvectors computations 
presented in  gradient method.  

 
NOMENCLATURE 
Cijkl - constitutive matrix 
CF - cost function 
Dm - extensional stiffness matrix 
Df - flexure stiffness matrix 
Dmf - coupling stiffness matrix 
Ei - elasticity modulus 
fexp - experimental frequencies 
fθ- calculated frequencies 
Gij - shear modulus 
keep - overlapped chromosomes 
maxgen - maximum generation number 
N - number of layers 
nbest - selected individuals for reproduction 

pcross - probability of crossover  
pmutation - probability of mutation 
popsize - number of individuals in a population 
Qij - elastic coefficients for plane stress 

0u
r

 - displacement in the midplane 

0v
r

 - normal displacement 

 ν - Poisson's ratio 
 ρ - density 
θ - elastic constants vector 
 

 
INTRODUCTION 
 Recently, composite materials have been used 
in many structural applications. They are formed 
by two or more different materials in order to 
obtain better engineering properties like stiffness, 
strength, weight reduction and thermal response 
[1]. In the design of structures, it is of extreme 
importance to have very precise estimate of the 
elastic constants which conventional techniques 
are not fully able to do. In [2] the elastic constants 
were estimated using simulated ultrasonic phase 
velocities. Genetic algorithms are used in [3] as a 
complementary technique to perform the initial 
estimation of the elastic parameters and then 
refining the solution by classical updating 
methods. In the present work, the identification of 
elastic parameters constitutes an inverse problem, 
which leads to an optimization formulation. This 
problem relies on the comparison between 
experimental natural frequencies and their 
analytical counterparts. The experimental 
quantities are obtained by means of modal tests 
performed on typical composite structures like, 
for instance, plates. The analytical frequencies are 
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the eigenfrequencies associated to finite element 
models of those structures. The novelty of the 
proposed approach is the use of a genetic 
algorithm in the numerical solution of the 
optimization problem. It is worthwhile to 
remember that the use of this kind of algorithm 
avoids the expensive computation of gradients 
involving eigenfrequency values. Moreover, two 
other advantages are also obtained: no initial 
guess is required and the optimization process 
could be more flexible, due to the fact that the 
search space begin from a set of elastic constants, 
corresponding to different chromosomes, rather 
than a single one. 
 The experimental natural frequencies were 
obtained by tests performed on aluminium plate 
[4] and on Glass/Epoxy plate [5]. In order to 
stress the capacity of the approach simulated 
experimental frequencies for aluminium, 
kevlar/epoxy and SCS-6/Ti-15-3 which were 
obtained by numerical methods were used. The 
stiffness properties of these materials were 
obtained from literature [6]. In this manner, the 
estimated properties from GA were compared 
with the available data. 
 

     
CLASSICAL PLATE THEORY 
 The kinematics of the classical plate theory [7] 
adopted here is based on the following 
hypothesis:   the vertical displacement vz of any 
point of the plate is the same of its projection on 
the middle surface (Eq. 1) and the straight lines 
normal to the xy-plane before deformation remain 
straight and normal to the midsurface after 
deformation – Kirchhoff theory (Eq. 2). These 
assumptions correspond to neglecting both 
transverse shear and normal effects, i.e., the 
deformation is due entirely to bending and in-
plane stretching. 
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where ∇ stands for the spatial gradient.  
 Thus, the kinematics of the plate’s motion 
relies only on two degrees of freedom defined 
over the middle surface.  

  Therefore, the dynamics of the plate is 
governed by the virtual power principal [7], 
which lends to the following variational equation: 
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 The composite materials analyzed in this work 
consist in fibers, which are the principal load-
carrying members, in a matrix material, that keeps 
the fibers together.  In each lamina, the fibers are 
perfectly aligned. 
 In Eq. 6, E1 is the elastic modulus in the 
fibrous direction, E2 is the elastic modulus in the 
transverse direction, ν12 and ν21 are the Poisson 
ratio and G12 is the shear modulus.  
 Only four out of the five material constant for 
plane stress of an orthotropic material are 
independent. In this work, the identified 
parameters are E1, E2, G12 and ν12. Therefore, the 
Poisson ratio ν21 is obtained by: 
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THE FINITE ELEMENT MODEL 
 In the finite element model, the plate is 
discretized by triangular elements with three 
degrees of freedom per node: two rotations and 
the transversal displacement. Thus, the associate 
eigenvalue problem is represented by: 
 

  0)( 2 =+− ii KM φϖ                       (8) 
 
 
where ω is the ith  natural frequency and φ i is its 
vibration mode. M and K are, respectively, the 
inertia and stiffness matrix of the finite element 
model.   
 It is important to remark that the stiffness 
matrix depends on the elastic parameters that are 
to be identified, i.e. 
 
   ),,,( 121221 νGEEKK =       (9) 
 
 
THE GENETIC ALGORITHM 
 Genetic algorithms are search algorithms 
based on the mechanics of natural selection. This 
technique allows a population composed of many 
individuals to evolve according to some rules to a 
state that minimizes a cost function. Comparing 
with other random search techniques, the GA's are 
an intelligent way to find the global solution in 
the search space. These methods should be 
separated in some categories [8]: 
 

• multiple or single parameter; 
• discrete or continuous; 
• constrained and unconstrained; 

 
 In GA's, a finite number of candidate solution, 
the chromosomes, are randomly created forming 
the initial population. In this work, a binary code 
was used [9]. Each chromosome represents a 
possible solution, divided in sub-strings that are 
decoded into their corresponding elastic 
constants. These chromosomes will create the 
new generation, by natural selection and 
reproduction procedures. As the cost function has 
to be minimized, only a few of the best 
chromosomes (the members with lower errors) 
will be kept for breeding.  
 The natural selection is a procedure that 
decides which individual should survive, forming 
the mating pool. Individuals with lowest cost 
reproduce more often than highest cost ones. An 
overlapping population is permitted. In this case, 

the offspring will replace the discarded 
chromosomes. Reproduction procedures consist 
in crossover and mutation. Two chromosomes, 
parent1 and parent2, are selected from the mating 
pool to produce two new offspring, child1 and 
child2. A crossover point is randomly selected 
between the first and last bit of the parents, 
exchanging portions of their strings, in order to 
form the children. This operation is performed 
with a probability pcross, that is normally a high 
value. Mutation operation change a bit from ``1'' 
to ``0'' or vice versa, with a probability pmutation, 
normally a very low value. Increasing the number 
of mutations increases the algorithm's search 
outside the current region of parameter space. It 
also tends to distract the algorithm from 
converging on a solution. In order to propagate 
the best solution unchanged it is usual in GA to 
keep the fittest chromosome without mutation. 
After that, the cost of the new generation is 
calculated and the described process is repeated, 
until a stopping criterion. The number of 
generations depend on whether an acceptable 
solution is reached or a number of iterations is 
exceeded (maxgen). Figure 1 shows the 
procedures of the present work. 
 

  
 

Figure 1: Flow chart 
 
 In the application of a GA to the identification 
problem, the first choice relies in the way of 
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representing the elastic parameters. A 
chromosome with 40 bits was used: 16 bits for E1 
and 8 bits for the others. All the elastic parameters 
are real numbers. The first eight bits of E1 are 
decoded to form the integer part and the others 
are decoded to form the decimal part. The others 
elastic parameters are calculated as a fractional 
part of the elasticity modulus E1. Therefore, the 
search space for each constant is defined as: 
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 In the optimization problem, the objective 
function is defined by the difference between 
natural frequencies and analytical ones [10], 
stated as follows: 
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where M is the number of used frequencies and θ 
is a vector containing the elastic constants. After 
evaluating the fitness, the chromosomes are 
ranked from lowest to highest cost. Only the  
nbest chromosomes are kept to form the mating 
pool, while the others are discarded. The new 
generations are composed by the keep 
chromosomes, in case overlapping occurs, and 
completed by the offspring created by crossover 
and mutation operations.  
 Parameters' selection is different for each 
example. Small population size (popsize) should 
lead to premature convergence while a large one 
is commonly used to increase the variation within 
a population. However, the increase of the 
number of function evaluations results in 
increased computational costs.  
 
APPLICATIONS 
 The proposed approach is assessed by means 
of a number of applications. Both, isotropic and 
orthotropic plates are explored. The former, 
although it does not constitutes a composite 
structure, is used as far as it represents a test for 
the algorithm in which the detection of flaws is 
simpler.  
  

 The elastic constants were identified for each 
specimen using the data from Tab.1.  

 
Table 1: Parameters of the plate 

 
Sample a(m) b(m) h(m) ρ(Kg/m3) 

Aluminium 0.6 0.4 0.0063 2700 
Kevlar/Epoxy 0.6 0.4 0.004 1380 

SCS-6 0.6 0.4 0.004 3860 
Glass/Epoxy 0.14 0.14 0.002011 1850 

 
Isotropic Material 
 In order to enlarge the number of situations 
that were analyzed, some non-experimental 
quantities were utilized. They will be referred to 
as simulated frequencies, which are obtained with 
an a priori choice of the elastic parameters and the 
use of a finite element model of the plate. The 
simulated and experimental natural frequencies 
are shown in Tab.2 and Fig.2. These two 
examples are represented by GAs and GAe, where 
the first case was calculated from the simulated 
frequencies and the second one was calculated 
from the experimental ones. The experimental 
frequencies were taken from [4]. In Figure 3, the 
deviation of the theoretical parameters is 
presented. The last ones are those used to obtain 
the simulated frequencies. 
 For the aluminium plate, the following 
parameters of the genetic algorithm were utilized. 
 
popsize = 80 
keep = 10 
nbest = 40 
pcross = 0.95 
pmutation = 0.03 
 

Table 2: Frequencies on aluminium plate 
 

fn(Hz) Simulated GAs Experimental GAe 

1 88.15 87.98 84.7 83.30 
2 93.26 93.28 92.8 93.33 
3 204.73 204.56 195.7 197.14 
4 216.05 216.06 215.9 217.07 
5 247.66 247.48 246.2 244.68 
6 287.20 287.57 288.5 286.82 
7 377.27 377.33 359.1 369.78 
8 427.97 427.75 415.6 415.81 
9 498.86 499.81 512.5 502.91 
10 574.3 574.21 577 572.79 
11 630.31 631.07 623.5 625.12 

 
  
 Table 3-4 show the estimated elastic constants 
calculated by simulated and experimental 
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frequencies respectively.  The mean value (µ) and 
the standard deviation (s) were calculated too. In 
GAe it is possible to note that the elasticity 
modulus are better estimated than the shear 
modulus and the Poisson ratio (Fig. 3), 
considering the literature values (Tab.3) as the 
standard ones. 
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Figure 2: Frequencies on aluminium plate 
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Figure 3: Estimated elastic constants on 

aluminium plate 
 

Table 3: Estimated elastic constants for an 
aluminium plate – GA1 

 
 E1 E2 G12 ν12 ν21 

Liter. 73 73 28.0789 0.3 0.3 
1 72.98 72.69 28.22 0.3027 0.3015 
2 73.23 72.66 28.03 0.2988 0.2964 
3 73.01 72.73 27.95 0.3066 0.3054 
4 74.15 73.28 27.51 0.2968 0.2933 
µ 73.34 72.84 27.93 0.3012 0.2991 
s 0.22 0.066 0.066 1.4*10-5 2.1*10-5 

 

Table 4: Estimated elastic constants for an 
aluminium plate – GA2 

 E1 E2 G12 ν12 ν21 
Liter. 73 73 28.0789 0.3 0.3 

1 73.55 72.11 24.71 0.33 0.32 
2 73.01 72.44 24.81 0.33 0.32 
3 73.01 72.44 24.81 0.33 0.32 
µ 73.19 72.33 24.78 0.33 0.32 
s 0.064 0.023 0.0024 0.0 0.0 

 
 
In Tab. 5, the results obtained by genetic 
algorithm are compared with the results obtained 
from the least-squares method in [4]. In the 
reference, the sample under consideration was 
modeled as an isotropic plate thus only the 
elasticity modulus and the Poisson's ratio were 
calculated.  
  

Table 5: Comparison between GA and least-
squares method 

  
Literature 

Estimated 
Elastic 

Constants 

 
Reference 

E1 73 73.1953 68.7517 
E2 73 72.3361 68.7517 
G12 28.0769 24.7097 26.2616 
ν12 0.3 0.3313 0.3090 
ν21 0.3 0.3274 0.3090 

 
 
Orthotropic Material 
 
 Kevlar/Epoxy 
 In this plate, the thickness of each ply is h = 
0.001m and the total number of plies is four in 
order to get the plate thickness. The dimensions 
and mechanical properties of the plate are shown 
in Tab.1. The simulated and estimated natural 
frequencies are shown in Fig.4. It is possible to 
verify, in the cost function graphic (Fig. 5), that 
the algorithm escaped a local minimum, looking 
for the global one. The estimated elastic constants 
obtained by GA are in good agreement with the 
literature values (Tab.5). 
 For the Kevlar/Epoxy plate, the following 
parameters of the genetic algorithm were utilized. 

 
popsize = 80 
keep = 10 
nbest = 40 
pcross = 0.95 
pmutation = 0.04 
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Figure 4: Frequencies on a Kevlar/Epoxy plate 
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Figure 5: Cost function on a Kevlar/Epoxy plate   

  
 
 

Table 5. Estimated elastic constants for 
Kevlar/Epoxy 

 
 E1 E2 G12 ν12 ν21 

Liter. 76.8 5.5 2.07 0.34 0.024 
1 77.08 5.42 2.1 0.339 0.0238 
2 77.09 5.42 2.1 0.333 0.0234 
µ 77.085 5.42 2.1 0.336 0.0236 
s 0.25*10-4 0.0 0.0 9*10-6 4*10-8 

 
 
SCS-6/Ti-15-3 
 In this specimen, the thickness of each ply is h 
= 0.001m and the total number of plies is four in 
order to get the plate thickness. The simulated and 
estimated natural frequencies are shown in Fig.6. 

In this example, the algorithm escaped a local 
minimum too (Fig. 7). In Table 6, the estimated 
elastic constants are compared to the values of 
literature. Although the standard deviation has 
presented high values, the estimated mean values 
were very close to literature ones. 
 For the SCS-6/Ti-15-3 plate, the following 
parameters of the genetic algorithm were utilized. 

 
popsize = 80 
keep = 10 
nbest = 40 
pcross = 0.90 
pmutation = 0.03 
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Figure 6: Frequencies on a SCS-6/Ti-15-3 plate 
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Figure 7: Cost function on a SCS-6/Ti-15-3 plate 
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Table 6: Estimated elastic constants for SCS-6/Ti-
15-3 

 
 E1 E2 G12 ν12 ν21 

Liter. 221 145 53.2 0.27 0.17 
1 224 146.1 53.37 0.24 0.16 
2 216.69 143.05 54.17 0.294 0.194 
3 220.28 144.55 53.34 0.27 0.18 
4 224 145.24 53.37 0.25 0.162 
µ 221.243 144.73 53.56 0.263 0.174 
s 9.21 1.24 0.123 4*10-4 1.9*10-4 

 
 
 Glass-Epoxy 
 In this example, the natural frequencies were 
obtained by experimental tests and presented in 
[5] (Tab.7). The plate consists of eight 
unidirectional layers with a layer stacking 
sequence [90/0/90/0]s. Table 8 shows the results 
obtained for the identification procedure applied 
in [5], comparing the elastic constants of the 
single layer of the cross-ply laminate (CP) with 
the properties obtained for the unidirectionally 
plate from the same material (UD). Table 9 shows 
the results obtained by the proposed approach.  It 
is seen that the estimated elastic constants E1, E2 

and G12 obtained by genetic algorithm are in good 
agreement with reference values. However, the 
Poisson’s ratio are not well estimated. Probably, 
the reason is that the influence of Poisson’s ratio 
on frequencies is considerably smaller than the 
influences of the others parameters.  
 Another way to verify the quality of the 
results is showed in Tab.7. The computed 
frequencies by using the identified parameters 
presented in the last column are in good 
agreement to the experimental ones.  
  
 
Table 7: Frequencies on a Glass/Epoxy plate 
 
fn(Hz) Experimental FEM GA 

1 166 166.4 162,13632 
2 341 344.2 343,76897 
3 - 416.2 442,30251 
4 484 486.1 497,13064 
5 542 545.9 543,87 
6 902 895.6 905,45285 
7 971 967.5 946,12462 
8 1090 1087 1087,01988 
9 1155 1165 1158,07626 

 
 
 
 
 

For the Glass/Epoxy plate, the following 
parameters of the genetic algorithm were utilized. 
  
popsize = 80 
keep = 10 
nbest = 40 
pcross = 0.95 
pmutation = 0.04 

 
 

Table 8:  Elastic constants for Glass/Epoxy [5] 
 

 E1 E2 G12 ν12 ν21 
CP 38.15 12.44 4.92 0.368 - 
UD 38.81 12.12 5.09 0.255 - 

 
 

Table 9: Estimated elastic constants for 
Glass/Epoxy 

 
 E1 E2 G12 ν12 ν21 
1 40.04 10.48 4.06 0.46 0.12 
2 41.55 9.90 4.05 0.45 0.10 
3 41.3 10.16 4.03 0.44 0.11 
4 38.79 11.36 4.09 0.43 0.12 
µ 40.42 10.47 4.057 0.445 0.1125 
s 1.21 0.30 4*10-4 1.2*10-4 6.8*10-5 

 
  
 The evolution of the cost function durinhg the 
optimization process is depicted in Fig.8. 
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Figure 8:  Cost function on a Glass/Epoxy plate 

 
 
CONCLUSIONS   
 The proposed method for the identification of 
elastic constants has shown be effective for the 
examples that have been presented here. It's clear 
from the examples that the algorithm was able to 
skip local minimums, i.e., it can be considered an 
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efficient method to find the global minimum for 
the problem under consideration. It should be 
remarked that the experimental data were 
obtained out of non-destructive dynamics tests. 
Therefore, the designer can perform several 
experiments considering the same composite 
structure.  
 
REFERENCES 
 1. Reddy,J.N., Mechanics of Laminated 
Composite Plates: theory and analysis , CRC 
Press, 1991. 
 2. Balasubramaniam, K. and Rao, N.S., 
Inversion of composite material elastic constants 
from ultrasonic bulk wave phase velocity data 
using genetic algorithm , Composites: Part B, 
29B, 171-180 (1998). 
 3. Cunha,J. and Cogan,S. and Berthod, C., 
Application of Genetic Algorithms for the 
Identification of Elastic Constants of Composite 
Materials from Dynamic Tests, International 
Journal for Numerical Method in Engineering,  
45, 891-900 (1999). 
 4. Bastos,S.F., Identification of elastic 
parameters by means of modal analysis, 
Department of Mechanical Engineering, Federal 
University of Rio de Janeiro - Brazil,  Master 
Thesis (2001).(in Portuguese) 
 5. Rikards,R., Chate,A. and Gailis,G., 
Identification of elastic constants of laminates 
based on experiment design, International 
Journal of Solids and Structures,  38, 5097-5115 
(2001). 
 6. Herakovich,C.T., Mechanics of Fibbrous 
Composites,  Jonh Wiley and Sons, Inc, 1998. 
 7. Shames, I.H. and Dym,C.L., Solid 
Mechanics: a variational approach, McGraw-Hill 
Int. Ed., London, 1973. 
 8. Haupt,R.L, and Haupt,S.E., Pratical 
Genetic Algorithms, John Wiley and Sons, 1998. 
 9. Goldberg,D.E., Genetic Algorithms in 
Search, Optimization and Machine Learning, 
Addison-Wesley, 1998. 
 10. Bledzki,A.K.,Kessler,A., Rikards,R. and 
Chate,A., Determination of elastic constants of 
glass/epoxy unidirectional laminates by the 
vibration testing of plates, Composite Science and 
Technology,  59 , 2015-2024 (1999). 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

AN INVERSE TECHNIQUE FOR IDENTIFICATION OF ELASTIC 
CONSTANTS OF A GLASS/EPOXY LAMINATED PLATE 

 
 
 

X. Hana and G.R. Liub 

Centre for Advanced Computations in Engineering Science 
Department of Mechanical Engineering 

National University of Singapore 
10 Kent Ridge Crescent, Singapore 119260 

http://www.nus.edu.sg/ACES  
aacehanxu@nus.edu.sg, bmpeliugr@nus.edu.sg  

 
 
 
 
ABSTRACT 
 A computational inverse technique is 
proposed to identify the material constants of a 
galss/epoxy laminate plate from dynamic 
displacement responses obtained at only one 
receiving point of laminate surfaces. A hybrid 
numerical method (HNM) is used for forward 
computation that relates the material constants to 
the displacement responses.  The neural network 
(NN) is used as the inverse procedure using the 
surface displacement responses as the inputs and 
the elastic constants of anisotropic laminated 
plates as the outputs. The NN model is trained 
using the results from the simulated results. The 
NN model would go through a progressive 
retraining process until the calculated 
displacement responses using the determined 
results are sufficiently close to the actual 
responses. This proposed computational method 
is verified using one set of elastic constants of 
glass/epoxy laminated plates. It is found that the 
present procedure is very robust for 
reconstruction of the elastic constants of the 
animated plates. 
 
NOMENCLATURE 
     )6,1,( L=jiijc                      Elastic constants 

      d                  Distance norm 
     f(t)                                          External Loading 
     N     Total number of sample points 
     u        Displacement response in x direction 

    W }3,2,1;,,1,,,1,{ ==== kjNjiNik
ijw LL  

                                               Matrix of the weight 
X },,1 ,{ Nixi L==     Inputs of the NN model 

Y },,1 ,{ Miyi L==  Outputs of the NN model 
     σ           Standard deviation 
 
INTRODUCTION 

Advanced nondestructive methods for 
material characterization of composites utilize the 
complex relationship between the structure 
behaviors and the material property. This 
relationship is often represented by a known 
mathematical model defining the forward 
problem, which can be analyzed numerically or 
otherwise. Thus if a set of reasonably accurate 
experimentally measured structure behavior data 
is available, the material property of the 
composite may be identified by solving an inverse 
problem properly formulated. The material 
property can often be characterized by 
minimizing the sum of the squares of the 
deviations between the experimental and the 
calculated structure behavior data. Using elastic 
waves is a promising mean for material 
characterization of composites. Ultrasonic wave 
velocity has been used as the structure behavior 
data for determination of elastic constants of 
anisotropic composites [1,2]. Liu et al. [3] 
presented a combined method of genetic 
algorithm and nonlinear least square method for 
material determination and applied it to 
functionally graded material plates and composite 
laminated plate. First the genetic algorithm was 
used to locate the initial estimation of the 
parameter, then the traditional least squares 
method is applied to determine the material 
constants. However, it can be generally concluded 
that these inverse procedures require too many 
calls for forward solvers.  
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o 

Neural network (NN) is a novel tool for 
information processing. It provides a unique 
computing architecture, which enjoys a massive 
parallel processing structures. The parallelism of 
NN enables it to solve many problems that cannot 
be handled by analytical approaches. NNs provide 
an effective approach for engineering applications 
in a very broad spectrum [4,5]. Furthermore, the 
NN technique is well known for its ability to 
model nonlinear and complex relationship 
between the structure parameters and the dynamic 
characteristics. 

In this paper, a novel progressive NN 
procedure is applied for the identification of 
elastic constants of anisotropic laminated plates. 
In the present NN model, the input data are the 
dynamic displacement responses on the surface of 
the plate, which can be easily measured using 
conventional experimental techniques. The NN 
model is first trained off-line using a set of initial 
training data that contain various assumed elastic 
constants and their corresponding displacement 
responses calculated using the HNM [6] as the 
forward solver. A modified back-propagation 
(BP) algorithm is used as the learning process. 
The NN model is then used to determine the 
elastic constants of laminated plate by feeding in 
displacement responses. The determined elastic 
constants are then used in the HNM to calculate 
the displacement responses. The NN model would 
go through a progressive retraining process if the 
calculated displacement responses deviate un-
acceptably from the actual ones. An example of 
identification of the elastic constants of a 
glass/epoxy laminated plate is presented to 
demonstrate the efficience of the proposed inverse 
technique. 
 
STATEMENT OF THE PROBLEM 

Consider a laminated plate with any number 
of anisotropic layers in the thickness direction, as 
shown in Figure 1. The thickness of the plate is 
denoted by H. The incident excitation waves to 
the plate are assumed to be a vertical line load in 
the z-direction acting at 0=x  on the upper 
surface. 

The line loads are independent of the y axis, 
but as a function of t is dependant as 

 





=
0

)2sin(
)( dtt

tf
π

d

d

ttt
tt
≥≤

<<
  and 0

0
           (1)  

 

and dt  is the time duration of the incident wave. 
Equation (1) implies that the time history of the 
incident wave is one cycle of the sine function. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. A composite laminate subjected to a 
line load on the surface. 

 
 

An NN model is used for the determination of 
elastic constants of anisotropic laminated plates. 
The outputs of the NN model are elastic 
constants. The inputs of the NN model are the 
time history of displacement responses on the 
surface of the laminated plate, which can be 
easily measured using conventional experimental 
techniques. In this paper, we utilize computer-
generated displacement responses calculated 
using the HNM [6,7] as the forward solver based 
on actual elastic constants of laminated plates. 

Only one receiving point is chosen on the 
surface of the laminated plates, and the responses 
in the time domain for displacement components 
in z-direction are selected as the inputs for the NN 
model. 

 
AN NN PROCESS FOR DETERMING 
ELASTIC CONSTANTS 

An NN model, which consists of a set of 
nodes arranged into four layers as shown in 
Figure 2, is used in this work. There are N inputs 
representing the displacement responses on the 
surface and M outputs representing the elastic 
constants to be determined. Here two hidden 
layers are used in this work. Mathematically, the 
NN model represents a nonlinear mapping 

z

y  H

x

Fiber orientation
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between inputs X },,1 ,{ Nixi L==  and outputs 
Y },,1 ,{ Miyi L==  via the following equation 
 

),( XWY g=                                     (2) 
 
the W }3,2,1;,,1,,,1,{ ==== kNjNiw ji

k
ij LL  is 

a matrix of weights corresponding to the 
connections between the layers, and 

jNN  and i are the numbers of neurons for the ith 
and jth layers, respectively. Training of the NN 
model is referred to as the calculation of the 
weight matrix W using the training data set. Once 
the training is complete, the NN calculation is 
very fast regardless of the complexity of the 
actual physics of the problem. A modified BP 
learning algorithm [8] with a dynamically 
adjusted learning rate and an additional jump 
factor is employed as the learning algorithm. This 
learning algorithm can overcome the possible 
saturation of the sigmoid function and speed up 
the training process of the NN model. 

  
Figure 2  A two-hidden layer NN model  

 
 

After the initial training of the NN model, the 
determination of the elastic constants begins by 
feeding the measured displacement response data 

mX  into the NN model. The outputs of the NN 
model are the determined elastic constants IY . 
These determined elastic constants are then fed 
into the HNM to produce a set of calculated 
displacement response data cX . A comparison 
between the calculated displacement response cX  
and measured displacement responses mX  is 
made based on a given criterion. If these two sets 
differ significantly such that the criterion is not 
satisfied, then the NN model will be retrained on-
line using adjusted training samples that contain 

cX  and IY . The retrained NN model is then used 
to determine the elastic constants again by 
feeding in the measured displacement esponses 

mX . This determination and on-line retraining 
procedure is repeated until the difference between 
the calculated and measured displacement 
responses satisfies the given criterion. At the end 
of the progression, the final determined elastic 
constants are guaranteed to produce the 
displacement responses that are very close to the 
measured ones when fed into the HNM. 

Re-training of the NN model is achieved by 
adding new samples into the original pool of 
samples and enforced a more stringent 
convergence criterion. It has been pointed out that 
it could be difficult to achieve the same level of 
convergence while maintaining the same NN 
architecture when the number of samples 
increases. To avoid this problem, a dynamic 
adjustment method for selecting samples for 
retraining is proposed. While adding the new 
sample related on the determined elastic constants 
by the NN model and the displacement responses 
from the HNM, one sample from the original 
sample set should be removed so as to maintain 
the same number of samples. The sample to be 
removed is the one that has the largest distance 
norm from the measured displacement responses 

mX . The distance norm of the displacement 
responses between the ith sample iX  and the 
measured displacement responses mX is defined 
as  
 
    2

imd XX −=                                       (3) 
 

  

2 nd  hidden layer   

Elastic constants    

Input layer 
  

Output layer   

1 st  hidden layer 

Y 2   Y M Y 1   

X 2   XN X 1   

.   .   .   

.   .   .   

.   .   .   

.   .   .   

Surface displacement response  
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By replacing this remote sample with a new 
sample, the sample density around the measured 
displacement responses increase as the process 
progresses. As a result, the modeling accuracy of 
the NN model in the neighborhood of the 
measured displacement responses could be 
improved. 

 
APPLICATIONS 

This NN process for determination of elastic 
constants of laminated plates is illustrated using 
one actual laminated plate consisting of six 
glass/epoxy layers. The stacking sequence of the 
laminated layers is denoted by [0/+45/-45]s, where 
the digital numbers stand for the angles of fiber-
orientation of each ply to the x-axis. The subscript 
of ‘s’ means that the plate is symmetrically 
stacked. The glass/epoxy material is the 
transversely isotropic material; there are only five 
elastic constants as listed in the 2nd column in 
Table 1 [9]. Hence there are five parameters, 
named as 5523221211  and ,,, ccccc , needed to be 
identifieded. 

 
 

Table 1. The search range for the elastic 
constants to be identified 

 
Elastic constants Actual Data 

     (GPa) 
Search Range
     (GPa) 

11c    42.02       30-54 

12c      6.067         4-8 

22c    13.5       10-18 

23c      7.277         5-9 

55c      3.41         2-4 

 
 
The NN model used in this paper has two 

hidden layers, and the neuron numbers of the 
input, output, 1st and 2nd hidden layers are 10, 5, 
30 and 16 respectively. Instead of carrying out 
actual experiment, the measured displacement 
responses are simulated using the HNM using the 
actual elastic constants. In order to simulate the 
measured displacement responses, noise-
contaminated displacement responses are also 
used for the determination of elastic constants. 
Noise effects are investigated by adding Gaussian 
noise directly to the computer generated 
displacement readings. A Gauss random number 

generator is used to generate a series of random 
numbers with the standard deviation as 

 

σ = 0.01× (1/N∑ =

N

j
a
ju

1
2)( )½                        (4)   

where a
ju  is the measured displacement reading 

at the jth time sample point and N is the total 
number of time sample points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this problem, a search range of ± 30% off 
from the actual value of elastic constants is used, 
as shown in Table 1. To formulate the initial 
training samples, it was assumed that there were 4 
levels of change in the search range for these five 
elastic constants, which correspond 
to 5523221211  and ,,, ccccc  of their discrete values. 
Based on the orthogonal array method, these five 
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four-level parameters would only require 16 
samples to cover the whole domain. In addition, 
another 21 samples created randomly, were added 
into the training data set. This combined strategy 
covers a good cross-section of all possible elastic 
constants variations. 

Table 2 summarizes the reconstructed results 
of the elastic constants. The results for four 
progressions are listed. It can be found that the 
result at the first progression is not accurate as the 
maximum deviation is high, and the displacement 
responses corresponding to these reconstructed 
elastic constants are quite different from the 
simulated ones using the actual values of elastic 
constants, the distance norm (Eq. (3)) between 
them is long. A retraining for NN model is 
required. A new sample is created from the 1st 
characterized result and the corresponding 
displacement responses calculated from the 
forward sovler. The new sample is added into the 
original sample pool to replace the sample with 
large distance norm. The retraining process is 
repeated until the displacement responses 
corresponding to the reconstructed elastic 
constants are sufficiently close to the simulated 
measurements. The results at stages of 
progressive training are also listed in Table 2. It 
can be seen from Table 2 that the accuracy of the 
determined results increase as the progression 
number increases, and the determined result is 
very accurate after 4 progressions. The maximum 
deviation of the sixth progression elastic constants 
is as low as 6%. The first training of the presented 
NN model needs about 1200 seconds, and the 
retraining time for the following progressions 
decrease as the progression number increases. 
However, this decreasion is not very distinct.  

The identification with the presence of the 
noise is also carried out in this paper, and the 
results are listed in Table 3. It can be found that, 
the determined result remains stable regardless 
the presence of the noise, and the required 
number of progression is not changed, even when 
the noise is added.  

 
CONCLUSION 

A progressive NN technique is proposed for 
the identification of elastic constants of a 
glass/epoxy laminated plate, using dynamic 
displacement responses on the surface as the input 
data. In this procedure, the HNM is employed as a 
forward solver to calculate the displacement 

responses on the surface of the laminated plates. 
The NN model is trained using the calculated 
result from the HNM. Once trained, the NN 
model can be used for on-line identification of 
elastic constants if the dynamic displacement 
responses on the surface of the laminated plate 
can be obtained. The identified elastic constants 
are then used in the HNM to calculate the 
displacement responses. The NN model would go 
through a progressive retraining process until the 
calculated displacement responses using the 
determined results are sufficiently close to the 
actual responses. The accuracy of output from the 
NN model increases with the increase number of 
retraining cycles, the required accuracy can be 
therefore obtained by repeating the retraining 
process. 
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ABSTRACT 

An inverse procedure is introduced to identify 
the material properties of a printed circuit board 
(PCB) and components mounted on it. A 
modified micro genetic algorithm (mGA) with 
intergenerational projection search technique is 
presented in this paper to speed up the inverse 
searching process. The PCB is subjected to an 
enforced acceleration over a range of excitation 
frequencies and the frequency response is 
obtained computationally and experimentally. 
The frequency response at specific nodes on PCB 
and components are utilized as the input for the 
inverse procedure. Material properties that 
minimise the sum of the squares of the deviations 
between test and simulation results are inversely 
determined. The present inverse procedure can be 
used in a wide range of practical engineering 
problems. 

 
1. INTRODUCTION 
1.1 Problem Description 

Modern electronic packages consist of a variety 
of components.  The size, shape, arrangement, 
and material of the modules vary and are mounted 
on a PCB using soldered leads or pins. Electronic 
packages may experience dynamic loads during 
manufacturing, shipping and service. As a result, 
the PCB may experience large vibration 
amplitudes and/or acceleration levels. These 
vibrations are transmitted throughout the PCB 
inducing stress in the modules, leads, and solder 
joints connecting the modules to the PCB.  
Performance degradation and possible system 
failure may occur if any component of the system 
is over-stressed.  

Electronic packages are normally subjected to 

qualification tests. A typical test may consist of 
subjecting the electronic package to an enforced 
sinusoidal acceleration and measuring the 
response, over a range of excitation frequencies, 
at a few locations on the PCB and components. 
Making prototypes and conducting physical tests 
take a long time. From business point of view, it 
is always preferable to keep the time -to-market as 
short as possible. Use of computer aided 
engineering (CAE) tools results in faster 
evaluation of relative performance of various 
designs thereby reducing the number of physical 
prototypes and tests required.  

Companies in the manufacturing sector – from 
small die manufacturers to large automobile 
manufacturers – are talking CAD/CAM/CAE or 
virtual prototyping. In the past, engineering 
analysis was used to evaluate and re-design failed 
components. However, at present CAE analysis is 
used to simulate new products, study the effects 
of design changes on a computer resulting in 
reduced cost, better quality, and reduced time-to-
market. Typical industrial sectors where CAE 
finds widespread applications are electronic 
packaging, automotive, aerospace, defence etc.  

One of the problems faced by a CAE analyst is 
the lack of availability of exact material 
properties. One way of overcoming this difficulty 
is to work in the opposite way.  Instead of looking 
at the forward problem in which all the material 
properties, loading, boundary conditions are given 
and the response is calculated, we look at the 
inverse problem in which the response is given 
(from physical tests) and we seek the material 
properties that result in the given response.  Once 
the material properties are obtained, relative 
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performance of competing designs using similar 
components can be evaluated virtually on a 
computer without the need to make physical 
prototypes of all the designs and to perform 
physical tests with all the prototypes. The inverse 
problem may be regard as an optimization 
problem in which the objective is to minimize the 
error between test and simulated response. Many 
algorithms can be used in the procedure of 
minimizing the objective function. As the 
engineering problems are complex and are usually 
multi-optimum problems, a genetic algorithm is 
one of the best techniques that can be used to find 
the global optimum.  
1.2 Micro Genetic algorithm 

Genetic algorithm was introduced by Holland[1] 
as a method of searching for global optimum in 
complex systems. In recently years, many efforts 
[2-15] are made using inverse procedure to solve the 
problems in structural engineering. There are 
several different versions of genetic algorithms. 
The micro genetic algorithm (mGA) is one of the 
most widely used GAs. This algorithm produces 
fewer individuals in each generation and the 
individuals of each generation are usually created 
through two operations: selection and crossover. 
mGA is a very robust algorithm in finding the 
global optimum rather than local optimum for a 
given domain. This advantage is especially 
important in finding the global optimum for 
multi-minimum or multi-maximum problems. 
However, as the primitive selection procedure in 
mGA is random, the time required to find the 
desired solution is usually very long. The 
searching time will also increase very rapidly as 
the number of genes in the individuals increase. It 
is commonly believed that the mGA is 
impractical for finding the global optimum for 
real life problems with large number of 
parameters, unless measures are taken to speed up 
the searching process.   

One of the methods used for speeding up the 
search process of GA is the hill climbing 
technique [16]. This method combines the general 
GA global search procedure with locally 
optimized search using hill climbing. This local 
optimized technique greatly improves the local 
searching performance of conventional GAs. 
However, due to the fact that a large number of 
function evaluations is necessary in the local 
search, the method encounters difficulties for 

problems where variables are large and/or a single 
function evaluation takes considerable 
computational time. As most of the time is spent 
on function evaluation, the desired searching 
method should be the one that requires only a 
small number of function evaluations. Therefore, 
measures must be taken to mGA to reduce its 
number of forward calculations. 
1.3 Work in this paper 

In this paper, an inverse analysis with 
modified mGA search algorithm is firstly 
presented to reduce the required number of 
forward analyses. The performance of the method 
is tested through a number of testing functions. 
The method is then used to determine the material 
properties that minimize the error between test 
and simulated frequency response of a PCB with 
components mounted on it. Conclusions are 
finally obtained. 
 
2. MODIFIED mGA 

To speed up the convergence procedure, in the 
following part, the conventional mGA is modified 
using an intergenerational projection searching 
technique.   
2.1 Intergenerational Projection Technique 

Intergenerational projection is a search 
strategy, which can be used to find out the better 
individual from best individuals of two adjacent 
generations. Due to the expensive computation of 
mGA in functional evaluation, the 
intergenerational projection technique can be 
better used in mGA than other gradient methods. 
The investigation of combining mGA with this 
technique can be found in reference [11]. In using 
intergenerational projection, two new individuals 
c1 and c2 are generated in each generation using 
forward and internal interpolations based on the 
two best individuals in the neighbor generation pj 

and pj-1. That is  

1 1( )j j jc p p pα −= + −                  (1) 

2 1( )j j jc p p pβ −= − −                  (2)  

where α and β are two non-negative decimals, 
these parameters’ value can be changed to adjust 
the distances of these new individuals to original 
individuals . To get stable convergence, generally, 
the ranges of these parameters are: 0 1.0α≤ ≤ , 
0 1.0β≤ ≤ . For simplicity, in the following parts 
of this paper, we fixed the values of α, and β to be 
0.2 and 0.5 respectively. 
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Table 1 test functions used in performance test 
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2.2 Performance Test of Using the 
Intergenerational Projection Technique 

In order to compare this method with 

conventional ones, the selected testing functions 
are those typical functions used for performance 
testing. They are listed in table 1. 

Table 2 gives results of the testing functions 
in table 1, the performance comparison between 
the mGA with intergenerational projection and 
the conventional mGA are performed and the 
rates of number of generations for desirable 
fitness of present method over conventional 
method are also listed in the table. Results show 

the great effectiveness of the proposed method. 
Compare to conventional mGA , only a small 

fraction of generations is needed to get 
convergence using this intergenerational 
projection method. The results have shown 
great success in speeding up the searching 
procedure. 

Table 2 Performance of modified mGA and general mGA  

Test 
Function 

 
Modified mGA 

 
mGA 

 
No 

f optimum  NM fM Nm fm 

Ratio 

NM/Nm 

(%)
 

F1 -1.601 7 -1.601 313 -1.601 2.24 

F2 1.0 110 1.0 10868 1.0 1.01 

F3 -186.7 219 -186.7 11363 -186.7 1.93 

F4 0.0 409 -2.235E-8 34618 -2.235E-8 1.18 

F5 0.0 306 1.232E-5 26487 1.023E-4 <1.1 

F6 0.0 730 -1.459E-8 39997 -.917E-7 <1.8 

F7 -10.15 250 -10.15 20576 -5.101 <1.2 
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In order to further improve the search 

procedure, a pre-treatment procedure is made to 
ensure random selection of individuals that did 
not occur previously. This can be done through 
defining a vector to remember the individuals that 
are used. Therefore, the domain of candidate 
individuals for random searching in this method 
becomes progressively smaller as the searching 
goes on. The comparisons of number of forward 
calculation between mGAs with and without this 
modification are listed in table 3. From table 3, 
the number of forward calculations is further 
reduced for modified mGA by using this 
improvement. The combination use these 
modified techniques to mGA , the total saving of 
forward evaluations is significant compare to 

those using conventional mGA. 
 

3. INVERSE IDENTIFICATION OF 
MATERIAL PROPERTIES 
3.1 Problem Definition 

For the purpose of illustrating the procedure, a 
PCB with two heat sinks and two components 
mounted on it is considered [17].  Figure 1 shows a 
geometric model of the system. The physical 
dimensions of the PCB are 
200mm×100mm×1.5mm, those of heat sinks are 
140mm×50mm×1.4mm, those of component 1 are 
50mm×20mm×40mm, and those of component 2 
are 40mm×20mm×30mm. The PCB is partially 
supported along two opposite edges and at a few 
locations on the other pair of opposite edges.  
This corresponds to the PCB being housed in a 
casing. The system is subjected to an enforced 
acceleration of 1.0g over a frequency range of 20 
Hz to 140 Hz. The frequency response 
(acceleration levels) at a few locations on the 
PCB and on the components is obtained for a 
given set of material properties.  In the actual 
case, this response, obtained for a given set of 
material properties, will correspond to test results. 
Now, the problem is to determine a set of material 
properties if exact values are not known but a 
range of values is available for key parameters.  
This is done such that the error between test and 
simulated frequency response is minimized. The 
formulations are described in the following part. 

 
 

Component 2 

Component 1 

Heat sink  1 

Heat sink  2 

PCB  

x  
y  

z 

 
 

Figure 1. Geometrical model of PCB with heat 
sinks and components  

Table 3 The number of forward calculations between mGAs with and without global 
modification (GM) 

Modified mGA mGA  

Test 

Function 

without 

GM 

with 

GM 

saving   

(%) 

without 

GM 

with 

GM 

saving 

(%) 

F1 805 357 55.65 2500 1236 50.56 

F2 3980 2116 46.83 100000 56490 43.51 

F3 33305 13368 59.86 75000 43147 42.47 

F4 42260 19627 53.56 200000 140639 29.68 

F5 40220 22075 45.11 150000 105496 29.7 

F6 8050 4859 39.64 200000 135878 32.06 

F7 8005 5195 35.1 250000 190692 23.72 
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Figure 2. Finite element representation of  
PCB and components   
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Figure3.  Acceleration response at PCB 
centre 

Table 4. Material properties for obtaining 
“test” results  

Property PCB Heat 
Sinks 
1&2 

Component 
1 & 2 

Young’s 
modulus, 
E, MPa 

 
13500 

 
71,000 

 
5,000 

Mass 
density, ρ, 
ton/mm3  

 
1.5E-9 

 
2.7E-9 

 
1.0E-9 

Poisson’s 
ratio 

0.3 0.3 0.2 

Structural 
damping 
coefficient 
GE 

 
0.08 

 
0.08 

 
0.08 

3.2 Two-Stage Inverse Procedure 
The inverse analysis procedure used to 

determine the material properties in this work is 
performed by a two-step procedure.  First, 
matching of natural frequencies is performed.  
The objective function (fitness) for this step is  

2 minimise   {( ) ( ) } 1, 2, ...,t i s i
i

f f i m− =∑   (3) 

where ft and fs are the natural frequencies from 
test and simulation, respectively and i denotes the 
mode number. After matching the natural 
frequencies, the design variables used in this step 
are not allowed to vary in the next step in which 
matching of frequency response is performed. 
The remaining design variables are used in this 
step. The objective function (fitness) used in this 
step is  

2

k

minimise   ( ) 1, 2, ...,k kT S k N− =∑      (4) 

where Tk and Sk denote the frequency response 
from test and simulation, respectively and k 
denotes the output location number. With this 
step, the inverse analysis procedure for 
determining material properties for matching of 
test-simulation frequency response is completed. 
The modified mGA is used in the procedure of 
finding the minimums in (3) and (4). In the 
forward calculation the finite element 
representation of the PCB system and the 
numerical experiments are performed with the 
finite element model. 
3.3 Finite Element Representation 

Based on the geometric model shown in Figure 
1, a finite element model is created.  The PCB and 

heat sinks are modeled using four-node plate 
elements (CQUAD4 in MSC/NASTRAN) while 
the components are modeled using eight-node 
brick elements (CHEXA). The heat sinks and the 

components are connected to the PCB using rigid 
elements (RBE2 in MSC/NASTRAN).  The finite 
element representation is shown in Figure 2. The 
model consists of 340 CQUAD4 elements and 64 
CHEXA elements.  For the purpose of specifying 

an enforced acceleration, the large mass method is 
used. A large mass (1.0x107 ton) is connected to 
the nodal points where the system is supported.  
An appropriate force on the heavy mass in the 
required direction will result in an enforced 
acceleration. The following section describes the 
numerical experiments that are performed and the 
results obtained from those experiments. 
3.4 Numerical Experiments, Results and 
Discussion 

Before performing a frequency response 
analysis, knowledge of the natural frequencies of 
the system is required.  Knowing the natural 
frequencies will help take smaller steps near 
natural frequencies. So, a normal modal analysis 
is performed first with the finite element model 
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 Figure 4. Variation of fundamental 
frequency with Young’s modulus of PCB 

described in the previous section. For the purpose 
of obtaining “test” results, the set of material 
properties given in Table 4 is used. The first three 
natural frequencies are found to be f1 = 95.39 Hz, 
f2 = 118.54 Hz, and f3 = 173.82 Hz.  The 
fundamental mode is observed to be dominantly a 
bending mode.  Following normal modal analysis, 
a modal frequency response analysis is performed 
with the excitation frequencies in the range 20 Hz 
to 140 Hz. The peak response corresponds to the 
fundamental frequency. Figure 3 shows the 
response at PCB center. Table 5 lists the 
acceleration response at some specific locations. 

After obtaining the test results, attention is now 
focused on the inverse problem in which a set of 
material properties, each one of which lies within 
a given range that minimizes the error between 
test and simulated response is determined. To 
begin with, in the inverse analysis step, a set of 
values that corresponds to the material properties 
provided by a “client” is chosen.  These values 
are listed in Table 6. A normal modal analysis is 
performed to determine the natural frequencies. 
The first three natural frequencies are f1 = 102.07 
Hz, f2 = 125.84, and f3 = 185.57 Hz. As the client 
is not sure about the exact values of the material 
properties, they are allowed to vary within 
permissible ranges. Figures 4 and 5 show the 
variation of the fundamental frequency with 
Young’s modulus and mass density, respectively, 
of PCB. A value of 1.63x10-9 ton/mm3 is used for 
mass density of PCB for generating Figure 4 and 
a value of 13, 500 MPa is use for the Young’s 
modulus of PCB for generating Figure 5.  The 
values of other parameters are E = 74, 586 MPa, ρ 

= 2.67x10-9 ton/mm3 for the heat sinks, and E = 5, 
392 MPa, ρ = 1.0x10-9 ton/mm3 for the 
components. As can be seen from Figures 4 and 
5, variation of the Young’s modulus or the mass 
density or both of the PCB results in variation of 
the natural frequencies. Figure 6 shows the 
variation of acceleration response at the centre of 
PCB with variation of the Young’s modulus. An 
increase in the Young’s modulus results in an 
increase in the natural frequencies. As the 
fundamental natural frequency increases, the 
acceleration response decreases since they are 
inversely related. Variation of the acceleration 
response at the centre of PCB with variation of 
the structural damping coefficient is shown in 
Figure 7.  

Now, the inverse problem of finding a set of 
materia l properties that minimizes the error 
between test-simulation frequency response 
results is solved.  This is done in two steps. In the 
first step, the natural frequencies that fall in the 

Table 6. Material properties provided by 
“client” 

Material 
property 

PCB Heat 
sinks 
1&2 

Componen
t 1&2 

Young’s 
modulus, 

Mpa 

 
15,00

0 

 
68,000 

 
5,000 

Mass 
density, 
ton/mm3 

 
1.4E-9 

 
2.5E-9 

 
1.0E-9 

Poisson’s 
ratio 

 
0.3 

 
0.3 

 
0.2 

Structural 
damping 

coefficient 

 
0.07 

 
0.07 

 
0.08 

 

 

Table 5. Acceleration response from “test” 
No Location Acceleration  

(g) 
1 PCB Centre 7.567 
2 PCB Front 8.100 
3 PCB Back 7.324 
4 Below 

Component 1 
5.956 

5 Top of 
Component 1 

6.545 

6 Below 
Component 2 

5.999 

7 Top of 
Component 2 

6.350 
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excitation range are matched (fitness is 
minimized). First, a sensitivity analysis is 
performed to find out those parameters (design 
variables) that influence the natural frequencies. 

The design variables for this step are the Young’s 
modulus and mass density of the PCB, heat sinks, 
and components. The sensitivity analysis  showed 
that the Young’s modulus and density of the PCB 
material have relatively greater impact on the 

natural frequencies. Following sensitivity 
analysis, frequency matching is performed. The 

range of values of the design variables used in 
this step is given in Table 7. The searching 
procedure to minimize the fitness using the 
present modified mGA is shown in figure 8. The 
desired variables are found in 394 generations. In 
this example, both components are considered to 
be having the same material properties though, in 
practice, there is no such requirement and the 
procedure can still be followed. The 
corresponding frequencies, within the range of 
excitation frequencies, are f1 = 95.4 Hz and f2 = 
118.5 Hz. 

After matching the first two frequencies, the 
design variables used in the previous step are kept 
constant at their respective values obtained at the 
end of the previous step. A sensitivity analysis is 
then performed to determine the design variables 
among the remaining parameters that influence 
the frequency response (at specified output 
locations). The structural damping coefficient is 
found to be the single most significant design 
variable. So, in matching frequency response, the 
structural damping coefficients of the PCB, the 
heat sinks, and the components are made the 
design variables. After performing a sensitivity

Table 7. Design variables range for frequency 
matching 

 
Material 
property  

PCB Heat sinks 1 
& 2 

Components 
1&2 

Young’s 
modulus, 
E, MPa 

12,000 ≤ E 
≤ 18,000 

Initial value: 
17,000 

54,400 ≤ E  ≤ 
81,600 

Initial value: 
75,000 

4,000 ≤ E  ≤ 
6,000 

Initial value: 
5,400 

Mass 
density, ρ , 
ton/mm3 

1.2x10-9  ≤ ρ  
≤ 1.8x10-9 

Initial value: 
1.6x10-9 

2.0x10-9  ≤ ρ  ≤ 
3.0x10-9 

Initial value: 
2.5x10-9 

0.8x10-9 ≤ ρ  ≤ 
1.2x10-9 

Initial value: 
0.9x10-9 
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Figure 5. Variation of fundamental frequency 
with mass density of PCB 
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 Figure 6. Variation of acceleration response 

at PCB centre with Young’s modulus 
 

5

6

7

8

9

10

0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

Structural damping coefficient

A
cc

el
er

at
io

n 
"g

"

Figure 7. Variation of acceleration at PCB 
centre with damping coefficient of PCB 
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analysis, matching of test-simulation frequency 
response results is carried out. The objective is 
to minimize the sum of the squares of the 
deviations between test and simulated results at 
the output locations. Figure 9 shows the 
searching procedure in match frequency 
responds using modified mGA. The true 
structural damping coefficients are found in 426 
generations. Once material properties are 
determined this way, they may be used in the 
evaluation of relative performance of competing  
designs where the layout of components is 
different. 

 
4. CONCLUSIONS 

A modified mGA  with intergenerational 
projection technique can greatly save forward 
evaluation and thus shorten the time to get 
convergence in inverse analysis. This method is 
efficient enough for finding global optimum in 
complex multi-optimum engineering problems.  

Through sensitivity analysis, the design 
variables (material properties) that influence the 
natural frequencies and frequency response cab 
be determined. A two-step inverse procedure, 
matching frequency and matching frequency 
respond, can then be setup to identify material 
properties of a PCB with heat sinks and 
electronic components mounted on it by using 
the finite element model and modified mGA 
search. It is demonstrated that the two-stage 
inverse analysis is feasible in real-life 
applications. 
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ABSTRACT 

This paper presents the development and 
application of a heat transfer inversion procedure 
to the cure of thermoset based composites based 
on genetic algorithms. The procedure is utilized 
for process optimization applied to the curing of 
carbon fiber reinforced composites. The 
optimization objective is the selection of an 
appropriate cure schedule so that the duration of 
the curing is minimized subject to constraints 
related to the thermal gradients developed during 
the cure. 

An alternative use of inversion concerns the 
integration of monitoring signals with modeling. 
Inversion is utilized to alter on-line the thermal 
properties used in the direct model so that 
monitoring results coincide with simulation 
predictions. This procedure is applied to the 
curing of a carbon fiber reinforced thermoset 
based composite, using thermal conductivity as 
the variable thermal property.  

 
NOMENCLATURE 

pc  Specific heat capacity 
h  Surface heat transfer coefficient 

totH Total heat of the curing reaction 
K  Thermal conductivity tensor 

iN Interpolation function 
n�  Surface vector 

'q  Boundary heat flux 
r�  Spatial coordinate 

1S  Temperature boundary condition surface 

2S  Heat flux boundary condition surface 

3S  Convection boundary condition surface 

ijS
~ Interface 
T  Temperature 

'T  Boundary temperature 

∞T Ambient temperature 
t  Time 

ct  Time to reach conversion 0.84 

fv  Fiber volume fraction 
α  Degree of cure 

t∆  Time step  
θ  Time discretization parameter  
ρ  Density of the composite  

rρ  Resin density 
 
INTRODUCTION 

In recent years the need for predictive 
modelling and for in-situ real time monitoring of 
composites manufacturing processes has arisen 
and been met by the development of a family of 
appropriate techniques. Models representing 
various aspects of processing have been 
developed and applied to the majority of 
processing techniques. Heat transfer models have 
been implemented in order to simulate the curing 
phenomena in autoclave processing [1], resin 
transfer moulding [2], pultrusion [3] and filament 
winding [4]. Provided that these models are 
combined with appropriate cure kinetics 
subroutines [5,6], they offer the ability to 
calculate the spatial distributions of temperature 
and  of the degree-of-cure and their evolution 
with time during the curing. Alongside with 
simulation, process monitoring methods such as 
thermal [7], dielectric [8,9], fibre optic [10] and 
acoustic cure monitoring [11], have  begun to be 
implemented in an industrial environment. 

Both monitoring and modelling are valuable 
for optimising the curing process. The predictive 
ability of the simulation can be used as a part of 
the process design, while monitoring constitutes a 
potential tool for on line control. However, both 
approaches present some inherent drawbacks. 
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Accurate modelling requires an extensive 
knowledge of material properties and process 
characteristics. This may be impossible in some 
cases due to limited reproducibility of some of the 
process conditions, or due to the prohibitive costs 
associated with the knowledge acquisition step. 
Similarly, monitoring involves insertion of a 
sensor in some critical area of the component, 
which composite manufacturers and end users are 
reluctant to adopt.  

A method to overcome these limitations arises 
from a combination of modelling and monitoring. 
In the present paper a scheme which combines 
heat transfer modelling and thermal and dielectric 
cure monitoring is presented. An inversion of the 
heat transfer model based on a genetic algorithm 
is applied to data gathered by monitoring, in order 
to calculate some of the properties or process 
characteristics. Thus, an estimation of those 
modelling parameters that are most difficult to 
predefine can be performed, in accordance with 
the results of monitoring. Subsequently the direct 
model can be solved in order to obtain the global 
picture of the cure. 

The inversion procedure developed here is 
also applied to purely predictive process design 
where the minimisation of the cure duration is the 
objective of the optimisation.  

 
 
DIRECT MODEL 
 
Heat Transfer Problem 

The model concerns the curing of a carbon 
fiber reinforced composite in a resin transfer 
mould. In this process dry fabric is placed in a 
rigid cavity, resin is infused under pressure and 
vacuum and the curing takes place with further 
heating of the mould. When forced convection 
does not occur heat conduction is the only heat 
transfer mechanism relevant to composites cure. 
Accordingly, the governing equation is:  

 

( )
dt
dHv1T

t
Tc totrfp

α
ρ−+∇⋅∇=

∂
∂

ρ K  (1)   

  
The second term in the right side of (1) expresses 
the heat generated by the curing reaction. This 
equation is accompanied by a set of boundary 
conditions. In the general case there are three 
possible boundary conditions: -(i) prescribed 
temperature: 

 
( ) ( ) 1S�,t,�Tt,�T ∈′= rrr  (2)  

 
(ii) prescribed heat flux  
 

( ) ( ) 2S�,t,�qt,�T� ∈′=∇⋅ rrrKn  
 (3)  

 
(iii) and convection  
 

( ) ( )( ) 3S�,Tt,�Tht,�T� ∈−=∇⋅ ∞ rrrKn  (4)  
 
As in composites curing the heat transfer 

problem is multimaterial, i. e. thermal properties 
and especially thermal conductivity present a 
discontinuity at the tool-composite interface, a 
separate boundary value problem, of the type 
expressed by Eqs. (1)-(4), is formed over each 
subdomain. An additional set of interfacial 
conditions that ensures temperature and heat flux 
continuity is defined as follows: 

 
( ) ( ) ijji S

~�,t,�Tt,�T ∈= rrr    (5) 
 

( ) ( ) ijji S
~�,t,�T�t,�T� ∈∇⋅=∇⋅ rrKnrKn ji   (6) 

 
here the indices i and j denote areas of different 
materials.  

Eqs. (1)-(6), accompanied by an appropriate 
cure kinetics model and a set of thermal 
properties models expressing thermal 
conductivity, specific heat capacity and density as 
functions of degree of cure and temperature, 
suffice for the complete description of the curing 
process in a resin transfer mold. 

    
Finite Elements Formulation 

In order to solve the problem using finite 
elements the domain is divided into a number of 
elements that connect at G nodal points. The 
unknown variable is approximated as a linear 
combination of a set of G functions as follows: 

 

( ) ( ) ( ) ( ) 1i
G

1i
ii Sift,'TtT,�NtTT ∈=∑=

=

ii rrr  (7) 

 
Function iN  is equal to unity at node i and 
vanishes at all other nodes and within all the 
elements to which node i does not connect.  

By employing the above approximation, 
adopting a finite difference scheme to express 
time derivatives and expressing the heat transfer 
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problem by its weighted residuals equivalent, the 
following system of equations is obtained: 

 
( ) ( )( ) 0tt1t =∆−∆θ−−−∆θ+ + FTLMTLM n1n    (8) 
 
where 
 

∫ Ωρ=
Ω

dNNcM ijpji  (9) 

 
∫+∫ Ω∇⋅∇=

Ω 3S
ijijji dShNNdNNL K   (10) 

 

( )∫ Ω
α

ρ−

+∫+∫−=

Ω

∞

d
dt
dHv1N

dShTNdS'qNF

totrfj

S
j

S
jj

32
 (11) 

 
The system of equations described by (8)-(11) 

can be solved for each time step in order to 
calculate the distributions of temperature and 
degree of cure and their evolution with time.  

 
Model Implementation and Validation 

A model based on the principles described 
previously was developed in order to simulate the 
curing stage of resin transfer molding. The model 
comprises a core finite elements solver and a set 
of submodels simulating the cure reaction 
kinetics, and the changes in thermal properties, 
i.e. specific heat capacity, thermal conductivity 
and density, during the cure. The algorithm starts 
from the initial temperature and degree of cure 
distributions which are fed into the cure kinetics 
model. The cure kinetics model produces values 
for the reaction rate which are fed into the finite 
elements solver in order to account for heat 
generation and values for the updated degree of 
cure which are output to the thermal properties 
submodels. The three thermal properties 
submodels use the values of conversion and initial 
temperature to compute the values of the thermal 
properties within the different elements of the 
model. The results are sent to the finite elements 
solver, which, taking into account the boundary 
conditions and the initial temperature 
distributions, computes the resulting temperature 
distribution. This procedure is repeated for a 
number of time steps by replacing the initial 
conditions with the temperature output of the 
finite elements model and the updated degree of 
cure distributions as calculated by the cure 
kinetics and by updating the boundary conditions.   

The model was applied to the curing of an 
RTM6 epoxy resin/ T300 continuous carbon fiber 
reinforced composite. The material properties 
submodels were appropriate to the specific 
materials. The cure kinetics model operates by 
direct interpolation in the degree of cure-
temperature phase space applied to experimental 
differential scanning calorimetry (DSC) data and 
is analyzed in detail elsewhere [5].  

The specific heat capacity submodel operates 
in a similar way using experimental data 
produced by modulated differential scanning 
calorimetry. The experimental data for the resin in 
the temperature-fractional conversion phase space 
are illustrated in Fig. 1. The step change occurring 
during the cure of the resin marks the glass 
transition of the thermosetting material. The 
specific heat capacity of the carbon fiber was 
found to be a linear function of the temperature as 
follows: 

 
765.0T0023.0cp +=      (12) 

 
In the above equation the units of temprature are 
oC and of specific heat capacity J/g/oC. Once the 
values corresponding to the resin and the 
reinforcement have been computed by the 
submodel the law of mixtures is employed to 
calculate the value for the composite.  
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Fig. 1 Specific heat capacity versus cure time 

during isothermal cures  
 
 
The thermal conductivity of the anisotropic 

composite material is computed using an 
appropriate geometry based model [12] that 
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combines values for the resin and the carbon 
fiber. The values for the resin were obtained 
experimentally using a technique that measures 
the thermal conductivity of the thermoset while it 
cures. Details of the method are given elsewhere 
[13].  The dependence of the resin thermal 
conductivity to temperature and fractional 
conversion can be expressed as follows: 

 

12.022.00937.0

T0002.0T0011.0T0008.0K
2

2

+α+α−

−α−α=
   (13)  

 
where temperature is given in oC and thermal 
conductivity in W/m/oC. The longitudinal thermal 
conductivity of T300 carbon fiber can be 
expressed as follows [14]: 
 

T0074.08.4K +=     (14) 
 

where temperature is given in oC and thermal 
conductivity in W/m/oC. The radial thermal 
conductivity of T300 carbon fiber is 0.84 
W/m/oC.  

The density model takes into account thermal 
expansion of the resin and of the fiber and curing 
shrinkage. The model assumes that resin 
shrinkage is proportional to the progress of the 
curing reaction and uses the law of mixtures in 
order to calculate the composite density. The 
density of uncured RTM6 resin at ambient 
temperature is 1.117 g/cm3 and the total 
volumetric chemical shrinkage 4.9 %, while the 
volumetric thermal expansion coefficient above 
glass transition is 4.08 10-4 oC-1 and below glass 
transition 1.62 10-4 oC-1 [15]. The expansion 
coefficient of carbon T300 is 5 10-6 oC-1 and its 
density at ambient temperature 1.8 g/cm3. 

The model implementation was tested against 
experimental data obtained during the cure of a 
composite. The experimental equipment used is 
shown in Fig.2. The dimensions of the mold 
cavity were 800 mm x 340 mm x 3 mm. The sides 
of the cavity were sealed using silicone rubber 
while the tool was closed using a glass plate and a 
set of stiffeners. Heating is achieved by an array 
of heating elements placed under the mold cavity. 
The specific experimental configuration was 
selected in order to reduce the heat transfer 
problem to one dimension. This enables an easier 
implementation of the inversion that follows to be 
made. The carbon fabric used had a surface 
density of 816 g/m2 and comprised three layers of 
unidirectional fiber tows at angles +45o,-45 o and 

0o. Four layers of this fabric were used in the 
cavity to achieve a fiber weight fraction of 0.69. 
The total sequence of unidirectional tow plies was 
[+45/-45/0/0/-45/+45]2S. Resin filling was carried 
out at 120 oC. After completion of the filling, 
heating at 1.5 oC/min was performed up to 160 
oC, and then the temperature was kept constant. 
Two thermocouples (k-type) which measure the 
temperature at the top of the composite and at the 
mid-thickness were placed in the center of the 
curing component.  

The modeling domain considered comprised 
the composite and the glass top plate. The bottom 
of the composite was considered to follow the 
thermal profile measured by the tool temperature 
sensor. The rubber seal was assumed to act as an 
insulator (zero heat flux) on the sides of the 
composite component. Natural air convection was 
considered on the top and sides of the glass plate. 
The initial condition was considered to be zero 
fractional conversion and uniform temperature 
after the end of filling. The thermal properties of 
the glass plate are given in table 1. 

 
 

 
Fig. 2 The resin transfer molding facility 

 
Table 1. Properties of the glass top plate 

( )C/g/Jc o
p  0.84 

( )C/m/WK o  0.78 

( )3cm/gρ  2.7 

( )2m/Wh  8.5 
 
 

The convergence of the three dimensional 
simulation was investigated. The convergence 
study indicated an optimum time step of 45 sec, 
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an optimum element size of 0.05 mm in the 
thickness direction and 20 mm in the length and 
width directions of the component. A comparison 
of the results of the three dimensional case with 
the results of an one dimensional version of the 
model where only the thickness direction is 
considered showed that the 1-D model represents 
the curing of the specific adequately. The results 
of the model are set against experimental results 
in Fig. 3.  It can be observed that the agreement 
achieved is satisfactory. 
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Fig. 3 Experimental and simulation temperature  

 
 

INVERSION PROCEDURE 
The inversion of the heat transfer model was 

performed using a genetic algorithm. The term 
describes a family of evolutionary optimization 
methods which involve a population of points in 
the search space of solutions (generation) and 
employ a performance sensitive selection 
procedure and crossover and mutation operations 
in order to reproduce a new population. The 
members of the population (individuals) are 
usually encoded in bit strings and the algorithm is 
iterated until some convergence criteria are met. 
A code which performs these procedures and uses 
as a direct model the one dimensional heat 
transfer simulation presented previously has been 
implemented. The operation of the algorithm is as 
follows.  

A number (N) of initial values for each 
parameter corresponding to the first generation 
are created using a random number generator. 
Then the 1-D simulation is executed N times and 
the results corresponding to each individual are 
stored in a file. The fitness of the individuals is 

calculated subsequently by comparing the output 
of the direct model with a target, which drives the 
inversion. The form of the fitness function and the 
inversion target are specific to the application of 
the inversion procedure.  

The next step of the algorithm is the encoding 
of the individuals. In this stage, each individual is 
translated into a unique binary string. The length 
of the string defines the accuracy of the 
algorithm. Subsequently, the individuals are 
sorted according to their fitness. A limited 
number (m) of individuals with the best fitness 
are passed directly into the new generation. The 
rest of the individuals of the new generation are 
produced with a combination of selection, 
crossover and mutation. The selection is 
performed using a standard procedure called 
�roulette wheel�. In this procedure each 
individual is assigned a slice of a circular wheel, 
the size of the slice being proportional to the 
fitness of the individual. Two random numbers 
between 0 and 360 are generated and the 
individuals corresponding to them are selected. 
The application of a uniform crossover operation 
to the two selected individuals follows. In this 
operation a predefined probability (exchange 
probability) is compared with a random number 
between 0 and 1 at each bit of the binary string. If 
the number is greater than the exchange 
probability the two selected individuals exchange 
their bit values, otherwise the values are 
preserved. At the end of this operation two new 
individuals have been produced, each of them 
containing parts of the old individuals. 
Subsequently, a mutation operation is applied to 
the two new individuals. In this stage a very low 
probability (mutation probability) is compared 
with a random number for each bit of the two new 
strings. If the mutation probability is greater than 
the random number, the bit of the string switches 
from 1 to 0 or from 0 to 1, otherwise it remains 
unchanged.  

When N-m individuals have been produced, 
the selection-reproduction procedure stops. These 
N-m individuals together with the m best 
individuals of the previous generation form the 
new generation and the individuals are decoded 
back to decimal parameters.  

At that point the convergence of the algorithm 
is tested according to a criterion specific to the 
application which is applied to the best individual. 
If convergence has been reached, the algorithm 
outputs the appropriate data and exits. Otherwise 
the execution of the direct heat transfer model for 
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the new individuals is performed and the whole 
procedure of fitness calculation, sorting, 
encoding, selection, reproduction and decoding is 
iterated until convergence is achieved.    
 
THERMAL PROFILE OPTIMISATION 

A straightforward application of the inversion 
procedure described previously is the 
optimization of the thermal profile applied during 
the cure. The thermal profile comprises a linear 
heating up and an isothermal segment, thus can be 
characterised by two parameters:- (i) the ramp up 
rate and (ii) the isothermal temperature which can 
be the subject of the optimization. The fitness 
function was selected so that it rewards the 
parameter values which reduce the duration of the 
curing stage, i.e. it increases as the time to reach a 
fractional conversion of 0.84 in all elements of 
the component decreases. This is implemented by 
the function:  

 
ct/1Fitness =  (15) 

 
which is subject to the constraint: 

 

6.0for,mm/C5.2
dz
dT o

max
>α<  (16) 

 
The meaning of the constraint is that for 

fractional conversions at which the material has 
reached the rubbery state and residual strain can 
build up, the maximum thermal gradient must be 
kept lower than the thermal gradients achieved 
during conventional cure schedules. The 
implementation of the constraint is performed by 
excluding from the selection and reproduction 
procedures all individuals which violate it.  

The values of the optimisation parameters are 
selected within practically meaningful ranges, i.e. 
a heat up rate from 0 to 4 oC/min and an 
isothermal temperature from 150 to 190 oC. The 
algorithm is considered to have converged when 
the individuals of a generation have very small 
variation, i.e. the average percentage difference 
between the members of the population and the 
average is lower than 0.5 %.   

Thirteen individuals have been used, each of 
them represented by a string of one hundred 
digits. The three best individuals were directly 
passed to the next generation. The exchange 
probability used was 40% and the mutation 
probability 2%.  

The convergence of the optimisation is 
illustrated in Figs. 4 and 5. The problem involves 
only two parameters, thus convergence occurs 
very fast within six generations. The optimal 
values found are a heating rate of 3 oC/min and an 
isothermal temperature of 169 oC. Global 
optimality cannot be ensured, the effectiveness of 
the optimisation can be evaluated by comparing 
the resulting cure completion time of 64.5 min 
with the cure completion time of the conventional 
thermal profile described in previously which was 
87.5 min. A reduction in cure cycle time 26% is 
achieved, which could have a very significant 
impact on the total cost of production.  
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MODELLING-MONITORING INTEGRATION  
The second application of the inversion 

procedure examined here concerns the use of on-
line temperature measurement results in order to 
determine the dependence of the composite 
thermal conductivity on the fractional conversion 
and temperature. Subsequently, the distributions 
of the temperature and the degree of cure are 
calculated.  

Temperature measurements performed at the 
mid-depth of a curing carbon/RTM6 composite 
are used as the target of the genetic algorithm. 
The variable parameters are the coefficients of a 
polynomial, which expresses the dependence of 
the composite thermal conductivity on fractional 
conversion and temperature as follows: 

 
( )5Par4ParT)3Par2Par1Par(K 2 ++α+α=  (17) 

 
 The fitness of an individual is calculated as 

follows: 
 

∑ −
=

=

Q

1i
M

mid
i TT

1Fitness  (18)

  
where mid

iT is the temperature at time step i at the 
middle node, Q  is the number of time steps and 

iMT is the temperature measurement at time step i. 
The parameters of the finite element model 

have the values indicated by the convergence 
study. In the genetic algorithm 26 individuals 
with a string length of 100 bits were used. Five 
individuals were passed directly to the next 
generation, the crossover and mutation 
probabilities were identical to those used in the 
thermal profile optimization runs. The range of 
the five parameters to be estimated was �1 to 1. 

The convergence behavior  of the algorithm is 
illustrated in Figs. 6 and 7. The algorithm 
converges after about 30 generations. Note that 
the problem in that case involved five parameters 
and about 900 iterations of the direct model were 
required for their estimation. A search method 
equivalent in terms of computational time would 
have resulted in a accuracy of about 0.5 in the 
parameter estimation. The solution of the inverse 
problem is: 

 
( )T034.0358.0)094.0117.0125.0(K 2 −−α+α−= (17) 

 

Using this model for the calculation of thermal 
conductivity, the distributions of temperature and 
degree of cure can be calculated. Their 
comparison with the results of the direct 
simulation, which was shown to be in agreement 
with the thermal monitoring results utilized here 
for the inversion, is illustrated in Fig. 8. It can be 
observed that the monitoring-modeling scheme 
predicts the global distribution of temperature and 
degree of cure with satisfactory accuracy. The 
average error in temperature estimation is 0.29 oC 
and in fractional conversion determination 
0.0019. The error in temperature is lower than the 
accuracy of the direct model whereas the error in 
fractional conversion estimation is very low due 
to the fact that the higher differences in 
temperature between the inversion results and the 
direct model occur at low conversions when the 
reaction rate is very low. 
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CONCLUSIONS 
The inversion procedure based on genetic 

algorithms presented here can be used for 
optimization and monitoring-modeling integration 
in composites manufacturing. Optimal cure 
schedules with respect to total curing process 
duration were found for a specific carbon 
fiber/RTM6 composite component. The 
monitoring-modeling combined scheme offers the 
possibility to infer temperature and degree of cure 
distributions from limited local thermal 
monitoring signals. Local monitoring results 
combined with the inversion procedure result in a 
very accurate estimation of the temperature and 
degree of cure evolutions during the cure. Both 
applications of heat transfer inversion can be 
extended to the case of complex components 
where two or three-dimensional modeling is 
required. Application of the monitoring-modeling 
combined scheme may be limited due to 
computing time in the case of fast cures, however 
the majority of advanced composite components 
are subject to several hours long cure profiles. 
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ABSTRACT
In this paper we present a method for the so-

lution of the target pressure problem of inverse
aerodynamic shape design: “Given a static pres-
sure distribution along the sidewalls of a flow de-
vice, find the corresponding shape producing this
pressure distribution”. Two-dimensional and axis-
symmetric flows governed by the steady compress-
ible Euler equations are considered, although the
method is extendible to three-dimensional configu-
rations. The flow equations are solved on a moving
curvilinear body-fitted grid. Grid motion is gov-
erned by a parabolic system of differential equa-
tions, subject to a novel wall modification pro-
cedure. Block structured grids allow for reason-
ably complex geometries. The capabilities of the
method are demonstrated by inverse redesign of
a curved annular compressor diffuser with a cool-
ing air bleed-off diffuser. Another simple test case
demonstrates the ability of the method to solve
transonic problems as well. Remarkable robust-
ness and convergence properties of the method are
observed, both in terms of iteration count and exe-
cution time.

NOMENCLATURE
a speed of sound
E total energy
F flux tensor
H total enthalpy
n = (n1,n2)T outward pointing unit normal
p static pressure
ptarget target pressure
R residual vector
U vector of unknowns
U state vector
u = (u,v)T cartesian velocity components
x = (x,y)T cartesian coordinates
ẋs cell surface velocity
ρ density

σ, ψ computational coordinates
Ω control volume, computational cell
Superscripts in parentheses denote (pseudo-)time
indices.

INTRODUCTION
Modern turbo machinery design processes do

not merely aim at efficiency increase of the de-
vices, but also at minimizing human interaction
and thereby reducing turnaround time. One pos-
sible approach is to couple a flow analysis tool to
a constrained optimization method [3]. However,
constraints on the flow field (eg. given pressure dis-
tribution along side walls) are tractable more effi-
ciently by inverse approaches, eventually coupled
to an optimization procedure. Therefore, fast, ro-
bust, and versatile inverse methods are required.
This is the scope of the present paper.

Inverse methods can be divided into two broad
categories. In one class we find methods based on
stream-line coordinates ([5], [10]). The computa-
tional domain remains fixed during the computa-
tion, since sidewalls are streamlines. The govern-
ing equations assume a simple form, and the cou-
pling between flow and grid is intrinsic. Conse-
quently these methods are usually quite fast. How-
ever, streamline coordinates are not always the best
choice. For example, difficulties arise near stagna-
tion points, where the distance between adjacent
streamlines becomes large. Furthermore, in real-
istic three-dimensional configurations, secondary
flows will produce a rather complicated streamline
pattern which is not suitable as a coordinate sys-
tem.

More flexibility with respect to flow models
and geometry is provided by methods based on
iterative wall modification and re-gridding proce-
dures (eg. [8], [1], [2]). The basic ingredients of
such methods are a scheme for the unsteady flow
equations on a (moving) grid, an automatic re-
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gridding technique, and a wall modification pro-
cedure which updates the wall shape in such a way
that in steady state the target pressure distribution
is met and the wall is flow-aligned. Often an ex-
plicit time marching technique is used to reach the
steady state. It has been observed that convergence
is impaired if the coupling of fluid and grid motion
is neglected [2]. In some cases, the wall update
even has to be under-relaxed.

The approach followed here tries to combine
the strengths of both classes of methods. Geo-
metric flexibility is provided by general curvilinear
body-fitted block-structured moving grids. Grid
motion is governed by a system of time dependent
parabolic grid update equations, subject to bound-
ary conditions which generate streamline aligned
sidewalls in steady state. The coupling between
flow and grid is not as strong as within stream-line
based methods. Nevertheless, comparable conver-
gence speed can be obtained by an implicit time
stepping scheme which drives flow and grid equa-
tions simultaneously to steady state (in a strongly
coupled manner).

FORMULATION OF THE METHOD
In this section the ingredients of the method

are described in detail. The first two subsections
are devoted to the flow equations on a moving grid
and the equations governing grid motion. The flow
boundary conditions as well as the wall modifica-
tion procedure are presented next. The section is
concluded by the description of the spatial and tem-
poral discretization schemes.

Flow Equations
We consider a (quadrilateral) control volume

Ω(t) in a moving curvilinear coordinate system
x(σ,ψ, t). The computational coordinates(σ,ψ)
remain fixed. For this control volume the com-
pressible Euler equations of gas dynamics are [11]:

∂t

∫
Ω(t)

UdΩ+
∫

∂Ω(t)
(F−U · ẋT

s ) ·ndS= 0. (1)

For planar flow the state vectorU and the flux ten-
sorF are

U =


ρ

ρu
ρv
ρE

 ,

F =
[
F1 F2

]
=


ρu ρv

ρuu+ p ρvu
ρuv ρvv+ p
ρuH ρvH

 .

There are two differences with respect to the Eu-
ler equations on a fixed mesh: First, the cell vol-
ume

∫
Ω(t) dΩ is time dependent. Second, the ad-

vective fluxes depend on the relative flow velocity
and therefore the cell surface velocityẋs has to be
subtracted.̇xs is not specified yet. This is discussed
next.

Grid Generation Procedure
The method presented here is quite flexible

concerning the choice of a grid generation proce-
dure. In the present paper, we employ a parabolic
system of grid update equations similar to stan-
dard Poisson-type grid generation equations, see
eg. [11]. This ensures that the effect of grid per-
turbations decays rapidly both in space and in time.
Moreover, the velocity of the cell surfacesẋs is eas-
ily assessed from the grid point velocity defined by

xt = g22(xσσ +Pxσ)
+g11(xψψ +Qxψ)−g12xσψ, (2)

whereP andQ are control functions, and

g11 := xσ ·xσ,

g22 := xψ ·xψ,

g12 := xσ ·xψ.

If a reasonable initial geometry and good mesh
are provided (this might be the case when an exist-
ing design has to be improved by inverse redesign)
the control functionsP and Q may be obtained
from the initial mesh by settingxt = 0 in (2):[

g22xσ g11xψ
g22yσ g11yψ

][
P
Q

]
=

[
2g12xσψ−g22xσσ−g11xψψ
2g12yσψ−g22yσσ−g11yψψ

]
. (3)

With this choice of control functions (2) becomes
rather an equation for the grid update than a grid
generation equation. In fact, for a direct com-
putation (fixed side walls) the mesh remains un-
changed.

Depending on how the initial grid has been gen-
erated the control functionsP andQ may have to
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be smoothed by the following scheme which is ap-
plied several times [9]:

P(k+1)
i, j = ωP(k)

i, j +
1−ω

2

(
P(k)

i, j+1 +P(k)
i, j−1

)
Q(k+1)

i, j = ωQ(k)
i, j +

1−ω
2

(
Q(k)

i+1, j +Q(k)
i−1, j

)
.

The smoothing parameterω should lie between 0
and 1. Note thatP is usually only smoothed inψ
direction (index j), since smoothingP in σ direc-
tion would lead to a smoothing of the mesh density.

Flow Boundary Conditions
The numerical boundary condition scheme

used here is based on spatial characteristic extrap-
olation [6]. The Jacobian matrix of the surface
normal fluxn ·F(U) with respect to the conserva-
tive state variablesU is decoupled into characteris-
tic fields. For planar compressible Euler flows the
resulting eigenvalues (characteristic speeds)λi are
given by [6]: 

λ1

λ2

λ3

λ4

 =


un

un

un +a
un−a

 , (4)

and the left eigenvectorslTi correspond to the rows
of the following matrix:

a2−g γ1u γ1v −γ1

−ut n2 −n1 0
g−aun +n1a− γ1u +n2a− γ1v γ1

g+aun −n1a− γ1u −n2a− γ1v γ1

 .

(5)
Here, the abbreviationsun := u · n, ut := −n1v+
n2u, g := γ−1

2 (u2 + v2), andγ1 := γ−1 have been
used.

The number of required boundary conditions
equals the number of incoming waves (characteris-
tic speedsλi < 0). For the other waves, a numerical
boundary condition has to be used: Non-incoming
waves are extrapolated in space by

l i · (Us−Uextrapol.) = 0, λi(n)≥ 0. (6a)

Here,Us denotes the state vector at the wall sur-
face, andUextrapol.is the state vector obtained from
the interior cells by linear extrapolation. Incoming
waves are replaced by boundary conditions of the
general form

Bi(Us) = 0, λi(n) < 0, (6b)

whereBi(Us) is a nonlinear function expressing the
boundary condition, eg.Bi(Us) := p(Us)− ptarget.

For subsonic inflow, there are three incom-
ing waves, and therefore three quantities are pre-
scribed, namely the total temperatureT0, the total
pressurep0, and the inflow angleα. In the su-
personic case all flow quantities are given. At a
subsonic outflow the static pressurep is specified,
in the supersonic case all quantities are extrapo-
lated. Along sidewalls one boundary condition is
required in any case. If the wall geometry is fixed
we impose the slip conditionB4(U) := u ·n = 0. If
instead the static pressure distribution is specified,
characteristic extrapolation of the outgoing wave
may yield a nonzero normal component of the ve-
locity. The flow tangency conditionu ·n = 0 will
then be used for the wall modification procedure,
as discussed next.

Grid Boundary Conditions
(2) is a system of parabolic second order equa-

tions for the two unknownsx := (x,y)T . Two
boundary conditions are required along the bound-
ary of the computational domain. For accuracy rea-
sons an orthogonal grid at the boundaries is desir-
able. Therefore, one of the boundary conditions is
the orthogonality condition

xσ ·xψ = 0. (7)

For a fixed wall, the other condition may be written
in the general form

f (x) = 0. (8)

f is any implicit function describing the wall
shape, eg.

f (x) = y−polynomial(x).

In the inverse design case application of the char-
acteristic extrapolation scheme (6) with imposed
static pressure yields a nonzero normal velocity
component. The tangential velocity component is
extrapolated by virtue of (6a, i = 2). Once a value
of the velocity vectoru has been obtained, the ge-
ometry condition can be replaced by the flow tan-
gency condition

u ·n = 0 (9)

which is regarded as an equation for the wall nor-
mal vectorn (ie. for the wall slope). Of course, the
starting point of an inverse sidewall has to be fixed.
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In case of multi block grids special care has to
be taken at block interfaces in order to ensure con-
tinuity of the grid. A possible option is to leave
the block interfaces floating: Grid vertices at block
interfaces are only required to be located in the
centre between the four adjacent vertices. There-
fore the location of the block boundaries can not be
prescribed in advance, but the grid is smooth over
block boundaries.

Spatial Discretization
Each block of the computational domain is

subdivided into quadrilateral cells in a structured
manner. It is quite natural to assign the geome-
try variablesx = (x,y)T to the vertices. The grid
generation equations (2) are discretized by central
finite differences. For block connectivity one layer
of ghost vertices is required.

For the flow equations we are free to choose
a cell centered finite volume discretization: Flow
variables are assigned to cell centers. For simplic-
ity we use the JST scheme [7]: The convective
fluxesF · n are computed in a central manner, ie.
by the mean value of the fluxes evaluated at the
neighbouring cell centers. For stabilization sec-
ond and fourth order differences of the conserva-
tive variables are added to each equation. Based
on a pressure switch the coefficients of these artifi-
cial dissipation terms are chosen in such a way that
the second order accuracy of the scheme is retained
in smooth flow regions, but still enough stability is
provided across shocks. For details the reader is re-
ferred to [7]. The fourth order difference requires
the values of two neighbouring cells in each direc-
tion, therefore two layers of ghost cells are needed.

Time Marching Technique
Spatial discretization of flow (1) and grid (2)

equations yields a large system of ODEs

Ut +R(U) = 0. (10)

The unknown vectorU contains discretized flow
and grid variables. The steady stateR(U) = 0
can be reached either by explicit or implicit time
marching techniques. Here, we use the implicit Eu-
ler scheme

1
∆t

(
U (k+1)−U (k)

)
+R(U (k+1)) = 0. (11)

The nonlinear algebraic system for the vector of
unknowns at the new time levelU (k+1) is solved
approximately by one step of Newton’s method.

U (k) is used as initial guess. The corresponding
iteration reads(

1
∆t

I +R(k)
U

)(
U (k+1)−U (k)

)
+R(U (k)) = 0. (12)

I denotes the identity matrix andRU the Jacobian
of R(U). The linear system is solved iteratively by
GMRES with ILU preconditioning.

For smooth flows and reasonable initial guess
the time step∆t can be chosen very large. With
∆t → ∞ (12) reduces to the standard Newton it-
eration for the steady state equationsR(U) = 0.
Hence, quadratic convergence might be expected.
In practice, however, the Jacobian matrixRU is
computed with frozen coefficients of artificial dis-
sipation, and the linear system (12) is not solved
to machine accuracy. Convergence therefore be-
comes linear, but the residual is usually reduced by
one order of magnitude per iteration.

The time marching scheme (12) requires an ini-
tial guess not too far away from the actual solu-
tion. As iterations are cheap on a coarse grid it
pays to employ a nested iterations technique: First,
the problem is solved on a coarse grid. As soon as
the iteration error is of the same magnitude as the
discretization error, the coarse grid solution is in-
terpolated to a finer grid with twice as many cells
in each direction. This procedure is repeated until
the target grid has been reached.

The fact that the mesh is time-dependent has to
be accounted for in the formulation of the numeri-
cal scheme. Although the change of volume of the
computational cellsΩ(t) and the cell surface veloc-
ity become small as the steady state is approached,
this time variations should not be neglected in gen-
eral, as pointed out in [2]. Indeed, if the grid mo-
tion terms are neglected in the flow equations (1),
the convergence rate is impaired [8], and the wall
or grid motion has to be under-relaxed [1].

However, the situation is quite different when
an implicit time marching technique is used. As
mentioned before, for large time step (12) reduces
to the Newton iteration for the steady state equa-
tionsR(U) = 0. This meanṡxs = 0 (the grid equa-
tions are included in the residual vectorR), so there
is no indication why grid surface motion and cell
volume change should be accounted for. However,
the flow equations (1) depend on the grid variables
through the termF ·n. The corresponding entries
in the Jacobian matrixRU must be accounted for.



4th International Conference on Inverse Problems in Engineering
Rio de Janeiro, Brazil, 2002

Figure 1: Annular compressor diffuser with cooling air bleed-off diffuser (lower outlet). The original ge-
ometry and grid are shown. An H-type mesh is located in the inlet part (left side), and a C-type mesh
connecting both outlets is wrapped around the stagnation region.

APPLICATIONS
The method has been implemented for planar

and axis-symmetric flows governed by the com-
pressible Euler equations. In this section two ap-
plication examples are shown. The first one con-
cerns an axis-symmetric problem arising from gas
turbine design. The second test case demonstrates
the capability of the present method to handle tran-
sonic flows as well.

Compressor Diffuser
To demonstrate the capabilities of the inverse

method a simple axis-symmetric problem is con-
sidered. The design of a compressor diffuser of a
gas turbine is often strongly restricted by the space
requirements of turbine and combustor. As a con-
sequence there is usually the necessity of choosing
a curved diffuser, as shown in Figure1. The inlet
of a cooling air bleed-off diffuser is placed at the
beginning of the turn of the main diffuser.

A simple two-block topology has been adopted:
An H-type mesh (48× 64 cells) is located in the
inlet part, and a C-type mesh (64×304 cells) con-
necting both outlets is wrapped around the stagna-
tion region. This results in a good mesh quality at
the stagnation point.

In the first step, the flow is computed for the

baseline design (direct mode, all sidewalls are
fixed). The resulting static pressure pattern is
shown in Figure1, together with the grid (every
fourth grid line is shown). The pressure distribu-
tion along the outer diffuser wall (ie. the wall that
begins at the larger radius) is indicated by the solid
line in Figure3. Starting from this result it is pos-
sible to define a design strategy. In order to sat-
isfy geometric constraints imposed by neighbour-
ing parts the inner wall remains fixed. The outer
wall is a better candidate for flow separation and
should be designed according to the largest admis-
sible adverse pressure gradient. A possible target
pressure distribution is shown in Figure3 (diamond
markers).

The resulting geometry and the new pressure
contours are shown in Figure2. Evidently the
small region of acceleration at the beginning of the
turn has been removed, although the change in ge-
ometry (indicated by the dashed line in Figure1) is
rather minute.

Finally, the convergence history for both com-
putations is shown in Figure4. It is clearly seen
that there is no difference between direct and in-
verse computation in terms ofnumber of iterations.
In both cases, the residual is reduced by almost
one order of magnitude per iteration (on the finest
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Figure 2: Inverse design of the upper sidewall, resulting geometry and pressure contours. For comparison,
the redesigned wall shape is denoted by the dashed line in Figure1.

grid level). Of course, compared to a purely direct
computation with fixed grid, the method presented
here consumes moretime, since the number of un-
knowns has been increased by two.

Transonic Nozzle
We consider the planar converging-diverging

nozzle shown in Figure5. The inflow conditions
are purely subsonic (Mach numberM ≈ 0.7). The
flow is accelerated in the converging part of the
nozzle, reaches sonic conditions at the throat, and
is accelerated further in the diverging part. At the
outflow, a constant static pressure value is imposed
that would result in subsonic flow there. The back
pressure was chosen to give rise to a shock close
to the throat. The Mach number and static pres-
sure distributions are shown in Figures6,7. Solid
lines denote the exact solution of the quasi-one-
dimensional Euler equations.

In the first run, the flow is computed for fixed
walls on a 320×32 grid. The resulting Mach num-
ber and static pressure distributions are denoted by
the diamond markers in Figures6 and 7, respec-
tively. The close agreement between exact and ap-
proximate solution is seen. In particular, the shock
is resolved within a few computational cells.

Next the static pressure distribution obtained
from the direct computation is used as boundary

condition for an inverse run. The initial shape is a
straight channel, and the flow is assumed uniform.

As expected, the original geometry is recovered
(up to a small difference in the order of magnitude
of the iteration error). This is a clear indication that
direct and inverse mode are compatible.

Although the target pressure distribution is dis-
continuous at the shock, there are no indications of
any defect of smoothness of the wall shape. It is
thought that this is due to the staggered allocation
of flow and grid variables. Of course, it is expected
that there arise problems if the prescribed pressure
distribution does not satisfy the correct jump rela-
tions, see the discussion in [4]. In that case, the
wall slope would become discontinuous across the
shock, or the method would even fail to converge.

Finally, the observation made for the previous
example still holds in the transonic case: there is
no difference in the convergence rate between di-
rect and inverse case.

CONCLUSIONS
A method for the two-dimensional and axis-

symmetric target pressure problem based on the
compressible Euler equations has been presented.
Block-structured grids allow for applications rele-
vant to industry. Since the method is very fast, it
is feasible to link it to an optimization procedure.
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Figure 3: Static pressure distribution along the
outer side wall. The target pressure distribu-
tion for inverse design is indicated by diamond
markers.

Figure 4: Convergence history for direct and in-
verse computation: normalized residual norm
versus number of time steps (12).

Figure 5: Planar nozzle: geometry and grid (different axis scaling!)

Figure 6: Transonic nozzle flow: Mach number dis-
tribution

Figure 7: Transonic nozzle flow: static pressure
distribution
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Such an optimal inverse approach should make it
easy to solve inverse problems with additional (ge-
ometric) constraints in an efficient manner. Pre-
sumably it is worthwhile applying the same nested
iterations technique, since generation of a good ini-
tial guess on a coarse grid is cheap.

The extension to viscous flows seems rather
straightforward, except in one point. While in
the inviscid case the flow tangency condition (9)
u ·n = 0 can be used for the wall update, this op-
tion is prohibited by the no-slip conditionu = 0 in
the viscous case. However, if viscous effects are
restricted to near-wall regions they can be modeled
by a zonal viscous/inviscid interaction approach,
or by a distributed loss model.

The author acknowledges the support provided
by Alstom Power (Switzerland) Ltd. and by the
Commission for Technology and Innovation (KTI)
under grant No. 4571.1 KTS.
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ABSTRACT
Automatic numerical optimization of

processes coupling electromagnetism and heat
transfer is a quite intricate problem.

We present here an efficient optimization
procedure coupled with  a direct finite element
model which has been developed and tested
successfully in order to deal with prescribed
industrial goals such as reaching an
homogeneous temperature level in the workpiece
to be pre-heated, or achieving a certain level of
hardness for the final workpiece.

The sensitivity analysis is carried out either
through a finite-difference approach or  through
the use of an adjoint model which has been
specifically designed to include the main features
of the algorithm used in the direct numerical
model.

Results and discussion on industrial cases are
then presented.

INTRODUCTION
Many industrial processes are based on an

efficient use of coupling between
electromagnetic, thermal and mechanical
phenomena. They generally use direct or induced
currents to generate heat inside a workpiece in
order to get either a prescribed temperature field
or some given mechanical or metallurgical
properties through an accurate control of
temperature evolution with respect to time.

Determining optimal process parameters for
these processes in order to reach industrial
objectives can be greatly helped by using
numerical modeling coupled with optimization
techniques.

The objectives have to be formalized using
some specific cost functions which can account
for time-effects.

Control parameters may include, among
others, the electromagnetic source location,
frequency,  power density, …

We present here the optimization procedure
developed and used in our laboratory for these
problems.

The two approaches for sensitivity analysis
computation – finite differences or use of an
adjoint model - will then be presented.

 We shall then detail the direct numerical
model for the case of an induction heating process
and provide some optimization results for it.

THE OPTIMIZATION PROBLEM

A direct numerical model for the analysis of a
coupled electromagnetic-heat transfer process can
be written in a generic way by:

0)T,E(R E = . (1)

0)T,E(R T = . (2)

where RE and RT denote the residual vectors for
the electromagnetic and heat transfer
computations; E and T stand for the vectors of
temperatures and electric fields at the nodes of a
finite element mesh.

Various industrial objectives can be assigned,
such as  reaching a temperature as uniform as
possible within the part for initial pre-heating,, or
prescribing a precise path in space and time for
temperature evolution when dealing with heat
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treatment applications. We shall assume here that
the objective function are always based on
temperatures.

 A general continuous form of the objective
function J can therefore be:

))t(T(hdt))t(T(g

))t(T(J))t(T(J)u(J

f

t

t

f21

f

0

+

=+=

∫
(3) (4)

where u denotes the controls. The general
optimization problem can therefore be written as
follows :

( )

0)T,E(R0)T,E(R

sintconstraunder
uJMinimize

TE ==

. (5) (4)

THE GRADIENT-BASED ALGORITHM

In order to solve this optimization problem,
we have decided to use a gradient-based
algorithm:

kkk1k duu α+=+ (6)

where dk denotes the descent direction. Instead of
using for dk  the gradient direction at each
ietration, we instead use:

1kk
u

k dJd k
−β+−∇= (7) (8)

where βk is computed as in the Polak-Ribière
conjugate gradient type method. which can
accelerate the convergence of the algorithm.
Once the descent direction dk has been computed,
the ak descent-step is used to get the value of  the
cost function as close as possible to 0 through a
parabolic interpolation algorithm.

THE SENSITIVITY COMPUTATION
The algorithm for the minimization of the

objective function requires the computation of the
cost function gradient with respect to the control
parameters.

There are at least two different ways of
carrying out the computation of this quantity.

The first one is through:

>
∂
∂

∂
∂

<+
∂
∂

=
kkk u

T
,

T
J

u
J

du
dJ

(9)

This approach requires the computation of the
sensitivity of the temperatures at all nodes of the
mesh with respect to the control parameters. It
can be carried out through a finite-difference
approach.
The system (1)-(2) is solved for an initial and then
a perturbated value of each control parameter.
This approach is the easiest one to implement, but
can be quite consuming in terms of computational
time.

The second approach is based on an optimal
control approach and avoids the computation of
the sensitivities of temperature with respect to the
control parameters.

We define the Lagrangian of the problem as:

>λ<+

>λ<+=

T,E(R,

T,E(R,)u(J)T,E,u(L
TT

EE

(11)

If we assume that:
- the thermal residual vector RT

depends only on   the temperature
field T

- the electromagnetic residual vector
RE  depends only on the electric
field E and the controls u

we get to solve the following system:

[ ]

[ ]

( ) ( )
Ω

×Ω

×Ω

∂
∂

−

∂
∂

−

=λ
∂

∂

f
j

f
2

t,tj

1

t,t

T

j

T

t
du
dT

,t
T
J

du
dT

,
T
J

,
du
dT

T
R

f0

f0

(12)

which provides us with values of  λT
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We then solve:

[ ]

[ ]f0

f0

t,t

T

j

T

t,t

E

j

E

,
du
dE

E
R

,
du
dE

E
R

×Ω

×Ω

λ
∂

∂−

=λ
∂

∂

(13)

from which we get values for λE

Finally, the gradient of the cost function is
expressed by:

[ ]ftt

E

j

E

j u
R

du
dJ

,0

,
×Ω

∂
∂

= λ (14)

APPLICATION TO THE INDUCTION
HEATING PROCESS

We shall now see on the induction heating
process how the optimization approach can be
used.
We shall first presnt the process and derive the
coupled system of equations in RE and RT which
models this process.

Figure 1 : Induction heating setup

The basic induction setup (see for instance
Davies [1990]) consists of one or several
inductors and metallic workpieces to be heated
(see figure 1). The inductors are supplied with
alternating current with frequencies ranging from
fifty to several hundred thousand cycles per
second. A rapidly oscillating magnetic field is
generated and in turn induces eddy currents in the

workpiece due to the Joule effect. These currents
generate ohmic heat losses inside the workpiece.
Moreover, for ferromagnetic materials, alternating
magnetization and hysteresis effect also
contribute to heat generation.

Most of the heat is produced in a thin layer
under the surface of the workpiece; the skin depth
δ - defined as the depth at which the magnitude

of the field drops to a value of 1−e  of its surface
value :

σµπ
=δ

f
1

(15)
where f is the frequency, σ  the electrical

conductivity and µ  the magnetic permeability.
High frequencies are used to achieve surface
heating, while low frequencies generate a more
uniform heating.

THE DIRECT ELECTRO-THERMAL
COMPUTATION

The Electromagnetic Model
The electromagnetic model is classically

based on the Maxwell equations:
Magnetic flux equation :

0B. =∇
rr

(16)

Maxwell-Gauss equation :

0D. =∇
rr

(17)

Maxwell-Faraday equation :

t
B

E
∂
∂

−=×∇
r

rr
(18)

Maxwell-Ampere equation :

t
D

JH
∂
∂

+=×∇
r

rrr
(19)

where H  is the magnetic field, B  the

magnetic induction, E   the electric field, D  the

electric flux density, and  J  the electric current
density associated with free charges.

We also have the following relations which
take into account the intrinsic material properties :
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ED
rr

ε= (20)

H)H(B
rrr

µ= (21)

EJ
rr

σ= (22)
where ε  is the dielectric constant, µ  the

magnetic permeability, and σ the electrical
conductivity. They all depend on temperature and
the magnetic permeability µ depends also on H.

The range of frequencies dealt with in
induction heating  (less than 106 Hz) enables us to
neglect the displacement currents  in the
Maxwell-Ampere equation (magneto-quasi-static
approximation).

A combination of the previous relations leads
us to the following equation where the unknown
is the electric field.

t
SJE

1
t
E

∂

∂
−=








×∇×∇+

∂
∂

r
r

r

µ
σ (23)

with σ = σ (T) and  µ =µ (T,H)

We deal here with axisymmetrical cases, in
which the electric field will only have a non-zero
component in the θ direction:

)0),z,r(E,0(E θ=
r

(24)

The Thermal Model

Temperature evolution in the workpiece is
governed by  the classical heat transfer equation :

emQ)Tk(div
t
T

C &r
=∇−

∂
∂

ρ (25)

where ρ  denotes the material density, C  and

k  respectively the specific heat and thermal
conductivity, all temperature dependent.

emQ&  denotes the local heat rate, generated by

the eddy currents, and integrated over one period:

dtE
T
1

Q
2

T

0
em

r& σ= ∫ (26)

The boundary conditions can be of various
kinds: prescribed heat flux or temperature,
convection or radiation.

THE NUMERICAL APPROXIMATION

The finite element space discretization

We define Ω  as being a two-dimensional
axisymmetrical domain which covers the part to
be heated Ωpart, the inductor Ω inductor and  a finite
volume of air Ωair surrounding the inductor and
the part.

We have in fact chosen here to carry out
coupling between the part and the inductor for the
electromagnetic computations using finite
elements rather than boundary elements; the air
domain thus needs to be wide enough in order to
model accurately electromagnetic wave
propagation.

The domain is discretized using second order
triangular finite elements (6-nodes triangles). The
unknown fields – electric field  Eθ for the
electromagnetic computations, temperature field
T for the thermal computations and velocity field
V for the mechanical computations - can thus be
approximated over the whole domain by the
classical finite element approximation:

z)(r,N(t)E)z,r,t(E i
nbnode

1i

i∑
=

= (27)

z)(r,N(t)T)z,r,t(T i
nbnode

1i

i∑
=

= (28)

where Ei (t) denotes the approximated value of
the  θ-component of the electric field at the node i
and at time t, Ti (t) the temperature field, Vi  (t) the
j-th component (1 or 2 ) of the velocity field and
Ni (r,z) denotes the shape function associated to
the node i in the mesh. When the discretized
expressions of these fields are introduced in the
variational formulation, we get the following
equations discretized in space:

[ ] [ ]{ } { }ememem B)t(EK)t(
t
E
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

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[ ] [ ]{ } { }ththth B)t(T)t(K)t(
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
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





∂
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(30)

The time discretization

Numerical models in induction heating often
solve a harmonic model. This assumption is quite
restrictive when one deals with non-linear
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magnetic materials. We have thus chosen to solve
the time-dependent model. We need therefore to
integrate numerically in time the electromagnetic
and thermal equations.

We detail here the selected time integration
scheme for the electromagnetic equation. The
procedure is the same for the thermal equation.
We use a second-order two time step finite
difference scheme:

Step 1: the system is solved at time t* such
that t<t*<t+δt2 with:

0with

)tt(t)tt(t

321

23211
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(31)

The electric field E* at time t*  and its time
derivative write:
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The system (20) is written at time t*. E* and
its derivative are replaced by expressions (32) and
(33). The system is solved for the unknown
variable E* :
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The two time steps scheme we have requires
the solving of a non-linear equation, as the matrix
[C] is dependant on the magnetic field. In order to
avoid an additional non-linearity, the matrix is
linearized and is approximated using its values at
time t and t-δt1 :
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Second step: computation of :

{ }

{ } { } { } )EEE(
1
E

t
2

1tt
1

*

3

tt 2

α−α−
α

=

δ−

δ+

(36)

The electromagnetic/thermal coupling
procedure

Physical problems arising from heat transfer
and electromagnetism have in common the fact
that they are both time-dependent. Their specific
time-scales are however very different. The
specific time scale of an electromagnetic problem
is related to the wave-associated period –
typically 10-2 s for a 100 Hz frequency down to
10-8 s for a 100 MHz frequency – whereas the
specific time scale for heat transfer averages
normally one second.

A direct model based on finite elements has
been developed in our laboratory to cope with
these specificities. The model includes a specific
coupling procedure for solving:

- the Maxwell equations - in order to access
the electromagnetic fields giving the eddy
currents dissipated in the material (main source
term for the heat transfer equation)

- the heat transfer equation - leading to
temperature evolution in the material

The coupling between the electromagnetic and
thermal computations relies on a convergence test
over the mean heating power and on tests over the
variations of the magnetic parameters that
determine respectively the passage from an
electrical to thermal resolution or inversely from a
thermal to an electric one.

Once the electromagnetic field has been

calculated, the rate of heat generation emQ&  for the

heat equation needs to be evaluated at every
integration points. As the electromagnetic time
step is far smaller than the thermal one, we do not
consider the instantaneous Joule power calculated
at a given time at every integration points. We
rather consider a mean Joule power averaged over
one period of the electromagnetic field:
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dt)t(int,E)t(int,
T
1

int),nT(Q
2nT

T)1n(

em

∫
−

σ

=

(37)

where int  is the considered integration point,
T is the period of the power supply currents, n is
number of periods considered and )(int, tEθ  is

the value at time t of the electric field interpolated
at the integration point int.

At the end of each electromagnetic period, the
newly calculated mean power is compared to the
one calculated at the previous period until it
stabilises. Thermal computations are started with
the stabilised thermal source power calculated at
(n+1)T if the following convergence test (33) is
conducted at every integration points:

  ε<
−+

)nT(Q
)nT(Q)T)1n((Q

em

emem  (38)

where ε is the user-supplied convergence
parameter.

These thermal computations are valid as long
as the variation of the physical magnetic
parameters such as the magnetic permeability and
the electric conductivity do not exceed 5%. Their
variations with temperature are tested after each
new thermal computations. The following criteria
are tested for every mesh element:
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where 
1

max
+Τn

 is the maximum value of the

temperature field in a given element at time

therdtt +  and 
n
maxΤ  is the maximum value of the

temperature field in the same given element at
current time t . When the maximum relative
variations reach the threshold of 5%, the
previously calculated mean heat power is
assumed to be irrelevant, and a new
electromagnetic calculation is carried out.

For their part, mechanical computations are
carried out at the same time steps than thermal
computations.

RESULTS

Finite difference approach for sensitivity

We present results on a case where the
objective is to reach a  homogeneous temperature
level in the part with a low-frequency process.

This case is displayed in Figure 2 and is
typical of the heating of a billet before forging.

The goal is to obtain a given temperature
(1200°C) at several locations in the part (close to
the surface), after a 5 seconds heating time.

Figure 2 : Induction heating setup

The chosen physical parameters of the billet
are the following. The relative magnetic
permeability equals 90 at 0 Kelvin, with a
temperature sensitivity of 6 (Frohlich-Kenelly).
The electrical conductivity is equal to 3.106 Ω -1m-

1, the thermal conductivity equals 35 Wm-1K-1 and
the heat capacity equals 4.875.106 JKg-1K-1.

Figure 3 displays the mesh which has been
created for this case.

Figure 3 : Finite element mesh
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The control parameters here are  frequency
and current density in the coil. Figure 4 shows
how the algorithm has performed in terms of
convergence. Initial estimates were  100 Hz and
5.109A/m.  Convergence towards optimized
values has been reached here in 5 iterations.

Figure 4: Convergence on frequency
(triangles) and current density (squares)

The optimal control approach for
sensitivity

We have investigated here two test cases.
The first test case aims at getting on the surface
(that is within the radius range [0.018 ; 0.02]) the
following time dependent optimal temperature
(Topt(2.5)=850K), (Topt(3.5)=1030K) and
(Topt(5.0)= Topt(tf)=1273K).
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(40)
Figure 5 displays the evolution of input

process parameters with respect to iterations as
well as the objective function value. Iteration 1 is
directly related to the first guessed parameters
(frequency = 500 Hz and J0 = 109 A/m).

Figure 5 : Process parameter evolutions with
respect to optimization iterations

The cost function decrease is displayed in
Figure 6. Its value and its gradient are first
calculated. Iterations 1, 2, 3, 4 and 5 are then
carried out with the uni-dimensional research.
The gradient is then calculated once again.
Following iterations are related to the second
loop. Uni-dimensional algorithm is run again. The
cost function value has decreased by a factor 20.

Figure 6: Cost function value with respect to
iterations

The second test case uses the same global
geometry as for previous test cases except that the
inductor is moving along the z-axis as shown in
the next figure. The aim here is to improve
frequency, current density and coil velocity such
that, after ten seconds of heating, the surface
between z=22.5cm and z=24.7cm is as close as
850K.
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Figure 7: Mesh for the second test case. The
inductor is moving at a 10mm/s velocity

Here again, figure 8 presents evolution, of
frequency, input current and coil velocity with
respect to iterations, while figure 9 presents the
evolution of the cost function. Only eight full
calculations are needed for decreasing the cost
function by a factor 100.

Figure 8 : Process parameter evolutions with
respect to optimization iterations

Figure 9 :cost function evolution with respect
to optimization iterations

CONCLUSION
We have presented an optimization procedure

which can provide a powerful tool for the
optimization of coupled electromagnetic-thermal
processes. It has been successfully applied for
induction heating process optimization, and has
been moreover used for identification of physical
parameters involved in induction heating
(Favennec and al. [2002])

Research is being presently carried out on the
parallelization of the model.
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INTRODUCTION
When high intensity ultrasound is directed to

a dissipative medium, the energy is partially ab-
sorbed and turned into heat. In ultrasound induced
bloodless surgery the aim is to direct ultrasound en-
ergy to tumors and heat the cancerous tissue so that
it is destroyed. The ultrasound transmitters are lo-
cated outside the body - hence the term bloodless
surgery.

In ultrasound surgery the cancerous tissue can
be destroyed by rising the temperature to cytotoxic
level. The desired temperature in tumor is often
50-60 ◦C. Although lower temperatures could also
be used, the use of high temperatures can reduce
the treatment time significantly [1,2,3,4].

The temperature distribution optimization in
wave field induced heating problems in medical ap-
plications are usually done by optimizing the spe-
cific absorption rate (SAR) [5,6,7] or using PID
type controllers with pre-focused ultrasound fields
[8,9,10]. Steady-state optimization methods have
also been used in this type of problems [11] as well
as the inverse dynamics approach [12] and fuzzy
logic controllers [13] In these controllers the main
point is to obtain the desired temperature distribu-
tion with pre-focused ultrasound fields. The scan-
ning path of the focus is pre-calculated in these
controllers and they alter only the applied power of
the transducers, not the phase and the amplitude of
the ultrasound waves. These approximations result
in linear controller structures, which is implemen-
tationally convenient but is usually clearly inferior
in performance when compared to more rigidly de-
rived controllers.

Steady-state optimization has been used also to
determine the optimal driving parameters for elec-
tromagnetic phased array system in [14]. In the
study made in [14] the phase and amplitude of the
transducers were computed directly from the non-

linear optimization problem.
While some cases such as breast tumors can be

treated with relatively simple computational mod-
els, the treatment of brain tumors poses significant
problems. This is due to the geometrical problems
and the high attenuation in the skull. Due to the
geometry and the applicable frequencies, typically
about 500 kHz, the computation of the ultrasound
fields is a major problem. We use the so-called ul-
tra weak variational formulation which enables the
use of computationally feasible mesh sizes. For the
actual control we employ the Lagrangian approach
based on the bioheat equation with the quadratic
source control model. We also employ approxi-
mate power constraints for the individual sources.
We show with simulations that the approach is ca-
pable of producing lesions with complex geome-
tries, which enables the treatment of such brain tu-
mors that are near critical brain areas that must not
be destroyed.

COMPUTATIONAL MODELS AND
APPROXIMATIONS

Wave equation
Linear acoustic wave propagation and scatter-

ing in quiescent heterogeneous media is character-
ized by the wave equation (Helmholtz problem)

∇ ·
(

1

ρ
∇P

)
− 1

ρc2

∂2P

∂t2
= 0 (1)

where P is acoustic pressure, ρ is density and
c is the speed of sound. In the time-harmonic case
we have P (r, t) = p(r)eiωt, where r is the spa-
tial variable, and the space dependent part of the
pressure field is the solution of the inhomogeneous
Helmholtz equation

∇ ·
(

1

ρ
∇p

)
+

κ2

ρ
p = 0, (2)
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with wave number κ. In dissipative media the wave
number is of the form κ = 2πf/c + iα where f is
the frequency of the wave field and α is the absorb-
tion coefficient [15].

For high wave numbers this requirement re-
sults in very large problems with often intolera-
ble computational burden. To avoid this prob-
lem ray approximations have been used to com-
pute pressure fields with ultrasound frequencies,
see e.g. [16,17,18,19]. However, this approach is
feasible only with almost homogeneous media and
becomes less accurate in the presence of strongly
scattering obstacles.

An alternative approach is to use novel full
wave methods which allow the incorporation of a
priori information of the solutions to the approx-
imation subspaces. These methods include the
partition of unity methods (PUM) [20], the least
squares methods [21] and the ultra weak variational
formulation (UWVF) [22,23]. Compared with the
standard finite elements these methods can reduce
the computational burden significantly.

In this paper we use the UWVF to solve the
acoustic wave field. Let us partition the domain
of interest Ω with disjoint finite elements Ωj and
let νj denote the outward unit normal for j’th ele-
ment. In addition, the boundary between elements
Ωj and Ω` is denoted by Σj`. If the element Ωj is
on the boundary of the domain Ω, the coinciding
boundary is denoted by ∂Ωj ∩ ∂Ω = Γj .

If the material parameters ρ and c are approx-
imated with piecewise constant functions we can
decompose the Helmholtz problem for all 1 ≤ j ≤
K as

∆pj + κ2
jpj = 0 in Ωj (3)

1

ρj

∂pj
∂νj
− iσpj = − 1

ρ`

∂p`
∂ν`
− iσp` (4)

1

ρj

∂pj
∂νj
− iσpj = τ

(
− 1

ρj

∂pj
∂νj
− iσpj

)
(5)

+g on Γj (6)

where (??) is to be fulfilled on Σj`, pj = p|Ωj
τ ∈ C, |τ | ≤ 1, and the coupling parameter
σ > 0, σ ∈ R. The source term is denoted by
g.

Define the function f, f |∂Ωj = fj on the ele-
ment boundaries as follows

fj =

((
− 1

ρj

∂

∂νj
− iσ

)
pj

)∣∣∣∣∣
∂Ωj

, 1 ≤ j ≤ K. (7)

It is shown in [22,23] that fj satisfies the ultra weak
variational formulation, (UWVF)

K∑

j=1

∫

∂Ωj

1

σ
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(
− 1
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− iσ

)
qj (8)

−
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σ
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=

K∑

j=1

∫

Γj

1

σ
g

(
1

ρj

∂

∂νj
− iσ

)
qj (9)

for all test functions qj which are the solutions
of the adjoint Helmholtz equation

∆qj + κ2
jqj = 0 in Ωj , (10)

where the overbar denotes complex conjugation.
Expressing the solutions in each element as a

linear combination of appropriate plane waves (Nk

waves in element Ωk) and using these waves also as
test functions as in the more conventional Galerkin
approaches, the problem can be written in the form
of the matrix equation [22,23]

(I −D−1C)X = D−1b. (11)

where the unknowns X = (f11, . . . , fKNK )T are
to be determined. The matrices D and C are sparse
and exhibit block structure. To avoid the condition-
ing problems reported in [22] we allow the number
of bases Nj to vary between the elements [24].

Bioheat equation
The temperature evolution in a non-convective

medium is governed by the heat equation which is
of the form

ρC
∂T

∂t
= ∇ · k∇T + Q̃, (12)

where T is the temperature, ρ is the density of the
medium, C is the heat capacity, k is the thermal
conductivity and Q̃ is the distributed heat source or
sink [25].

In biological tissues the temperature evolution
is usually approximated with the so-called bioheat
equation [26]

ρCt
∂T

∂t
= ∇ · k∇T + Q0 + Q, (13)
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where Q0 = wBCB(TA − T ) ≤ 0 is the perfusion
(temperature sink) and Q ≥ 0 is the distributed
heat source that is due to the absorbed wave energy.
Further, Ct is the heat capacity of tissue, wB is the
perfusion due to blood flow, CB is the heat capacity
of blood and TA is the arterial blood temperature.
The heat source term for the time-harmonic acous-
tic pressure is [25]

Q =
α|p|2
ρc

. (14)

Assume that the total field is due to m separate
transducers so that p =

∑m
k=1 pk. The fields pk are

of the form

pk = ũk(t)C̃k(r)eiωt , (15)

where ũk(t) ∈ C determine the amplitude and
phase of the transducer source so that Ck(r) are the
time-harmonic solutions of the Helmholtz prob-
lems with single point sources of unit source
strengths. Thus the heat source is of the form

Q(r, t) =
α(r)

ρ(r)c(r)
|p|2

=
α(r)

ρ(r)c(r)

∣∣∣∣∣
m∑

k=1

ũk(t)C̃k(r)

∣∣∣∣∣

2

(16)

The bioheat equation is discretized according
to the usual semidiscrete scheme in which the spa-
tial variable is handled with the Galerkin scheme
and the resulting system of ordinary differential
equations with appropriate (implicit) schemes such
as backward Euler [27].

In the following we parameterize the complex
control variables by their real and imaginary parts
so that u ∈ R2m. Then the semidiscrete FEM ap-
proximation for the bioheat equation can be written
in the form

MṪ = (G− wBCBI)T

+wBCBMTA + M̃D(Bu)2 (17)

where M is the (ordinary) mass matrix, G is the
stiffness matrix, Ṫ = dT/dt, M̃D is a stack of
two inhomogeneous mass matrices corresponding
to (??) and B is an appropriate real-valued repre-
sentation of the fields from the transducers (as ob-
tained by the UWVF). In the following this is con-
sidered in the form

Ṫ = AT + P + MD(Bu)2 (18)

where we have made the obvious assignments.

CONTROLLER IMPLEMENTATION

Optimality criterion and spatial discretiza-
tion

For general controller design we refer to
[28,29]. Define the quadratic cost function

J̃(u) =
1

2

∫ tf

0

{
‖T (t)− Td(t)‖2ϑ

+

2m∑

k=1

sk

(
du(t)

dt

)2
}

dt (19)

where Td = Td(r, t) is the desired temperature dis-
tribution and sk are weights for the time deriva-
tive of the input thus enforcing smoothness of the
control variables. Further, ‖T (t) − Td(t)‖2ϑ =∫

Ω
ϑ(r)

(
T (r, t)− Td(r, t)

)2
dr.

In practice the maximum power or pressure
amplitude is constrained so that the relevant con-
trol problem is of the form

min
u

J̃(u) subject to u2
k + u2

k+m ≤ ζ (20)

for all k = 1, . . . ,m, where uk and uk+m are the
real and imaginary parts for transducer k, respec-
tively, and where we can take ζ = 1 with an ap-
propriate change of variables. This is a quadratic
problem with quadratic inequality constraints. Due
to the nonlinear constraints and the nonlinearity of
the mapping u 7→ T we have to resort to numerical
minimization methods. Furthermore, we approx-
imate the inequality constraint by introducing an
additional nonlinear penalty so that the we can de-
fine the cost function that is adopted in this paper
as

J(u) = J̃(u) + χR(u) (21)

where R ∈ R and

χR(u) =
1

2

∫ tf

0

2m∑

k=1

R−1 exp
(
2R|uk|

)
dt (22)

The Hamiltonian of the control problem is now

H =
1

2

{
‖T (t)− Td(t)‖2ϑ

+
2m∑

k=1

sku̇
2
k +

2m∑

k=1

R−1 exp
(
2R|uk|

)
}

+λT
(
AT + P + MD(Bu)2 − Ṫ

)
(23)
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where λ(t) ∈ RN , t ∈ [0, tf ], is the Lagrange
undetermined coefficent. In this paper we take
λk(tf ) = 0 for all k.

Direct temporal discretization
In this paper we solve the problem by directly

discretizing the control and state variabls as well
as the Lagrange multiplier with respect to time and
using a steepest descent type algorithm for their
solution. In the minimization procedure we em-
ploy a three-step approach, which is more easily
implemented than the straightforward single-step
approach involving the gradients of the complete
Hamiltonian.

Let the temporal discretization constant be ∆t
and NT = tf/∆t + 1. In the sequel we de-
note the temporally discretized variables as ut =
u(tτ/∆t) ∈ R2m, τ ∈ [0, tf ], t ∈ [0, . . . , NT ],
with other variabes denoted correspondingly. The
discretized Hamiltonian is then of the form

H =
1

2

(
‖Tt − Td,t‖2ϑ

+

2m∑

k=1

sk (uk,t − uk,t−1)
2

+
2m∑

k=1

R−1 exp

(
2|R|uk,t

))

+λT
(
ATt + P + MD(Bu)2 − Ṫt

)

where ∆t−2 has been absorbed in sk.
The time evolution for the system and co-state

equations is approximated with the implicit (back-
ward) Euler approach so that we can write

Tt+1 = (I −∆tA)−1Tt + ∆t(I −∆tA)−1

·
(
P −MD(Bu)2

)
(24)

λt+1 = (I −∆tA)−1λt + ∆t(I −∆tA)−1

·ϑ (Tt + Td) (25)

The stationary condition is pursued by the
Levenberg-Marquardt type stabilized iteration with
the search direction

∇utH =
(
F (ut)

TF (ut) + µI
)−1

·
(
L(ut) + F (ut)

Tλt
)

(26)

where µ is the stabilization parameter and

L(ut) = sign (ut)� exp(2R|ut|)
+S (ut − ut−1)

F (ut) = 2MD (B � (Bu, . . . , Bu))

where S = diag (s1, . . . , s2m), and � denotes the
elementwise product of two matrices or vectors.
Due to the complexity of the mapping u 7→ T , the
algorithm does not necessarily converge to a global
minimum.
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Figure 1. The computing domain. There are 40
point sources located around the computing do-
main (numbered 1, . . . , 40). The acoustic param-
eters are given in Table 1.

SIMULATION RESULTS
The simulations were carried out in a 2D do-

main. The computational domain for simulations is
shown in Fig. 1. The domain consists of the three
subdomains ΩI, ΩII and ΩIII with different physi-
cal parameters. The physical parameters are given
in Table I

TABLE I. The Acoustic Parameters in Different
Media for the Control Simulations.

Parameter ΩI ΩII ΩIII

Speed of sound c (m/s) 1500 2500 2000
Density ρ (kg/m3) 1000 2000 1500
Abs. coef. α (Nep/m) 0 4 2

The domain was divided into 840 elements and
445 nodes. The ultrasound fields with frequency of
500 kHz were computed with the UWVF for each
point source separately. In this example we con-
sider a system and a specific application in which
the maximum pressure amplitude is constrained to
less than 1 MPa. Figure 2 shows the mesh and
the normed intensity of the UWVF solution of the
Helmholtz equation from point source (transducer)
1.
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Figure 2. Top: The computing mesh that consists
of the 840 elements and 445 nodes. Bottom: The
normed intensity |p| from the UWVF solution of
the Helmholtz equation from point source (trans-
ducer) 1.

The optimal control ut was computed with the
algorithm given in the previous section. The target
heat distribution was of the form of the letter “T”
in the middle of ΩIII. The desired temperature in
the target region was 45◦C while the desired tem-
perature in other parts of the computing domain
was 37◦C. The target and the controlled temper-
ature distribution at the final time tf = 10 s are
shown in Figure 3. The desired temperature in the
target is obtained fairly well.

TABLE II. The Thermal Parameters for Control
Simulations.

Heat capacity of tissue Ct (J/kgK) 3700
Thermal cond. of tissue kt (W/mK) 0.6
Perfusion by blood flow wb (kg/m3s) 1
Heat capacity of blood Cb (J/kgK) 3800
Arterial blood temperature Ta (◦C) 37

The optimal controls for transducers 18 and 20
are shown in Fig. 4. The trajectories are smooth
as expected and the amplitudes and thus also the
powers of the transducers vanish at the final time.
This is due to the chosen final constraint for the
Lagrange multipliers. This could also be relaxed
which would yield a more homogeneous excitation
of the transducers.

37 38 39 40 41 42 43 44 45 46

Figure 3. Top: The target temperature distribution
with form of the letter T. Middle: The desired tem-
perature in target is 45◦C. Bottom: The controlled
temperature distribution at the final time tf =10 s.

CONCLUSIONS
The controller which was proposed in this

paper can be applied to ultrasound or microwave
induced heating. In microwave induced heating
the electrical field is computed from the Maxwell
equations. The control algorithm is then applied to
the problem in a similar way. The controller pro-
posed here is an approximation for the optimal con-
troller concerning quadratic costs with inequality
constraints for the control variables. The simula-
tion indicates that this method is able to produce
accurate heat distributions in inhomogeneous me-
dia.
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The proposed method does not produce a scan-
ning focus type heat source. This may be an impor-
tant asset in the sense that typical maximum prefo-
cused wave field intensities are just on the verge
of needin to employ nonlinear wave propagation
models. In our case it seems that this is not neces-
sary.

Actual ultrasound surgery is concerned with
thermal dose rather than controlled temperature.
However, the modification of the proposed temper-
ature control method is the starting point for the
thermal dose control problem.
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Figure 4. Two optimal amplitude and phase evolu-
tions, transducers 18 (top) and 20 (bottom).
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Figure 5: The temperature evolution during the sonication. The left hand column the temperature distribu-
tion and the right hand column the square root of the induced distributed heat source, that is,

√
MD(Bu)2.
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ABSTRACT 

The paper presents the main capabilities of the 
Robust Design Optimization (RDO) strategy of 
the IOSO (Indirect Optimization based on Self-
Organization) Technology. The capabilities of 
RDO software are demonstrated using examples 
of solving complex multidimensional (up to 140 
design variables) problems. The examples utilize 
both single and multiobjective optimization 
problems. Our strategy summarize more than ten 
years of using RDO for solving real-life problems 
in various scientific and technical fields. The 
paper presents the assembly of the newly 
developed efficient approaches for solving 
problems requiring RDO. These approaches 
employ technology of multilevel, multiobjective, 
and parallel optimization both separately and 
simultaneously. 

 
INTRODUCTION 

Practical application of the numerical 
optimization results is complicated by the fact 
that any intricate technical system is a stochastic 
system and characteristics of this system have a 
probabilistic nature. We would like to emphasize 
the point that, speaking of stochastic properties of 
a technical system within the frame of 
optimization tasks, we imply a system's essential 
parameters spread which occurs during the 
production stage despite the up-to-date level of 
technology. Random deviations of the system's 
parameters lead to a random change in system's 
efficiency. 

An efficiency extremum value, obtained 
during the optimization problem solving in a 
traditional (deterministic) setting, is simply a 
maximum attainable value and can be considered 
as just conventional optimum from the point of 
view of its practical realization. Thus, one can 
consider two different types of optimization 
criteria (fig. 1). One of them is an ideal efficiency 
which can be achieved under the conditions of 
absolutely precise practical replication of the 

preset parameters of the system under 
consideration (deterministic criterion). Other 
optimization criteria are of probabilistic nature. 
For example: mathematical expectation of the 
efficiency; total probability of assuring the preset 
constraints; variance of the efficiency and so on 

It is evident that the extremum of one of these 
criteria doesn't guarantee the assurance of the 
high level of another one. Even more, these 
criteria may be contradicting each other. Thus, in 
this case we have a multicriteria optimization 
problem. 
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Fig.1 Robust design optimization essence. 
 
 
Our concept of robust design optimization and 

robust optimal control allows determining the 
optimal practical technical solution that could be 
implemented with the high probability for the 
given technology level of the production plants 
[1, 3, 5]. Many current probabilistic approaches 
either employ estimation of probabilistic 
efficiency criteria only at the stage of analysis of 
obtaining deterministic solution, or use 
significantly simplified estimates of probabilistic 
criteria during optimization process. The 
distinctive feature of our approach is that during 
robust design optimization we solve the 
optimization problem using direct stochastic 
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formulation, when estimation of probabilistic 
criteria is accomplished at each iteration. This 
procedure reliably produces truly robust optimal 
solution. 
 
THE MAIN FEATURES OF THE ROBUST 
DESIGN OPTIMIZATION STRATEGY 

IOSO Technology implements the new 
evolutionary response surface methodology. This 
methodology differs significantly from both the 
traditional approaches of nonlinear programming 
and the traditional response surface approach. 
Because of that IOSO Technology algorithms 
have higher efficiency, provide wider range of 
capabilities, and are practically insensitive with 
respect to the types of objective function and 
constraints: smooth, non-differentiable, 
stochastic, with multiple optima, with the portions 
of the design space where objective function and 
constraints could not be evaluated at all, with the 
objective function and constraints dependent on 
mixed variables, etc. (see fig. 2). 
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Fig. 2 IOSO algorithms efficiency for different 

objective functions. 
 

 
The concepts of Robust Design Optimization 

and Robust Optimal Control allow finding an 
optimal technical solution for the particular 
technology level, accounting that such a technical 
solution could be realized in practice with high 
probability. Some other approaches perform 
evaluation of probability parameters only after the 
deterministic optimal solution is found or employ 

very simplified estimates of probability 
parameters during optimization process. The 
distinctive feature of our RDO strategy is that 
optimization problem is solved using stochastic 
formulation directly, when the evaluation of 
probability parameters is performed at each 
iteration. High efficiency of the Robust Design 
Optimization is provided by the highly efficient 
capabilities of the developed stochastic 
optimization algorithms, that reliably work when 
high level of noise is present in responses. This is 
confirmed by the thorough testing of the 
algorithms using well-known test functions. 

Using our Robust Design Optimization 
concept results in considerable (several orders of 
magnitude) cost and time reduction when 
developing new highly efficient technical 
systems. Using Robust Design Optimization 
concept also provides the considerable (several 
times) risk reduction when new technical 
solutions are implemented.  

These features were demonstrated during 
microprocessor control system optimal calibration 
of the actual automotive engine, when the time 
reduction of five times was achieved. The 
methodic of optimal calibration was suggested in 
[2]. The brief description of this optimization 
problem is given in the table 1. 

 
 
Table 1. Brief description of the automobile 

engine optimal calibrating problem. 
Purpose To insure minimum 

overthrow of air-fuel ratio 
( α ) during acceleration and 
throttling processes. 

Setting 
features 

3 independent variables; one 
nonlinear constraint; object 
under study – actual engine 
on the experimental bench. 

Optimization 
process 
features 

Two stages of α∆  
minimization:  
1. for acceleration when 

α∆  of throttling is 
being constrained; 

2. for throttling when α∆  
of acceleration is being 
constrained. 

 
 
For solution of this optimization problem we 

used the 21 experiments only. Objective 
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improvement history and optimization results are 
shown on the fig. 3, 4 respectively. 
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Fig 3. Optimal calibrating history. 
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Fig. 4 Optimal calibrating results. 

 
 

The distinctive feature of our approach is the 
ability to solve the problems with the large 
number of design variables (hundreds) and 
objectives (dozens). These features are available 
through different original procedures within the 
frames of robust design optimization strategy. Let 
us consider some of these procedures. 

 
MULTIOBJECTIVE ROBUST DESIGN 
OPTIMIZATION 

We developed the very effective  algorithms of 
the Multiobjective Robust Design Optimization. 

The main advantages of the proposed algorithms 
over traditional mathematical programming 
approaches are the following [3]. 
• convolution approaches are not used in 

solving multiobjective problems; 
• the algorithms determine the desired number 

of Pareto-optimal solutions, so that these 
solutions are uniformly distributed in the 
space of objective functions ; 

• it is possible to solve the optimization 
problems where the objective functions 
exhibit complex topology: non-convex, non-
differentiable, with many local optima; 

• high probability of locating a global optimum 
in a design space having many local optima; 

• relatively small number of mathematical 
models evaluations; 

• it is possible to naturally employ the 
parallelization of the computational process. 

These advantages are the basis for the wide 
use of the proposed method in the real-life 
problems. 

Let us consider the example of the 
multiobjective robust design optimization of the 
multistage axial flow compressor. The brief 
description of this optimization problem is given 
in the table 2. 

 
 
Table 2. Brief description of the compressor 

robust design optimization problem. 
Purpose To insure the maximum 

efficiency and maximum 
implementation probability 
under preset level of 
production technology. 

Setting 
features 

140 independent variables 
(flow-path geometry); two 
objectives; three nonlinear 
constraints; object under 
study – quasi-3D mathema-
tical model. 

Optimization 
process 
features 

The set of Pareto-optimal 
solutions were found. 

 
 

Fig. 5 shows the main results of this problem. 
One can see that there is a compromise area 
between the ideal (deterministic) compressor 
efficiency and the implementation probability. In 
general, designer can select any solution from the 
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obtained set. In this case the design No 4 was 
selected as the final design. 
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Fig. 5 Results of compressor multicriteria robust 

design optimization. 
 
 
 

MULTILEVEL ROBUST DESIGN 
OPTIMIZATION 

The feature of the Multilevel Robust Design 
Optimization procedure is the use of 
mathematical models of various fidelity (from the 
lowest to the highest) during the solution process 
and adaptive switching between them [4]. This 
procedure provides minimization of the number 
of times the high fidelity models are used without 
reducing the accuracy of the resulting solution 
(fig. 6).  
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Fig. 6 Multilevel optimization scheme. 

 
 
The efficiency of this procedure may be 

demonstrated using the compressor optimization 
problem with 63 independent variables (fig. 7). 
For this problem we obtained 10 Pareto-optimal 
solutions using only 60 direct calls to high-
fidelity model. This example shows that it is 
possible to solve the optimization problem when 
the number of times the highest fidelity model is 
involved is less than the number of design 
variables. This provides considerable (several 
orders of magnitude) reduction in CPU time 
required for solution of complex optimization 
problems. 
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Fig. 7 Results of compressor multilevel robust 

design optimization. 
 
 

PARALLEL ROBUST DESIGN 
OPTIMIZATION 

One of the prospective trends in improving 
optimization process efficiency is the use of 
computers with multiple processors. In this case, 
the reduction of elapsed (clock) computing time 
can be achieved through solution time reduction 
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by means of parallel computations "inside" the 
model, as well as by adaptive organization of the 
optimization process for parallel computations. 
The first approach implies the use (or 
development) of mathematical analysis models 
suitable for using parallel processors. The latter 
makes it necessary to develop or to modify the 
corresponding optimization methods. 

We have developed the new optimization 
algorithm, which uses parallel processors (fig. 8). 
Our algorithm allows us to reach the speed-up 
parameter value that exceeds the total number of 
operational CPUs. For example, when using 20 
processors we can speed-up the optimization 
process 40 and more times. Our algorithms allow  
the most efficient usage of existing computational 
resources because the number of processors 
actively involved in solving the problem is 
independent of the problem dimension. For 
example, when solving a 10 variable problem one 
can employ from 1 to 100 and more processors. 
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Fig. 8 Parallel optimization scheme 

 
 
High efficiency of our procedure is due to not 

only the simple and typical procedure of 
parallelizing computation of objective function 
and constraints as it is done in the majority of the 
known apporaches. In addition to that we 
parallelize the optimization process as a whole.  
This is accomplished by obtaining maximum 
possible information about the topology of the 
objective function and constraints using our 
specific response surface methodology at each 
iteration. Particularly, we construct a set of 
various approximation function with various 
properties (local and global accuracy, robustness, 
good prediction capabilities, etc.). Analysis of the 
set of these functions and defining new points for 

analysis at the next iteration is also done in 
parallel. It is shown that such approach provides 
considerable (several orders of magnitude) 
reduction in time required to solve optimization 
problem. This is makes it realistic to formulate 
and solve the optimization problems even when 
many hours are required to the response values 
for one combination of design variables (for 
example, 3D CFD codes). 
 
CONCLUSION 

Our experience in using the various Robust 
Design Optimization procedures applied to test 
problems and real-life problems shows that the 
total efficiency of the optimization process could 
be increased 5-10 times. This indicates that 
combining these procedures significantly 
broadens the capabilities of the Robust Design 
Optimization strategy when applied to real-life 
systems. This strategy is also shown to be a 
powerful tool for finding new technical solutions, 
which in turn provide the maximum possible 
efficiency of complex systems.  
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ABSTRACT
This contribution focuses on the importance of

preprocessing tools for successful design and opti-
mization in practice of turbomachinery engineer-
ing. The development of problem-oriented
computational geometry generation software is
illustrated for the example of aerodynamic inverse
design of transonic flow elements which define the
compatible boundary conditions (surfaces) in
detail. Resulting from learned sensitivity of high
speed flows to small changes in airplane wing or
turbomachinery blade geometry, preprocessing
software is provided to create parametric shapes to
be varied for optimization cycles or numerical
simulation of mechanical adaptation processes.
Supporting the need to design from a multidisci-
plinary viewpoint, parameterized geometry com-
ponents for aerodynamic, as well as for thermal
and structural considerations are defined. Exam-
ples for turbomachinery blade design and optimi-
zation are given.

INTRODUCTION
In the past years with rapid expansion of com-

puter speed and storage, and improvements in
algorithm speed and accuracy, optimization strate-
gies have become affordable and reliable. Compu-
tational analysis and simulation of physical
phenomena therefore become valuable design
tools to improve technological performance of a
product component. Here we focus on the complex

technology of coupling the aerodynamics, struc-
tural and thermal loading as occurring in turboma-
chinery component design. In this situation we
need realistic and flexible surface modelling to
provide boundary conditions produced systemati-
cally and in rapid succession, with variations con-
trolled by suitable and efficient sets of parameters.

High speed aircraft design is posing similar
coupled problems, as outlined in [1]. Here we use
some of the chapters in this book to be adapted and
further developed for turbomachinery problems,
like aerodynamic blade design with thermal and
structural constraints.

With geometry data of a machine component
being the common database for desirable aerody-
namic, thermodynamic and structural consider-
ations, to name only the most important of
disciplines relevant for successful product devel-
opment in the early engineering phase, we should
explain some of the background of these fields as
far as they have influenced parametrization of our
geometry preprocessor.

GASDYNAMIC PHENOMENA, INVERSE
AND DIRECT DESIGN TOOLS

Flow machinery, just like aircraft wings and
other free form shapes with a need of refined sur-
face quality is sensitive to the physical phenomena
especially in the high speed domain. The knowl-
edge base of transonic and supersonic gasdynam-
ics tells us about regions of influence and
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dependence, this way suggesting the definition of
section geometry definition observing the lack of
upstream influence of any shape changes in certain
regions.

Applied to the design of turbine blades we use
such phenomena to perform flow computations
both in a direct (downstream) or an inverse (cross-
flow) marching procedure (Fig. 1). The latter
allows to use certain given starting data to com-
pute the flow along with a compatible boundary
condition: the shape results from this inverse
approach which, in practice, means that we may
control the flow quality to avoid or delay negative
effects like separation and obtain design hints how
to shape a blade to actually observe this desired
flow quality.

Figure 1 shows the principle, infinitesimally
starting from known data along (12), finding the
solution within a triangle (123), for potential flow
computation, or with entropy updates along
streamlines (14) for an Euler accurate CFD simu-
lation. Also shown is the application to an experi-
mentally tested turbine blade design: the
supersonic domain is re-constructed by starting
from the given sonic line (AB) in the inverse
mode, then continuing downstream of (BC) in the
direct mode.

This transonic design method has been used
for turbomachinery cascades [2] and many air-
plane wing design examples [3].

In the following we may not need to use these
methods but we use geometry preprocessors which
use parametric airfoils and other component func-
tions which have been tailored using experience
with this design concept. So we ensure to be close
to desirable conditions in the aerodynamic part of
the many needed optimization steps in design
practice.

GEOMETRY MODELS WITH PARAMETRIC
SHAPE CONTROL

Results from the above cited inverse approach
in aerodynamics have taught us about shape sensi-
tivities [4] and consequently about the needed
refined parameter definition for the following more
recent and future optimization efforts. In practical
design, there will be a more multidisciplinary
approach trying to optimize aerodynamics, struc-
ture, thermal properties etc. in a synchronized way.
Here we call for a setup of parameters for control-
ling the complete set of boundaries to vary the
shape for each discipline effectively. Restricting
our illustrations to turbine blade technology, which
might be resulting from the above illustrated
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Figure 1:  Principle of inverse and direct supersonic design; application of both inverse and direct
methods to redesigning parts of the contour for a turbine blade test case.
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design process, now needs to be created including
its structure of coolant passages to allow for a
design optimization including structural and ther-
mal loads.

Without knowledge of some physical proper-
ties of aerodynamics leading to a suitable parame-
trization, the size and shape of the mathematical
space that contains all the design variables (for
example, coordinates of all blade surface points) is
very large and complex in a realistic cooled blade
geometry. Only when it is possible to use fast
flow-field analysis codes could it be affordable to
have an ideal optimization situation where each
surface grid point on the optimized configuration
is allowed to move independently. Otherwise, the
designer is forced to somewhat restrict the design
space by working with a relatively small number
of the design variables by performing parameter-
ization - if not by a specialized software like the
one introduced here, for example, by fitting poly-
nomials - of either the 3-D surface geometry or the
3-D surface pressure. The optimization code then
needs to identify the coefficients in these polyno-
mials. Since it is often necessary to constrain and
sometimes not allow motion of certain parts of the
3-D surface, the most promising choices for the 3-
D parameterization appear to be different types of
Bezier functions [5] and the geometry preprocess-
ing tools used here which is based on a library of
suitable analytical functions and successive
manipulations and integrations in 3D cartesian
coordinates ([1], pp 123-136).

This approach allows to vary the airfoil param-
eters as found suitable from 2D design (Fig. 1)
into the third dimension, to compose a 3D blade
with drastically changing sections as occurring
between the root and tip sections of a realistic tur-
bine blade. Moreover, mathematical description of
every surface point without any interpolation and
iteration to approximate given data, allows for an
easy construction of parallel surfaces as needed to
meet wall thickness constraints. These are crucial
when the inner structure of the blade needs to
house a coolant flow passage reducing the heat
load on the blade and still maintain structural stiff-
ness to support the forces produced by the flow
and through structure transferred to yield shaft
torque.

A starting geometry for subsequent simula-
tions and optimization is illustrated in Fig 2.

In the following chapter, some of our first

results on optimization, will be commented,
obtained prior to the availability of the fully
parameterized blade geometry introduced here.
The goal is, to learn from bi-disciplinary (aerody-
namic-thermal, aerodynamic-structural, thermal-
structural) optimization, before a truly multidisci-
plinary, automated optimization will be feasible.

Finally, the fully parameterized geometry of
basic blade with coolant flow passages serves as a
test bed for varying the parameters following the
suggestions of a structural optimization strategy.

MULTIDISCIPLINARY DESIGN TASKS IN
TURBOMACHINERY TECHNOLOGY

With presently available materials such as
nickel-based alloys, gas turbine blades cannot
withstand metal temperatures in excess of approxi-
mately 1300 K. Internal coolant flow passages
augmented with heat transfer enhancements, such
as trip strips or turbulators, impingement cooling,
banks of pin fins and miniature heat exchangers
can provide significant enhancements of convec-
tion heat transfer. For example, when needed in
the initial turbine stages, cooling air can be made
to impinge on the leading and trailing edge inter-
nal cooling passage surfaces in order to enhance
convection. Impingement cooling schemes
demand large leading and trailing edge diameters,
but this creates thicker blades that can substan-
tially increase aerodynamic losses. Complex heat
exchangers have two major drawbacks. First, they
induce early transition to turbulence and greatly
increase the coolant passage effective friction,
while moderately increasing the convective heat
transfer. Second, manufacture of such complex
internal configurations requires special machining
processes.

The design variable set defines the geometry of
the turbine blade including the external turbine air-
foil shape definition, thermal barrier coating thick-
ness, blade wall thickness distribution, and blade
internal strut configurations. The blade stacking
axis, twist, and taper are incorporated into the
design variable set for three-dimensional blades.
With the execution of this geometry generation
program, a set of optimization design variables
(the parametric model) is used to represent a vir-
tual (electronic) prototype of the turbine blade or
vane. The optimization design variable set con-
trolled the internal coolant passage configuration,
thickness variation of the coolant passage wall,
positions and thicknesses of the internal ribs, and

3
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die pull angles of the ribs [6].
In our first exercise in multidisciplinary design
optimization of internally cooled gas turbine
blades, a turbulent compressible flow Navier-
Stokes solver was used to predict the hot gas flow-
field outside of the blade subject to specified real-
istic hot surface temperature distribution. As a
byproduct, this analysis provides hot surface nor-
mal temperature gradients thus defining the hot
surface convection heat transfer coefficient distri-
bution. This and the guessed coolant bulk temper-
ature and the coolant passage wall convection heat
transfer coefficients create boundary conditions for

the steady temperature field prediction in the blade
and thermal barrier coating materials using fast
boundary element technique. The quasi-one-
dimensional flow analysis (with heat addition and
friction) of the coolant fluid dynamics is coupled
to the detailed steady heat conduction analysis in
the turbine blade material. By perturbing the
design variables (especially the variables defining
the internal blade geometry) the predicted thermal
boundary conditions on the interior of the blade
will be changing together with the coolant flow
parameters. As the optimization algorithm runs, it
also modifies the turbine inlet temperature. Once
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Figure 2: Turbine blade with coolant flow duct: Parametric outer shape definition plus meandering duct
within the blade observing local shape control of duct cross section shape and wall thickness. Blade sur-

face partly removed (a), three-view (b)
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the turbine inlet temperature changes significantly,
the entire iterative procedure between the thermal
field analysis in the blade material and the compu-
tational fluid dynamic analysis of the external hot
gas flow-field will be performed again to find a
better estimate for thermal boundary conditions on
the blade hot surface. This global coupling pro-
cess, so far, was performed only a small number
of times during the course of the entire optimiza-
tion. This semi-conjugate optimization uses sec-
tional 2-D blade hot flow-field analysis and a
simple quasi 1-D coolant flow-field analysis (Fig.
3).

This design methodology was successful at
generating a wide range of realistic internally
cooled turbine blades and vanes, while the surface
meshing, grid generation, and boundary conditions
were automatically mapped between the interfa-
cial surfaces. This information was transferred
between the various design, optimization, and
numerical analysis tools without user intervention.
A constrained hybrid optimization algorithm [7]
controls the overall operation of the system and
guides the multidisciplinary internal turbine cool-
ing design process towards the objectives of cool-
ing effectiveness and turbine blade durability.
Design variable sets which had generated an infea-
sible or impossible geometry, were restored to a
feasible shape automatically using a constraint
sub-minimization.

There are also possibilities for further improve-
ment in the design of cooled turbine blades. The
external turbine blade shape could be modified in
an effort to make the external aero-thermodynam-
ics reduce the amount of heat absorbed by the
blade. Each new design of the external airfoil
would require a fully conjugate viscous three-

dimensional steady-state CFD analysis of the hot
gas flow field and the temperature field inside the
blade [8]. This CFD solution would then be used
to predict new external heat transfer coefficients,
as well as provide an aerodynamic constraint func-
tion so that the efficiency and work of the turbine
row could be fixed [9], [10]

RESULTS ON TURBINE BLADE STRUC-
TURAL ANALYSIS

The geometry preprocessing tool based on ana-
lytical functions was already used to model bound-
ary conditions for the automatic structural analysis
of internally cooled turbine blades. The prepro-
cessing tool can quickly generate realistic coolant
passage shapes within a specified outer blade. The
passage shapes are controlled by a set of parame-
ters that the users provide as input. When com-
bined with automatic grid generation and finite
element analysis tools, the system is ideal for auto-
matic parameter studies as well as for design opti-
mization. In the current structural analysis system,
the geometry preprocessing tool generates a multi-
block structured grid that represents the turbine
blade geometry. Another program then automati-
cally generates a surface triangulation [11] and
then another code makes a volume grid composed
of tetrahedrons [12]. A typical surface mesh is
shown in Fig. 4. Once a mesh is generated, a struc-
tural analysis is performed. The current structural
analysis system uses a parallel finite element anal-
ysis (FEA) code that can do both linear and non-
linear structural analysis [13]. This code also has
the capability of doing automatic partitioning of
the mesh as well as automatic FEA. Figure 5
shows an example finite element linear stress anal-
ysis result for a turbine blade with coolant pas-
sages spinning at 3000 RPM. In this case, the
number of degrees of freedom was around
100,000. Two Pentium II 333 MHz processors
were used to compute the solution in roughly 15
minutes. With this system, the user only needs to
input the parameters that govern the shape of the
blade and start the system. Once completed, the
system provides the detailed stress and displace-
ment field for the turbine blade without any further
interaction with the user. It is hoped that when
combined with optimization this automatic geom-
etry generation/analysis system will be a powerful
tool for turbine blade design.
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Figure 3.  Comparison of external wall temper-
ature variations computed at the quarter-root
span of the second HPT blade of the F100
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Fig. 4.  View of triangular surface mesh from blade tip and from blade root

undeformed deformed

Fig. 5.  Result from linear stress analysis of spinning turbine blade with passages,
 (for illustration, deformations have been multiplied by a factor of 20)
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CONCLUSION
We have shown some first results of what is

going to be a software system for multidisciplinary
optimization for turbomachinery components like
cascades, stators and rotors. Other applications for
aerospace and ground vehicle design seem
straightforward and rather may be less compli-
cated: A very close coupling of high speed areody-
namics, thermal and extreme structural loading
may occur only in high speed aircraft design.
While showing several results for monodisci-
plinary design and first results of bidisciplinary
optimization, we come to the conclusion and have
stressed the fact that fast, flexible and realistic sur-
face modelling for practical components is effec-
tively supporting any future multidisciplinary
approach to optimize product components observ-
ing advantages and constraints of all mayor disci-
plines involved in the operation of the component.
Optimization of turbomachinery blades poses first,
but strong test cases challenging all aspects of the
simulation software.
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ABSTRACT 

Although many foundries use specialized 
software packages to simulate filling and 
solidification of castings for process designs, a 
number of the required input parameters (such as 
material properties and boundary conditions) are 
seldom available for valued analysis.  A 
developed and recently patented virtual casting 
design methodology uses optimization and 
inverse modeling techniques to firstly calibrate 
computer models to plant conditions.  These 
models are then used in a second phase of 
optimisation that improves the operation of the 
casting plant, thereby playing a major role in 
reducing costs and improving productivity and 
quality of cast products. This paper describes an 
application of this design technology in a low 
pressure permanent mold casting operation in NZ. 
 
NOMENCLATURE 
f(x)  objective function 
g(x)  constraint function 
h  heat transfer coefficient 
M  number of time steps 
n  number of constraint functions 
N  number of thermocouples 
p  number of points in h(T) graph. 
q  heat flux density 
t  time 
T  temperature 
x vector of design variables. 
 
Subscripts / superscripts 
casting  location in casting 
experimental experimental measurement 
i  thermocouple index 
j  time step index 
model  model estimate 
n_model  n'th model time  

n_target  n'th target time 
surrounding location in surrounds 
t,s,b  mould constraint indices. 
 
INTRODUCTION 

A major thrust of cast aluminium research is 
the development of computer-aided engineering 
methods to reduce cycle time and cost for 
producing high quality cast aluminium 
automotive components.  The goal is to provide 
tools that simulate casting solidification and 
predict microstructure, mechanical properties and 
durability of a cast component.  This paper 
describes applications of a methodology that uses 
numerical simulation and optimisation to enhance 
a low-pressure permanent mould casting process 
for aluminium alloy wheels [1].  

 A common approach [2-4] for casting plant 
design is to build numerical models that represent 
all the relevant physical processes as accurately as 
possible.  If appropriate boundary conditions and 
physical parameters that represent plant 
conditions can be found, these models produce 
accurate predictions of plant performance and can 
be used as design tools.  The approach is to find 
the results (e.g. temperature distribution) from a 
known cause (e.g. boundary and initial 
conditions).  Unfortunately, it is often impossible 
to provide input data commensurate with the 
capabilities of the model thereby reducing its 
effectiveness as a design tool. 

It is possible that the unknown quantities may 
be determined using extra conditions, which may 
come from physical measurements elsewhere in 
the problem domain.  Such a problem is termed 
an inverse problem and the process of recovering 
the boundary conditions is referred to here as 
reverse engineering.  Thus, an alternative 
modelling strategy is to use inverse modelling 
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with numerical optimisation to adjust a 
computational model to match measured plant 
conditions and better understand and predict the 
stages of the casting process.  Using this approach 
the model may not necessarily be as sophisticated 
as one used in a conventional analysis.  However, 
by being more closely matched to the real world 
process, it becomes a more effective design tool.  
Although the approach does, of course, rely on 
the availability of detailed plant measurements, its 
effectiveness for predicting directions for plant 
improvements can outweigh the expense and 
difficulty of the measurements.  

The design methodology described here uses a 
finite element model of a casting process that is 
embedded in an optimisation procedure.  Initial 
stages of optimisation adjust the model's 
boundary conditions so that it more closely 
emulates measured temperature-time histories 
throughout the cast.  A second optimisation stage 
provides the design tool by adjusting die material 
properties to improve casting performance (i.e. 
productivity and quality).  The modified material 
properties are then mapped onto suitable 
adjustments of the casting equipment to effect the 
improvements.  

Figure 1 illustrates the traditional (direct) and 
reverse engineering (inverse) solution strategies, 
the latter of which has been employed by a 
number of researchers [5-8] to design casting 
mould geometry for optimum casting 
performance.   

 
 

 
Figure 1  Direct and inverse approach for a 

computational model. 
 
 
The approach is extended here to adjust flow 

and thermal boundary conditions for a specified 
geometry and is demonstrated by application to a 

low pressure die-casting manufacturing plant for 
aluminium alloy automobile wheels.  
 
NUMERICAL METHODS 

The die filling process for the wheel illustrated 
in Figure 2(a) was represented by a 2D axi-
symmetric finite element model (Figure 2(b)) 
aligned along the plane of symmetry through a 
spoke.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  (a) Cross-sectioned solid model of an 
aluminium alloy wheel, (b) A two-dimensional 

model of a wheel and tool steel (H13) die, 
assuming axi-symmetry about the central 

plane of a spoke. 
 
 

A commercial package (ProCASTTM) was 
used and, following a mesh convergence study, 
the model contained 4483 nodes and 3963 linear 
tetrahedral elements.  The maximum allowable 
time step in the simulations was 0.1 seconds (time 
of fill was between 8 and 17 seconds) and each 
unsteady fill simulation took 33 CPU minutes 
using a SUN ULTRA-1 workstation.  The speed 
of solution is important since the simulations 
must be completed many times in response to the 
adjustments made by the optimisation algorithms.  
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The finite element model was linked via a 
purpose written user interface to optimisation 
packages such as DOTTM [9] and SNOPTTM [10].  
This interface generates a design file that 
specifies all the relevant data for optimisation, 
such as design variables, objective and constraint  
functions, etc.  The design file is used as input to 
the solution process.  The architecture of the 
optimisation/simulation algorithm is illustrated in 
Figure 3. 

 

 
Figure 3  Architechture of the solution control 

module of the overall design methodology. 
 
 
Recognising that a wheel is not really axi-

symmetric, a 3D model of one fifth of the wheel 
was also constructed.  This model contained 
19,755 nodes and 90,683 elements and was used 
to confirm that the inverse modelling based on the 
2D model produced parameters that were relevant 
to the fully 3D situation. 
 
EXPERIMENTAL MEASUREMENTS 

A critical aspect of obtaining data from a 
casting process under production conditions is to 
measure temperatures for multiple and 
consecutive casting shots without causing 

thermocouple breakage or freezing the 
thermocouples into the castings.  If the 
thermocouples were to remain inside the 
solidified casting it would be extremely difficult 
to open the surrounding die at the end of a cycle 
and be equally difficult to keep the thermocouples 
intact.  There would also be a high likelihood of 
damaging parts of the die and its mechanisms.  
After experimenting with several options, 
exposed thermocouples were coated with a 
lubricating graphite die coat during the usual die 
coating procedure that allows easy extraction of 
the cast after solidification.  Although the coating 
decreased the temporal responsiveness of the 
thermocouples slightly it proved to be the only 
practical way to record multiple and consecutive 
cycles during warm up and operating stages of 
production. 

A section of the die corresponding to a wheel 
spoke was instrumented with thermocouples 
distributed as shown in  

Figure 4.   
 
 

 

 
Figure 4  Thermocouple locations in the wheel 
and die (solid dots indicate thermocouples in 

the wheel). Cooling curves for the 
thermocouples marked (a) and (b) are 

presented in Figure 8. 
 
 

There were 15 thermocouples that protruded 5 
mm into the cavity to measure temperatures in the 

Initial casting simulation
Identify key design variables,  xi

Optimisation complete

Evaluate Objective f(x) and
Constraint g(x) functions

Simulation of
casting process

Numerical Optimisation
Adjust i th design variable

Analysed
all design variables and

best combinations?

Convergence
f(x) < e and constraints

satisfied?

no

end of iteration

not converged

i = 0

i = i+1

Initial casting simulation
Identify key design variables,  xi

Optimisation complete

Evaluate Objective f(x) and
Constraint g(x) functions

Simulation of
casting process

Numerical Optimisation
Adjust i th design variable

Analysed
all design variables and

best combinations?

Convergence
f(x) < e and constraints

satisfied?

no

end of iteration

not converged

i = 0

i = i+1

A

A

A

A

A

(b)

(a)

A

A

A

A

A

(b)

(a)



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

molten and solidifying metal.  A separate pilot 
study indicated that a coated thermocouple 
measured the cooling rate within 1% of that 
measured by an uncoated thermocouple. 
Temperature measurement errors from all sources 
were estimated to be less than 1.3% of the 
measured temperature.  The thermocouples were 
sampled once a second which was sufficiently 
rapid to capture the cooling histories while 
allowing the data collection equipment to store 
the results from several consecutive cycles. 
 
MODEL ADJUSTMENT USING OPTIMISED 
INVERSE MODELLING 

Modelling of the die casting process is usually 
divided into a two-part problem.  The first stage 
of the process involves simulating the fluid 
dynamics during filling of molten metal into the 
cavity.  The second stage involves modelling the 
heat transfer during solidification. 

Generally, the filling sequence is determined 
by a prescribed velocity boundary condition at the 
cavity entrance and the solidification profile is 
controlled by heat transfer boundary conditions 
across the metal/mould interfaces.  The latter is a 
more complex situation since the boundary 
conditions comprise a multitude of transient 
factors ranging from convection in the molten 
metal during filling, conduction from the 
solidifying casting to the mould and radiation 
across isolated air gaps between the casting and 
mould.  The relative importance of these 
processes depends on experimental or 
manufacturing conditions and can possibly 
change as solidification proceeds.  The 
cumulative effect of these heat transport 
phenomena is often represented by a single heat 
transfer coefficient, h, embedded in the heat flux 
condition prescribed at the casting/mould 
interface  

 
q=h(Tcasting-Tsurrounding)                (1) 
 

where q is the heat flux through the interface.  In 
the case of metallic moulds, h can control the 
solidification rate more than any other single 
parameter [11].  Hence an accurate calculation of 
h is essential for an accurate representation of the 
process.  

The matching of the model to plant conditions 
was done using two stages of inverse modelling.  
The first stage estimated the inlet velocity during 
filling.  The second estimated the heat transfer 
boundary conditions during solidification.  

 
Inlet Boundary Condition for a Low 
Pressure Filling Sequence 

The objective function, f(x), for optimisation 
was expressed as: 

 
f(x) = N� i=1(ti

model-ti
experimental)      (2) 

 
where ti

experimental and ti
model are the times when the 

ith thermocouple and its respective node in the 
model first respond to molten metal contact.  The 
summation is over the total number of cooling 
curves measured by the 15 thermocouples that 
protruded into the cast volume.  The only design 
variable in the optimisation was the vertical 
component of velocity of the metal entering from 
the riser tube.  Unconstrained optimisation using 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm was used.  

Previous filling models for wheels have relied 
on estimates ranging from 50 to 120 mm/s for the 
inlet velocity boundary condition [3].  
Convergence of the objective function (Equation 
2) was achieved in 16 iterations and produced a 
tuned inlet velocity of 185 mm/s.  As shown by 
the visualisation snap shots in Figure 6, the 
solution that corresponded to the optimum match 
had an unsatisfactory flow pattern.  Recirculation 
occurred, causing colder metal to swirl over and 
mix with hotter incoming metal, increasing the 
likelihood of trapped air/gas in the cavity.   

 
 

Recirculation

 
 

Figure 5  Snapshot of the filling sequence a 
wheel as predicted by a calibrated 2D finite 

element model (ProCASTTM) 
 
 

Although previous filling models, based on the 
lower estimates of inlet velocity, had not 
predicted the recirculation, that region of the cast 
had been known to have porosity problems.  
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The prediction of air/gas entrainment indicated 
by the solution in Figure 5 has since been 
validated using a full-scale water analogue model.  
Figure 6 shows bubbles being generated at the 
predicted location and propagating throughout the 
cavity under the influence of the fluid momentum.  
The optimised calibration has shifted the model to 
a more representative condition and ultimately led 
to the identification and understanding of a 
problematic aspect of this industrial casting 
process. 
 
 

 
Figure 6  Plan view of filling sequence in a full 

scalewater analogue model. 
 
 
Boundary Heat Transfer Coefficients 

In this section, inverse engineering is applied 
to the solidification phase of the same casting 
process, the objective being to find a distribution 
of temperature dependent heat transfer 
coefficients so that the computed and 
experimental cooling curves closely match.  
Although the heat transfer during solidification 
between the casting and die is a function of 
several variables, temperature was assumed to be 
the dominant variable.  The objective function can 
be expressed as: 

 
f(x) = M� j=1

 N� i=1 (Ti,j
model-Ti,j

experimental)2     (3) 
 

where Ti,j
model and Ti,j

experimental are the model and 
experimental temperatures at the jth time step for 
the ith thermocouple and M is the total number of 
time steps over which the optimisation was 
applied.  The second summation is over all the 
thermocouples, those protruding into the melt and 
those located in the die.  A constraint in this 
optimisation problem was to maintain decreasing 
heat transfer coefficients with decreasing 

temperature to represent the formation of air gaps 
between the casting and mould, due to casting 
contraction and mould distortion during 
solidification.  There were three sets of constraint 
functions, representing the number of die 
components and interfaces with the casting. These 
were represented as: 
 
g(x)t

top       = h(T)t - h(T)t+1     ,     t = (1,p)       (4) 
g(x)b

bottom  = h(T)b - h(T)b+1    ,     b = (1,p)       (5) 
g(x)s

side      = h(T)s - h(T)s+1    ,     s = (1,p)       (6) 
 
where t, b, and s refer to discrete points on each 
h(T) curve. The Sequential Quadratic 
Programming (SQP) algorithm was used in the 
optimisation. 

Starting with heat transfer coefficients that 
were based on previous models and engineering 
experience, the optimisation produced a 76% 
improvement in the objective function relative to 
this initial estimate (Figure 7).   

 
 

 
 
 
 
 
 
 
 
 
 

Figure 7  History of the objective function 
(Equation 3) used to estimate heat transfer 

coefficients. 
 
 

An independent analysis has also been 
conducted to determine the sensitivity of the 
optimum solution to the initial values of variables 
in the design space.  The results have produced 
similar optimised solutions for all initial guesses.  
Sample cooling curves are summarised in Figure 
9.  

Although an exact match was not produced, an 
improvement in the thermal predictions for the 
casting and die was achieved.  A reason for the 
unmatched cooling curves in the die is that some 
of the blind thermocouples may not have been in 
complete contact with the internal mould surface, 
leaving a small air gap between the thermocouple 
tip and the die. 
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b) 

Figure 8  (a) T-t profiles of the point in the 
wheel marked “a” in Figure 4,  (b) T-t profiles 

of the point in the casting, marked “b” in 
Figure 4. 

 
 

As well, during the experiment there were 
effects and occurrences in the actual process that 
are reflected in the experimental data, but not 
modelled (e.g. variations in die open and close 
times, breaks in the cooling cycle, metal refills in 
the furnace and misruns).  The effect of any 
combination of these events can contribute 
significantly to a source of difference between the 
plant conditions and the predictions of the model.  
However, despite these issues, Figure 8 shows 
that the optimum cooling curves (white lines) 
show more realistic solidification characteristics 
than the initial model (dotted lines). The 
calibrated heat transfer coefficients were used in 
the 3D wedge model and a resulting isochron plot 
(reflecting times taken to cool to specified 
temperatures) was compared with an actual cast 
piece.  The distribution of times taken for the cast 
to cool to 570°C is shown in Figure 9(a) and 
indicates a hot spot in the rim / spoke junction. 
The cast in Figure 9(b) exhibits a corresponding 
shrinkage defect. 
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Figure 9  (Left) A calibrated model showing 
solidification times that indicate a hot spot at 
the spoke-rim junction. (Right) Photograph of 
a spoke shrinkage defect at the same location. 

 
CASTING PERFORMANCE OPTIMISATION 

The calibrated model was used to optimise the 
performance of the casting process by modifying 
thermophysical properties in the die.  The 
objective was to reduce casting defects and 
achieve a shorter casting cycle time.  Constraint 
functions, g(x)i, in the optimisation analysis 
which were designed to achieve a uni-directional 
solidification profile are represented by 
 

g(x)i = Tj – Tk  �  0         i = 1,n        (7) 
 
where the subscripts for temperature denote 
selected nodes in the model and n denotes the 
total number of constraint functions.  The 
objective function for this analysis can be 
expressed by 
 

f(x) = (t1-model –t1-target)2 + (t2-model –t2-target)2    (8) 
 
where tn-model and tn-target denote model and target 
times, respectively, of the cooling cycle.  For the 
results reported here, the two points in the 
arbitrarily chosen target cooling curve for a node 
located in the sprue were 615°C at t1-target = 75 
seconds and 590°C at t2-target = 160 seconds.  A 
node in the sprue was chosen since it is the last 
part of the casting to solidify, and is hence a good 
indicator for the end of a cycle.  

Figure 10(a) indicates that a 78% 
improvement from the initial value of the 
objective function was achieved and Figure 10(b) 
illustrates the corresponding reduction in cycle 
time.   
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a) 
 

 
 

 
 
 

 
 
 
 
 
 
 

b) 
Figure 10  (a) Optimisation history (Equation 
8).  (b) Initial and desired cooling curves for a 

selected node. 
 
 

In a separate analysis the activation periods of 
four cooling circuits were also optimised using 
the same objective and constraint functions, 
producing further refinement in virtual casting 
performance.  

Regions of optimum thermal properties in the 
die have suggested ideal placements for cooling 
and insulation and the results have been 
implemented into an existing low-pressure die 
cast process that manufactures aluminium alloy 
wheels.  The direct outcome for the industrial 
plant has been an 80% increase in production 
capacity (10 to 18 wheels per hour) and a 15% 
reduction in the design lead time.  
 
CONCLUSIONS 

The results presented here have shown how 
optimisation and inverse modelling can be used 
initially to tune a computational model so that its 
predictions match more closely data measured in 
the industrial casting equipment.  The tuned 

model can then be used in a subsequent 
optimisation to predict changes that could be 
made to the casting plant to increase productivity. 

In the case of molten metal filling, the tuning 
produced a model that identified problematic 
areas in the casting due to recirculations that had 
not been predicted by previous models.  The 
solidification phase of the casting process was 
then calibrated and the resulting cooling profiles 
accurately reflected typical defects in the casting.  
Both observations were indications that the 
optimisation had produced better estimates of 
boundary conditions than had previously been 
used. 

The use of numerical optimisation and 
modelling has been demonstrated to predict 
casting phenomenon at macroscopic scales, with 
very successful predictions for directions of 
improvement.  The inverse methodology 
encapsulated as a design tool has since been 
directly incorporated into several vehicle 
component programmes in the industry. 
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