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FOREWORD

This book contains the papers presented in the 4" International Conference on
Inverse Problems in Engineering: Theory and Practice. This conference is
organized under the auspices of United Engineering Foundation and is held in a
three-year cycle. Previous versions took place in Palm Coast, Florida, in 1993; in
Le Croisic, France, in 1996; and in Port Ludlow, Washington State, in 1999. The
series of International Conferences on Inverse Problems in Engineering:
Theory and Practice finds its roots in the informal seminars organized by Prof.
James V. Beck at Michigan State University, which were initiated in 80’s.

The 4" International Conference on Inverse Problems in Engineering:
Theory and Practice was held during May 26 — 31, 2002, in the beautiful Hotel
Portobello Resort & Safari, located near the city of Rio de Janeiro. The resort pro-
vided a unique atmosphere for 99 conference participants, from 21 different coun-
tries, to present their most recent research results and for the technical discussion
of their findings. The 4™ International Conference on Inverse Problems in En-
gineering: Theory and Practice was co-promoted by the Brazilian Society of
Mechanical Sciences (ABCM), the Brazilian Society of Computational and Applied
Mathematics (SBMAC), and by COPPE, which is the graduate school in engineer-
ing of the Federal University of Rio de Janeiro (UFRJ). It was co-sponsored by the
following agencies of the Brazilian Government: CNPq, from the Ministry of Sci-
ence and Technology; CAPES, from the Ministry of Education and Culture; and the
National Oil Agency (ANP), from the Ministry of Mines and Energy.

The 4™ International Conference on Inverse Problems in Engineering:
Theory and Practice counted with 159 submitted abstracts, resulting on 104 ac-
cepted papers. A total of 98 papers were scheduled for presentation in the confer-
ence, distributed in 25 oral sessions and in 1 poster session. Invited keynote lectur-
ers were presented by Prof. A. Yagola (Russia), Prof. G. Chavent (France), Prof. O.
Alifanov (Russia), Prof. Y. Jarny (France) and Prof. N-Z. Sun (USA). Prof. K.
Woodbury (USA) and Prof. B. Blackwell (USA) were invited to give tutorial ses-
sions. | would like to express my gratitude to the members of the organizing and
scientific committees for playing a fundamental role towards the success of the
conference, as well as to the invited speakers for kindly accepting my invitation to
share with the participants their knowledge on important subjects on the inverse
problems field. Because of the large number of papers submitted, several other
reviewers were invited to give their contributions to the conference by evaluating
papers, in addition to the members of the organizing and scientific committees.
They include Prof. J. P. Kaipio (Finland), Prof. L. Olson (USA), Prof. A. Haji-Sheikh
(USA), Prof. J. G. Berryman (USA), Prof. R. Y. Qassim (Brazil), Prof. B. Dennis
(Japan), Prof. G. R. Liu (Taiwan), Prof. H. Telega (Poland), Prof. V. Steffen Jr.
(Brazil), Prof. F. Rochinha (Brazil) and Prof. M. D. Mikhailov (Brazil).

It was a great honor for Brazil to host the 4" International Conference on
Inverse Problems in Engineering: Theory and Practice and, personally for



myself, to be its chairman. The next conference shall take place in the United
Kingdom in 2005 and Prof. Daniel Lesnic has agreed to lead the organizing com-
mittee for that event.

Helcio R. B. Orlande
Rio de Janeiro, Brazil
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MATHEMATICAL AND EXPERIMENTAL SIMULATION IN DESIGNING AND
TESTING HEAT-LOADED ENGINEERING OBJECTS

Oleg M. Alifanov

Aerospace School
Moscow Aviation Institute, Moscow, Russia
alfl@cosmos.rcnet.ru

ABSTRACT

The paper deals with the inverse methodology
in mathematical modeling and experimental
studies of heat transfer processes while designing
and testing thermally loaded structures. Among
the problems under consideration the main are the
investigation of thermophysical characteristics of
materials, the transient heat measurements and
identification of thermal processes. The
identification of mathematical models of physical
processes should be performed in such a way as
to provide a correct consideration of physical
laws and general rules in combination with the
inverse methods for parameter estimation, test of
hypothesis and model validation for adequacy. In
particular, the results of studies on the
construction and verification of models are
presented to describe the process of heat
propagation in high-porous fibrous materials and
thermal protection structures made from them.
The investigation of heat transfer in a
heterogeneous gas flow is citied as another useful
application of this technique. The experimental-
and-design methods based on solving the inverse
problems are widely used in the full-scale tests of
different engineering systems. One such example
given in the paper is a broad spectrum of
thermophysical investigations that have been
carried out in the course of flight tests of the
reusable aerospace vehicle heat protection.

INTRODUCTION

A correct technology of scientific research and
an engineering design assume the use of a system
approach. A necessary aspect of the system
approach is the modeling (simulation) of the
physical processes and technical objects under
study. The modeling can be experimental and
mathematical. The role of mathematical modeling
in different researches and developments is

constantly growing. At the same time, the
experiments and tests will always present a basis
to validate the mathematical models and methods
being used for their adequacy and verify the
design decision correctness. Speaking here about
the mutual relations of experimental and
mathematical modeling we see that they become
more ordered and substantiated from the
viewpoint of final goal — to provide higher quality
and  efficiency  of  investigations  and
developments. Among the more important trends
in achieving the above goal is an advanced
methodology of mathematical model
identification and physical process diagnostics
based on inverse problem solving [1-6].

This methodology has received wide
acceptance in different arcas of science and
technology. Rather high interest to solution of
these problems is induced by practical needs of
including of nonstationary, nonlinear and
multifactor effects in the physical processes and
the operational conditions of engineering systems
under study. These effects restrict essentially the
application of other methods and necessitate the
development of new approaches, among which
there are inverse methods. Their main advantage
is that they allow experiments to be conducted in
conditions maximally close to real ones, or
directly during operation of real objects. Besides,
such approach increases the informativeness,
saves experimentation time compared with
conventional methods.

In the most complete form the inverse
methodology can be in potential realized it
various areas of design and testing of engineering
objects [5]. A well-organized process of
development of some engineering structure, in the
general case, should include the constructing of
an ordered system of interconnected mathematical
models of this structure and its components, as
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well as the conditions of their operation. In this
connection we point out that methods based on
the inverse problem solution can be successfully
used not only for solving the particular problems
but they can form a base for development,
structuralizution and test for adequacy of the
desired mathematical models, providing them
with the proper numerical information.

Such methodology is used for the construction
of adequate enough mathematical models of
physical processes as applied to thermally loaded
structures and thermal protection materials. The
methodology includes the following three general
stages:

e  construction of a model structure;
e parametric identification —  parameter
estimation of the structural models;
e validation of the models for adequacy.
The given process can be presented as an
extended flow-chart shown in Fig.1

EXAMPLES OF INVERSE METHODOLOGY
APPLICATION

One of the very broad field of inverse method
application is the analysis of thermophysical
properties of composite heat-protective materials
acting in high temperature surroundings as, for
example, when an orbiter is flying in the Earth’s
atmosphere. Thermophysical measurements based
on classical approach methods for many materials
could only be made at temperatures and heating
rate changes much lower than at those realized in
reality. To avoid this discrepancy it is possible to
simulate the required conditions for model
heating on the test stands with a further
processing of temperature measurements through
the methods of inverse heat transfer problems
solving. The thermophysical properties thus
obtained correspond to the heating conditions
brought near to natural conditions in which a
thermal protection should operate. In a number of
cases, the inverse methods are unique ways for

obtaining  reliable experimental data on
thermophysical  characteristics  of  thermal
protection, the insulation materials having

complex compositions and structures.

The methodology based on solving similar
inverse heat transfer problems poses a new field
of thermophysics, the unsteady-state
thermophysics of materials and media. In
particular, it consists of a mathematical modeling
of the heat transfer processes of advanced
materials, working out recommendations for
creating new materials with prescribed properties.

One more and a very wide application of
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Figure 1: Flow-chart of the identification
process

inverse problem methods, which is directly
concerned with thermal investigations of an
aerospace vehicle, is the unsteady-state heat
measurements. The point is that in heat testing of
such engineering systems, or in studying heat
transfer processes on the experimental facilities in
thermal probing of hot gas flow and in other cases
there appears a problem of determining the
temperatures, heat fluxes and heat transfer
coefficients at the surfaces of the bodies (various
structural components, thermal shields, external
protective coatings, etc.). Since the intensity of
heat transfer to a body usually changes with time
because of changes in the heating (cooling) rates,
and the non-stationariness of experimental
installations parameters, etc. it is especially
important to be able to determine the unsteady-
state parameters of heat transfer.

As a rule, it is impossible to actually measure
the time-changing heat fluxes and heat transfer
coefficients. The surface temperature of the
objects often remains unaccessible for direct
measurements. At the same time, there exists a
possibility to measure temperatures at separate
points within a body or on some surface part.
Thus it becomes necessary to solve the
corresponding inverse heat transfer problems, i.e.
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to determine the desired thermal boundary
conditions by calculation based on temperature
measurements.

Such problems of heat measuring are often
encountered in the simulation of thermal
conditions on the test gasdynamic facilities, in the
course of flight simulation, in full-scale tests of
flying vehicles, and so on.

At present, similar inverse methods lie at the basis
of a new efficient direction of heat measurements,
the unsteady-state heat measurements.

THERMAL MODELING OF REUSABLE

HEAT PROTECTION

Using the above mentioned procedure of
identification the investigations have been carried
out of fibrous ceramics and graphite materials for
reusable thermal protection of aerospace vehicles,
like Russian Buran and American Space Shuttle.
The thermal properties and heat transfer
characteristics were obtained for real high-
temperature and transient conditions of heating
including the simulation experiments, facility and
full-scale flight tests. These investigations used a
system of models of the unsteady-state heat fluxes
at the surface and in the intertile clearances of
thermal protection as well as the estimation of
action of different catalytic properties on the
external heat transfer in real high temperature
flow of a non-equilibrium gas, the check for
adequacy of developed mathematical models of
heat transfer both on the surface and inside of
thermal protection structures.

Let us dwell on the mathematical modeling
and experimental testing of high-porous ceramic
composits [7 - 9]. A general thermal mathematical
model for the tiled heat protection shield
developed in the Moscow Aviation Institute
consists of the following components:

- an orbiter motion model in the atmosphere;

- a heat loading model to determine the
surface heat fluxes in either points of the
vehicle;

- amodel of thermal protection structures;

- athermal model of the high-porous material
which itself includes the material structure
model, the models of thermal, optic-
radiative and hydrolic properties of the
material, the conductive, convective and and
radiative heat transfer models in the
material;

- a heat transfer model in the thermal
protection structure (depending on the

problem being solved one-,two-, or three-

&
5 43 2
/ \sj A 4
A, 5 ’/‘/( &
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¢ e
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Figure 2: Structure model: a — general
configuration; b — elementary volume

dimensional models are used);
- a heat state model of the thermal protection
structure.

This model lets us encompass a significant
number of problems arising at different stages of
research and development of both the materials
and structures.

The thermal model
fibrous material.

A thorough analysis of the existing and
advanced thermal protection fibrous ceramics
showed that they have to be classified among
random-and-inhomogeneous media in which the
fibers are stochastically distributed by lengths,

of a high-porous
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diameters, orientatiions and physical properties.
So, it is necessary to apply the probability theory
methods for describing the material structures.

A model structure is the base for a thermal
model of such a material. In the thermal model
here considered a regular orthogonal anisotropic
structure of fibers (Fig. 2, a) was proposed as a
structure model. The analisis showed that a
transfer from the original nonorthogonal structure
to the orthogonal model is possible on conditions
that a model has the thermophisical characteristics
as well as the probability distributions of fiber
lengths and diameters identical to those of the
original material. Such a structure model is
essentially an elementary volumes system (Fig.
2, b). Each of them is characterized by some
random vector X. Its stochastic characteristics
depend on the stochastic ones of fibers. The
studies indicated that the mean value of any
physical property F of a fibrouse material can be
changed by the mean value of the same property
but determined for the elementary volume. Thus,
it is possible to calculate any physical property of
a fibrouse material phovided that we have a
mathematical model of this property for the
elementary volume.

Based on this theory in combination with the
known theories and models (for example, the
theory Mi for calculation of optic-radiative
charactrerictics of the fibrous media or the
Prosolov’s model of the gas thermal conductivity
in a material) the analytic formulas were obtained
for calculation of all required properties of a
fibrous material, such as the apparent density,
thermal conductivity at a given direction,
volumetric heat capacity, spectral and integral
optic-radiative coefficients. The developed model
has been tested for adequacy through utilization
of the experimental data on the basis of solving
coefficient IHCPs and optimum experimental
design. It was made not only for TZMK ceramics
but also for Rigid, Fibrous Ceramic (RFC)
composite materials based on the Lockheed HTP
technology and flown on US Shuttle Orbiters.
High Thermal Performance (HTP) technology
uses various combinations of silica and alumina
fibers.

The corresponding calculated and
experimental values of the effective thermal
conductivity for HTP materials (the silica and
alumina fiber fractions by mass are 78% and 22%
respectively, the mean diameter and variance for
silica fibers are 4.3 mkm and 1.69 mkm, for
alumina fibres are 3.68 mkm and 2.56 mkm

respectively, structure anisotropy factor A is
about 2) are presented in Fig. 3 for different
pressures of ambient air. The similar data for
TZMK materials are given in Fig. 4 for three
values of a anisotropy factor A which is defined
as an averaged ratio between the number of fibers
situated along the longitudinal axis and the
number of fibers oriented normally to the surface.
The results of such comparative estimations
allowed us to make the conclusion that the
method developed may be used successfully to
predict the structure and composition effect of

multicomponent,  random-and-inhomogeneous,
p) 1 —-76 mm Hg |
wmKk +— 2-8.3

3-0.5

0,14

0,07

0 1
255 533 811 1089 T, 'K
| |
2] 4 - HTP-6
W/mK 5—HTP-16 1

0,07

0

255 533 811

1089

T, 'K
Figure 3: Calculated (solid lines) and
experimental (symbols) values of the

effective thermal conductivity, W/mK,

of RFC materials (a — HTP-12-22
material, the density is 193 kg/m?;

b - HTP-6-22 and HTP-16-22
materials, the density are 96 and 256
kg/m’, respectively): 1,2,3 —p = 76.0,

8.4, 0.5 mm Hg, respectively; 4,5 — the

data for HTP-6-22 and HTP-16-22,
respectively, at p =760 mm Hg
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fibrous materials on their heat insulation

properties.

The models of heat transfer processes
in fibrous ceramic layer. A computational
analysis of the combined (conductive-convective-
radiative) heat transfer is usually a very difficult
problem. That is why, the effective thermal
conductivity method has gained acceptance in the
engineering practice. The so called “effective
thermal conductivity” combines conventionally
all effects of complex heat transfer. The values of
this characteristic are related directly to its
determination procedure and in a number of cases
when the natural working conditions differ
essentially from the experimental determination
conditions of this magnitude such a method may
give rise to big errors in estimating the heat state
of a system studied. In this connection other and
more accurate mathematical models are utilized at

W/mK |
p, =144kg/m’
A=2 /6
0,2 T— M{d} =3.7mk
D{d}=1.7
) L
0,1
0
300 600 900 T,’K
W/mK I N
0, =127kg/m
A=1
0,2 +—M{d} = 4.8mkm
D{d} =18
RS
0
300 600 900 T,’K

developing the thermal protection. The
preliminary analysis indicated that the conduction
and radiation contribute mainly in the heat
transfer studied. So, most attention has been
concentrated on the problem of investigating the
conduction-and-radiation heat transfer.

The characteristic sizes of thermal protection
components are many times the sizes of the
material structure nonhomogeneities. This allows
the high-porous fibrous materials to be considered
as homogeneous media. Then the conduction-and-
radiation heat transfer in these materials can be
governed by the energy conservation and
radiation transfer equations.

However, a direct solution of the radiation
transfer equation in a sufficiently general
statement is fraught with enormously bulky
computations and this is not acceptable for
practical implementations associated  with
repeated calculations of transient heat transfer

1
W/mK [
P, =250kg/m’
A=19
0,2 +—M{d} =3.7mkm
D{d} =17
LA
0,1
p=10"
0+
300 600 900 T, K
A
W/mK |
p, =149kgm’
A=1 S
0,2 +Mid} =3.7mkm o
D{d} =1.7 ° p=1
[ )
[ )
o1 ’yb/
0
300 600 900 T, ’K)

Figure 4: Temperature dependences of the effective thermal conductivity, W/mK, of TZMK

materials; p = p/ Py, Py =760 mm Hg: symbols — experiment, solid lines - calculation
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processes. Amongst the approximate
mathematical models of radiative transfer, a
diffusion approximation, as our studies showed, is
of prime interest for computational investigations
of thermal regimes both of the present-day and
future aerospace vehicles. For a diffusive
radiation model the radiance distribution in any
point M is equiprobable for all directions
coming from it. Then the monochromatic
radiance IV(M,I ) corresponding to frequency v

is represented by formula

I(M,I)= 4, +ZA Jeos(Z,1,),

where I is a unit-equal vector of
radiation propagation direction at point M ;

1, is the basis vector;

A;,i =0,2,3 are some coefficients.

The governing differential equations for
the considered problem are the following:

F,(M)=~(3b,(M))" gradU, (M)
divE,(M) = a,(M am.1, (M)-U,(M)]

v

where FV(M ) is the monochromatic radiation
1,(M,1)dQ

is the monochromatic radiance moment of zero
order;

a,.n,

flux of frequency V ; UV(M):J
Q=4r

are the monochromatic absorption and
refraction coefficients, respectively;

bv is the reduced coefficient of monochromatic
scattering;

1 pV(M ) is the Planck’s function.

The integral radiation flux is determined
from formula

g, = TFV(M dv
0

To find the
T (x, V,Z,t ) in a partially transparent scattering

temperature  field

material it is necessary to solve the energy
conservation equation
with one or other initial and boundary conditions.

CZ—T = div(AgradT )- divg,.
T

Here C,A are volumetric heat capacity and

thermal conductivity, respectively.

The diffusion approximation gives a good
accuracy of the results and it is used extensively
in investigating .the reusable ceramic thermal
protection. As an example, in Fig. 5 a comparison
is presented between the temperatures calculated
by means of this mathematical model and the
experimental ones measured during a flight test.

~
s

DR

f )
700 o . i 1N
= el . \

l’/ /wh\/ / N

1600 2400 3200 000 1 4
, 8

Figure 5: Temperature dependences on time at
different points X; away from the heated external

surface, respectively; 1, 2, 3 — the experimental
(symbols) and calculated (solid lines) data
obtained at x =4.5, 11.9, 21.5 mm, respectively

Software. The MAI has developed an
operational medium EXPRESS intended for
carrying out studies of heat transfer in thermal
shields. This operational medium consists of:

- tile research modules meant for solving
different applied problems (prediction of
composite materials properties, analysis of heat
transfer processes in different thermal protection
structures including both indestructible and
ablative, in porous cooling structures, etc.,
thermophysical parameter estimation, diagnostics
of heat loading conditions, and so on;

- the data bases on thermophysical properties of
gases, homogeneous and composite  materials,
on structures of composite materials, on heat
loadings acting in flight or in tests, on thermal
protection structure parameters;

- the interface which makes it possible to operate
efficiently the data bases and research modules,
to prepare the input data, to analyze quickly the
results.

In essence, the software EXPRESS
development implies a swing to a new, more
effective computer methodology of
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thermophysical and thermoengineering problem
analysis.

INVESTIGATION OF HEAT TRANSFER IN
HETEROGENEOUS GAS FLOWS

Among problems concerning the
development of reliable and efficient thermal
protection for different types of re-entry vehicles,
orbiters, solid propellant engines, etc. is the
problem of investigation of heat and forced
interaction between dusted gas flows and
structural elements. It is well known that the
presence of solid or liquid particles in gas flow
can significantly increase the heat transfer rate
and also may result in erosion of the body
material. A characteristic example of such a
heterogeneous medium for a re-entry vehicle is a
cloud where the cloud particles can exist in the
liquid (rain) or solid (hail, snow) phase.

To investigate the multifactor process of heat
transfer while interacting of a heterogeneous
supersonic gas flow with a solid body we have
used a number of methods but the main was a
method based on solving inverse heat conduction
problems. This approach enables to make the
investigations more systematically and obtain
new results, in particular, at erosing the material
under study.

It is very important that the inverse method
allows one to define not only the general
influence of the solid particle sizes and
concentration on heat transfer but also to study
the contribution of different factors of heat
transfer (such as the external convective heat flux,
the heat flux resulting from additional turbulence
caused by solid particles, the additional heat flux
resulting from an increase in the surface
roughness and the heat flux generated due to
particle kinetic energy accommodation) to the
total balance of energy at the body surface. The
corresponding results are presented, for example,
in[10-11].

A FLIGHT TESTS OF REUSABLE
THERMAL PROTECTION

The unsteady-state inverse methods both in
thermophysics and in heat measurements
considerably helped us in research and
development of the orbiter reusable thermal
protection system, in particular, in the parameter
estimation and diagnostics of heat transfer in
thermal protection / insulation materials and
structures in the course of flight tests by Bor-4
automatic vehicles.

Dwell on the flight test application of these
methods connected with the study of thermal
modes of the tiled heat protection. In this case,
heat diagnostics in flight tests were carried out in
the following way:

e cstimation of heat fluxes on the surface of
the tiled thermal shield;

e quality analysis of the effects of physical-
chemical reactions on the thermal shield
surface with different catalytic properties;

e cvaluation of the heat state of the thermal
shield surface in the tile gaps;

e cstimation of the inner heat state of the tile
ceramic material under in-flight heating
conditions;

e measurement of the surface pressure.

For these purposes, special measuring devices
were developed in MAI and mounted in modified
thermal protection tiles (Fig. 6). Outwardly, these
tiles did not differ in any way from the standard
ones. At the same time, they performed some
measuring capabilities in addition to thermal
shielding functions. In all of these experimental
investigations the methods based on solving
inverse heat transfer problems enable us to obtain
the unique and reliable results which corroborate
the validity of design treatments.

In this complex of investigations the unique
data were obtained which have been of much
interest both from the standpoint of scientific
results and experimental development of the
reusable thermal protection in the real conditions

Tiles with different sensors:

Temperatures of outer (1)

and side (2) surfaces

N\
Thermocouples Thermocouples

Heat flux Temperature distribution

Figure 6: Modified tiles for studying the thermal
modes during flight tests of “Bor-4” re-entry
vehicle
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of re-entry into the atmosphere. In particular, the
surface heat fluxes and temperatures histories
were determined using as the input data, the
temperatures measured inside the tiles. As an
example the results of data processing
corresponding the measurements in one of the
tiles during one of the test flights are shown in
Fig.7.

q107,
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Figure 7: Results of the external heat flux (a)
and surface temperature (b) reconstruction by
the experimental data (c) : d is the distance
between the external surface and a
thermocouple

CONCLUSION

It may be said that the methodology based on
inverse problems solution makes possible not
only to successfully solve each specific problem,
for example, in the list of the above — mentioned
problems but also helps to set up a judicious
combination of mathematical and experimental
simulation and full-scale flight testing.

The inverse problems under consideration are

ill-posed and in order to solve them we have used
the methods based on different regularization
procedures [3, 4, 12, 13]. In most cases, the
iterative regularization method [3, 4] has given
the best results, in particular, from the standpoint
of the accuracy of determining desired
characteristics. This method is advantageously
distinguished by the simplicity and universality of
algorithmic constructions in the solution of both
the linear and nonlinear, one-dimensional and
multi-dimensional inverse problems, including
the inverse problems for different mathematical
models, in particular, those described by the
ordinary and partial differential equations, and by
the integral and integro-differential equations.
The method enables to take into account a priori
information, both qualitative and quantitative, in
solving the ill-posed problems. The iterative
regularization method is validated rigorously. Its
efficiency has been stregthened many times when
solving the diversified ill-posed inverse problems
arising in practice. The mathematical and applied
theory of this method continues to evolve rapidly
and the fields of its application are extended
steadily [6, 14 -17].
The complex of theoretical and experimental
investigations which is briefly considered in this
paper has been carried out by a team of
researchers in Moscow Aviation Institute in the
intimate cooperation with a number of Russian
industrial enterprises and research establishments,
in  particular, NPO Molniya, TsAGI,
TsNIIMASH, VIO, NPO “Tekhnologia”.
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ABSTRACT

Combined experimental and mathematical
studies to determine thermophysical properties of
materials are presented and applied to the
characterization of metallic alloys, thermoplastic,
thermoset polymers, composite and phase-change
materials. The methodology is based on the
solution of different inverse heat transfer
problems. This approach is well adapted to
characterize materials under  experimental
conditions which reproduce as close as possible
some processing conditions which are difficult or
even impossible to investigate with conventional
techniques. Experimental results illustrate this
approach. They focus on the characterization of
materials during physica or chemica
transformations which are temperature dependent.

INTRODUCTION

The use of advanced and new materials has
been growing rapidly in a wide variety of fields
(aerospace, aeronautic, automotive, tooling and
sporting goods to name a few). In these high
technology applications, it is important that the
thermal properties of such materials be known for
design purposes. Knowledge of the thermal
properties is needed to model and to control heat
transfer during the manufacturing processes as
well asto predict thermal stresses devel oped when
the materials are subjected to non-isothermal
environments. The control of thermal phenomena
can be a crucia aspect for the improvement in
productivity and quality of components. Such
control requires the ability to simultaneously
predict both the temperature and the rate of the
internal heat sources generated by chemical or
physical transformations (if any) within the
material. Moreover the thermal loads applied on
the materials, for example in aerospace structures
and vehicles, can induce large temperature

gradients, which in turn result in the development
of therma stresses and thus possible structural
failure. To prevent this, thermal stress analysis is
essential in the design of such structures, which
obviously necessitates an accurate knowledge of
the thermal properties over large ranges of
temperature.

A very large amount of works combining
experimental and mathematical activities has been
devoted to the determination of two relevant
properties for modeling the heat conducting
process, the density-specific heat and the thermal
conductivity. To develop more accurate
mathematical modeling, and to improve the
experimental results, the trend is to combine the
design of experiments and the solution of heat
conduction inverse problems. This combination
was defined as a “nhew research paradigm”, J.V.
Beck [1]. More degrees of freedom can then be
accounted for modeling variable properties and
anisotropic media. Moreover, optimal design of
experiments allows to minimize the confidence
region of the estimates. Further references can be
found in [2-9].

In this paper some recent developments
performed at Polytech’Nantes, which combine
both experimental and computational techniques
to determine thermophysical properties of
materials, are presented and applied to the
characterization of metallic aloys, thermoplastic,
thermoset polymers, composites and phase-change
materials. Most of the experimental apparatus and
protocols, as well as the computational data
processing procedures are specific, but they have
been developed under a uniqgue methodology
based on the resolution of inverse heat transfer
problems. The presentation will focus on the
interests of this approach. One of them consistsin
the possibility to characterize materials under
experimental conditions which reproduce as close
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as possible some material processing conditions,
when conventional testing techniques do not offer
practical solutions.

For varying thermal properties, the resolution
of the inverse problems aims to the determination
of unknown functions, then regularization
techniques have to be used to account for the
numerical unstabilities which occur while solving
the ill-conditionned problems and to compute
stable solutions. It is well known that the accuracy
of the estimated propertiesis directly related to the
sensitivity of the measurements with respect to the
unknown variable. When the unknown is
considered as a function, the concept of sensitivity
coefficient has to be extended. A lagrangian
approach is preferred to compute the gradient of
the least squares criterion to be minimized, and the
standard conjugate gradient algorithm can be used
for the minimization.

In the present paper we will report some
developed methods and results of characterization
for different materials. Varied approaches are
considered depending on the modeling equations
used to determine the unknown properties of the
material. The experimental set up are briefly
described.

SEMI-INFINITE MEDIUM - ESTIMATION OF
CONSTANT THERMAL PROPERTIES

Isotropic medium

Consider the heat conduction process within an
isotropic semi-infinite medium, with constant
thermal properties, initially at zero temperature.
For times t > 0, the materia is heated by aline
source at a constant rate . In the normal plane
Oxy to the line source direction, the resulting
temperature rise T (t) at the distance r to the line
source, is solution of the linear modeling heat
conduction equation, and is given by

T(t) =q.Expint %g (1a)
Expint(u) = § exx dx (1b)
with the parameters (q,t ) defined by
q r*
=, t=—
a 4pl da (10

| , aare respectively the thermal conductivity
and the thermal diffusivity of the material.
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Fig. 1 Temperature rise T (t)resulting of a constant
heat flux within a semi-infinite heat conducting medium

1y

Heating wire
Isothermal line

Fig. 2 Isothermal line within an isotropic semi-infinite
medium heated by a line source

The parameter vectorb =(qg,t)' characterizes the
thermal properties of the medium. A simple
method to determine b consists in mimizing the
least square criterion

S(b) =[T(b)- Y|’ )

where T(b) is the solution of egs. (1) computed

with the parameter b, Y(t) is the temperature
measured in the medium

Y(t) =T(t;b)+d(t), 0<t<t, ©)
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dis an uncorrelated zero mean gaussian error
with a constant variance s ?, and t; the duration

of the experiment.
The minimization can be performed according
to the basic iterative Gauss-Newton algorithm

bk = b 4 [xt(k)x(k)]'lxt(k)[y_ T(k)] (4)

The notation X'® =[N, T*(b®]' is used for the

sensitivity matrix.

When the modelling egs. (1)-(2) are exact, the
last iteration k* of the iterative process, is taken
depending on the level s of the measurement
noise, in order to satisfy the final condition
S(b*)£s?. Then the approximate variance-

covariance of the parameter estimatesis
COV(b*) » [xt(k*)x(k*)]- 1S 2 (5)

From egs. (1), it is easy to check that the
magnitude of the sensitivity coefficients are
monotonously increasing with time, and that the
error estimates decreases by increasing the

duration of the experiment t; .

In practice, the assumption of semi-infinite
heat conducting medium is valid only for times

t <t .- Consider for example the experimental

apparatus fig. 3. It involves four flat plates of
thermoplastic material arranged in a stack. An
electrical heating wire is placed in the middle
(f =0.5mm) and thermocouples (f = 0.08mm) at

the interfaces between the plates. At the outside
surfaces, aluminium blocks are used to provide
isothermal boundary conditions. Heating at a
constant heat flux produces circular isothermal
lines. Then the modeling equations (1) are till
valid while the temperature rise at the interfaces

with the Al-blocks remains lessthan e =25 ,
and the maxima duration of the experiment

ta IS
2
r 1
Ui = Z"’X P (6)
a Y - o V|
Expint ™ s
ed u
where I, the shortest distance between the heat

source and the Al-blocks, depends on the thickness
of the plates.

To improve the experiment design, the
location(s) r of the sensor(s) and the heating power
g can be optimized, but as usual for non linear
estimation problems, the solution depends on the
unknown parameters to be determined. Knowing

the estimatesb* = (g* t *), thethermal parameters

(I ,a) are obtained from egs. (1c). The error
analysis leads to

iD Dy . Dg
?,—ﬁq—ﬁj (7a)
jbagbt oD (7h)
fa t* r

The heating power g has to be chosen @) to
avoid a too high temperature rise in the sample
which would be incompatible with the assumption
of constant properties, and b) to maximize the
signal-noise ratio. The sensor location r is chosen
to account for the thermocouple location error Dr .
When the distance r increases, both the relative
error Dr /r and the signal-noise ratio decreases,

then an optimal value Fopt CEN be predicted [10]
ALY 4
r
2 _; 9 ‘
——>— >
3 — X
1

Fig.3 Experimental set up (not scaled) for measuring
the thermal conductivity and the thermal diffusivity . (1)
Aluminium blocks, (2) sample plates, (3) heating wire,
(4) thermocouples

Orthotropic medium

Heat transfer within composite materials made
up of thermoset matrix and reinforcing fibers
(glass, carbon...) are wusualy modeled by
considering these materials as orthotropic media.
Conventional testing techniques (calorimeter,
guarded hot plates, flash method,...) can be used
to determine separately r C, the specific heat and

Il yy,| ,, the three components of the thermal

conductivity tensor But different experiments are
required and substantial time must be devoted to
characterize the material.

XX !
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The method described above for isotropic
medium is available for the simultaneous
determination of three parameters when the
orthotropic directions of the material are known.
The heating wire is placed like in the previous
experiment in the middle of a stack, the wire
direction Oz is assumed to be one of the
orthotropic directions. Thermocouples are placed
paraléd to the wire at the interfaces between the
plates.

In the normal plane Oxy to the direction Oz of

theline source, the resulting temperaturerise T (t)

at the distance r:«/xsz+y52 of the line source,

is solution of the linear orthotropic modeling heat
conduction eguation, and is given by

&+t 8a
T(t) :q.Expintg%at >0 (83
e u

with the parameters (0t , ,t y) defined by

_q _ % _Y:
g=—F—, t,=—, t = 8b
l yy
a, = —X a = (8c)
rc, rc,
For composite materials, the transverse

component value of the thermal diffusivity is
usualy less than the plane component vaue

(ay <a,), then a constant heat flux in the

heating wire produces elliptic isothermal lines and
the maximal duration of the experiment, eq. (6),
becomes
. X2
t = min(—=,
da

Ve 1

a o ,ée U

x Y Explnt'lgemaxg 9)
€q u

At least two sensors are required for the
simultaneous determination of the three constant

parameters | ., | wand rC_ . With two sensors
placed at the location coordinates(x,,0) and
(0,y,), the set of three parameters is identifiable

onlyif |, xZ 11 ,yZ[10].

In practice it is easy to place more than two
thermocouples, some of them are not used to

estimate the parameters but to vaidate the
assumption that the orthotropic directions are
correctly known.

Heatingwire |
Isothermal line

Fig 4 Isothermal line within an orthotropic semi-
infinite medium heated by a line source

Experimental results (1)
Five thermocouples were placed within a stack
of four squared plates of a composite material

(»3.5x64x64mm°) at the locations (Xs,Ys) given in
table 1. The temperature rises shown in figure 5
were obtained with a heating flux g = 11.35W/m.

1 2 3 4 5
Xs 00 380 767 11.73 31.84

ys 686 68 00 00 0.0
Table 1 :sensor |ocations within the stack (mm)

AT Tanibetuies spoks i stion
A8 . - - - - T

o Y T N g .- o R
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5 W0 F W X\ O 4
Tempes s

Fig.5 Temperature measurements resulting of a
constant heat flux within an orthotropic medium, used

to identify three parameters | |, and rc,

The estimates values of the thermal parameters
ae | , =3.18Vm 'K ™*,I W =0.66Wm 'K ‘and
rc, =1.483+6Jm 3K . The maximal duration

] i I;]

for this experiment, eq.(9), is t , =45s. To
account for the heat conduction process within the

specimen for times t >t , the assumption of a
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semi-infinite medium is not valid. An inverse heat
conduction algorithm [10] was developed for
estimating the three constant parameters

| sl yyand r C,inthefinite orthotropic case and

was applied to the total duration of the experiment
(t, =180s). It gavethe same parameter estimates,

but the computational time was much more longer.
The numerical solution of the linear orthotropic

XX 1

heat equation has to be computed at each
iteration.
of course  when simple  thermal

characterization methods like the heating wire
method (HWM) are practicable, they have to be
preferred. For estimating constant thermal
parameters of composite materials, the HWM s
efficient (3 parameters are estimated with one
short experiment), experimentally it is easy to
implement and the inverse heat conduction
algorithm with the semi-infinite medium
assumption, isamong the simplest.

TEMPERATURE VARYING THERMAL
PROPERTIES

Modeling equations

Modeling the heat conduction process over
large temperature ranges leads to consider that
thermal properties are not constant because some
physical or chemical transformations have to be
taken into account within the material over the
investigated temperature range. In practice to
determine the therma properties in such
conditions, two different approaches have been
developed, depending on the ability of the non
linear heat conduction model to model the heat
transfer process during the transformation.

For example, to characterize the thermal
properties of amorphous thermoplastics during
solidification, it is sufficient to consider that the
density-specific heat rc,(T) and the thermal

conductivity | (T) (isotropic case) are temperature

varying, then the inverse heat conduction analysis
can be based on the non linear equation

rcp(T)"l]—I =K[I (T)NT] (10)

But to model the heat conducting process
during the solidification of semi-crystalline
thermoplastic materials, or the cooling process of
some metallic aloys, or the curing of thermoset
resins, eg.(10) is not sufficient. A coupling

between the heat transfer and the kinetic of the
exothermal transformation(s) has to be taken into
account in the modeling equations. For thermal
characterization purpose, the following coupled set
of equations has been considered with success

I’Cp(a,T):]]—Tt- = N[I (a,T)NT]_,_ r DH ﬂ_at- (118)

11b
B F@m o
qt

whereDH is the total energy (per unit of mass)
which is liberated during the transformation(s).
The scalar field a is introduced to describe the
degree of transformation within the material. For
a complete transformation, a variesfrom 0 to 1.
The thermal characterization of such materias
becomes much more complex, three varying
parameters rc (a,T). | (@,T) and F(@,T) have

to be estimated. The main difficulty consists
probably in the determination of the thermal
conductivity | (a,T), whose values are required

for accurate modeling of the heat conducting
process within thick parts of material. Of course
characterization strategies which aim to eliminate
the coupling between a and T, have to be
preferred. Experimentally two of them are
advisable.

First by selecting the temperature ranges
where the transformation does not occur, it is
possible to identify separetely the thermal
properties rc,@,T) and | (a,T). Without

transformation, F(a,T)» 0, that is before it

starts (& = 0), and after it is completed (a = 1),
the modeling egs. (10) are valid.

Secondly when the thermal analysis of the
material can be performed onN“thi n” enough parts,
the gradient of temperature NT » Qis neglected
in the part, and the modeling egs.(11) integrated
over the volume of the part reduce to the simple
forms

dar _ da
me(a,T)E—F +mDHE (lza)
da _ F@,T)
dt (12h)

where F is the total heat flux entering at the
outer surface of the part, m isthe mass of the part.
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Estimation of C_(T) and | (T)

The isotropic case
The experimental determination of the

temperature varying parameter C (T) isusualy

carried out with “thin” samples of materia by
using a scanning caorimeter (DSC). The
apparatus measures directly the heat flux F , (eqg.
(12a) witha =0), for a preset heating (or
cooling) rate.

To determine the thermal conductivity | (T),

the heat conduction process is analyzed within
“thick” parts of material. Standard inverse analysis
is based on the one-dimensional heat equation
(10). Different experimental set up have been
used. For low conductivity materials, a variant of
the set up shown on fig. 3, which works as a
“scanning thermal conductimeter” iswell adapted.
No heating wire is needed in the middle of the
stack, but both the outside surfaces of the sample
are submitted to a temperature varying (heating or
cooling) condition. Temperature histories are
recorded at the interfaces of the stack.

The variations of the parameter over the

temperature range [Tmm,Tmax]are approximated
by the sum
[o]
(M= &1 w(T)
i=1..,p
where the set of basis functions {Wi =1, p} is
a prior given. It is convenient in practice to grid
the temperature interval into (p-1) subintervals
|_q1 =Ton <0, <..<q, :TmaxJ, and to take
continuous piecewise linear functions such as
w;(@;)=d;,i,j=1%;,p. Then the p-
components vector b = i]i"zlis estimated from
the additional temperatures Y(t) measured within
the sample during the experiment, by minimizing
the output least square criterion, like in eg.(3).
The iterative Gauss-Newton agorithm, eq. (4),
has to be adapted to account for the numerical ill-

conditionness of the matrix [X 1) x ) J

(13)

bk =k 4+ [P(k) ]'1xt(k) [Y ) T(k)] (14a)
p® =[x‘(k’x(k’ +U (k)] (14)
where the diagonal terms of the matrices U® are

chosen to ensure the stability and to improve the
rate of convergence of the iterative process [11].

The numerica solutions of the modeling
equation (10) and the p sensitivity equations are
approximated by using standard finite differences.
The vector size p is a useful degree of freedom,
but it has to be chosen with care.

Experimental results (2). An experimental
set up, figure 6a, was used to identify | (T) of a

thermoset material after polymerization. It
involves a stack of two cured thermoset plates (1)
pressed between two heating/cooling blocks (2)

23—1%
]

Fig6a- Experimental set up used to identify | (T) for a

thermoset material. (1) heating/cooling blocks, (2)
specimen plate thickness=5mm.
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Fig.6b Temperature measurements during the cooling of
a thermoset material used to identify | (T)
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Fig.6¢c Estimated values of the thermal conductivity
| (T) of athermoset material
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The three temperature measurements shown in
figure 6b were recorded during the cooling of the
stack from T =160°C down to the ambient
temperature in one experiment.The parameter
valuesof | (T) , figure 6¢, are estimated knowing

the temperature varying specific heat determined
with a DSC apparatus
C,(T)=2.0e+6+0.75T - 50)e+ 4 (Im3K™)

In this simple experiment, no heat flux is
measured, the simultaneous identification of
| (T) and C (T)is not possible. By placing a

thin electrical heater in the middle of the stack,
and measuring the heat flux, the 1-D inverse heat
conduction algorithm is available for both
parameters [14].

Experimental results (3). The same 1-D
inverse approach was used to determine the
thermal conductivity of thermoplastic materials
under molding conditions [11-12]. A specific
experimental set up, figure 7a, was designed. It
involves two molding cavities filled with a molten
polymer under high pressure (250-300°C, up to 8
10" Pa), and two air coolers which drive the
solidification of the polymer to the ambient
temperature in less than five minutes. The

knowledge of C_(T), and the temperature

histories Y(t) recorded at the surface of the coolers,
and in the thin centra metallic plate located
between the cavities are sufficient to estimate the
unknown parameter | (T).

High pressure are required to maintain filled up
the molding cavities during solidification, and to
compensate the tendency of the polymer to
contract during solidification. However under the
solidification temperature, the pressure drops and
an air gap (few microns) modifies the thermal
contact at the surface of the cavities. This
phenomenon is taken into account in the modeling
equations by estimating simultaneously  the
variations of the thermal contact resistance at the
boundary of the molding cavities.

This approach is not valid for the thermal
characterization of semi-crystalline polymers. The
modeling egs. (10) are not sufficient, a kinetic
model has to be introduced as in egs. (11) to
describe accurately the heat transfer process
during solidification and to account for the
variation of the temperature solidification with
respect to the cooling rate. However outside the
phase change temperature interval, the procedure
is till correct.

heat exchanger
-~
sample
Heat transter I o
direction central plate
Vi | ————MM8M8
é/ B
temperature
measurement
ey
oL

Fig 7a Experimental set up used to identify | (T) of a
molten thermoplastic material. Cavity width L=3mm
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Fig.7b Temperature measurements during the cooling of
athermoplastic material(ABS) used to identify | (T)
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Fig.7c Estimated values of the thermal conductivity
| (T) of athermoplsatic material (ABS)
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Experimental results (4). Therma
characterization of metallic alloys was achieved
according the same inverse approach [13]. The
specific experimental set up, figure 8, involves a
cylindrical (f =45mm, H =60,800r 200mm) sample
(1) placed between two electrica heaters (3)
located at the bases of the cylinder. The sample
length H is chosen depending on the thermal
conductivity of the alloy. The heaters are used to
create athermal gradient in the axis direction. The
lateral sample surface is insulated (4) in order to
neglect the radia heat losses. The sample is
instrumented with thermocouples (2) (f =50mm)

and it is placed in a temperature controlled oven
(up to 1200°C).

1 1 a 4
2 [~

e
3 8l L

l—

|, —

4

Fig 8 Experimental set up used to identify | (T)of a
metallic alloy. Sample length H=80, 60 or200mm

Estimation of C_(T) and | (T)

The orthotropic case

The inverse approach presented in the first
section to estimate simultaneously three constant
parameters was extended to the case of
temperature varying parameters and orthotropic
materials [15]. It is based on the same principle of
the heating wire set up, fig. 3, and the
approximation of the unknown functions aready
considered in eg. (13) was still adopted

«M=alwm 09
i=1,.,pl

W= aly,w M) (150)
i=1,..,p2

o .
rC,(M= a Cw,(T) (150
i=1,.,p3

The total size of the unknown vector b to be
estimated is then p=pl+p2+ p3, hence the
computation of the  sensitivity — matrix
X 0 :[Nth(b(‘O]t based on the derivation of
the 2-D non linear orthotropic heat conduction
equation (10) with respect to each component
bj ,] =1..,p, becomes time prohibitive. The
conjugate gradient algorithm combined with the
adjoint method is then an advantageous alternative

to minimize the output least square criterion, eg.
(3). This approach avoids the computation of the

sensitivity matrix [N, T*(b®]". It consists in

introducing the adjoint variable Y solution of the
linear 2-D equation

- a I ||(T) ﬂZY ° en (16a)

i=1,2 n

- rC,MA

(16b)
e, =[T(b)- Yn(t)]Ad(xl- X%, - X)

where ¢, is the deviation between the computed
and the measured temperatures at the location of
the sensor n.

The components of the gradient NSb of the

least square criterion is then computed according
to the following equations

(173)

(17b)

ts 17
& Q%YW(T)det (7o

i=1,..p3

Experimental results (5). The procedure
was applied to the thermal characterization of a
composite material made up of epoxy resin and
carbon fibers (fiber volumetric ratio = 0.47) in the
temperature interval (10°C , 120°C). During the
experiment, the heat flux generated by the heating
wire was time varying in the range 0-250 W/m.
The resulting temperature histories of 9 sensors
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within the stack of four plates, figure 9a, were
used for the simultaneous estimation of thep =6

unknown components of the parameter vector b .
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Fig 9a- Experimental set up used to identify the varying
thermal parameters | 1, and r C, of acomposite
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The estimated parameters, fig. 9a, compared

with the parameter values measured with
conventional techniques (DSC, Guarded hot
plates) are in good agreement. Only one

experiment is sufficient However the inverse
algorithm is more heavy to implement than the
version developed for constant parameters.

Estimation of the kinetic
parameter F(a,T)

To determine the kinetic parameter values
F(a,T)introduced in egs. (11-12), the simplest
experimental  approach would consist in

submitting a “thin” part of the materia in a
calorimeter to constant isothermal conditions T,

and to analyze the resulting signal heat flux F (t).
Then egs.(12) directly give

at)=—= AFt)dt (183
mDH @
- F(1) (18b)
F@(),Ty,)=—
@(t).Tiw) poreey
By repeating the experiment for different

temperature values Tis,, a table of the kinetic
parameter values F(a,T)would result. In

practice, isothermal experiments are difficult, even
impossible, to control accurately. This is true for
“high* temperatures and for “fast” kinetics. A
scanning approach of the temperature interval is
more advisable.

Preliminary measurements of the specific heat
C,@,T) ae required outside the transformation

domain, that isfor a =0 and for a =1. Thisis
possible by selecting appropriate temperature
intervals. Then a mixture law is used to
extrapolate the parameter values in the
temperature range of the transformation

C,(aT)=(-a)C,(a =0T)+aC,(a =1T) (19)

Non isothermal experiments are carried out
with “thin” parts of material, by scanning the
temperature interval at different constant heating
(or cooling) rate. With the measured heat flux
signal F (t), the kinetic parameter F(a,T) can
be reconstructed from Egs. (12). However, much
care is required in the analysis of F (t) because
only the temperature of the panis controlled in the
calorimeter. For high scanning rates, the imperfect
thermal contact between the sample and the pan
induces important temperature bias. This can be
easily shown by recording the temperature within
the sample, using micro-thermocouple.

Some variants of the method are possible
depending on the transformation under study. Two
examples are briefly presented.
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Kinetic of curing. The curing of thick parts
of composite materials is chalenging because of
the low thermal conductivity of the composite and
the high heat of reaction during the cross-linking
polymerization. This combination can lead to
large thermal gradients, generation of residual
stresses and polymer degradation. In order to
improve the quality of thick parts, the processing
temperature needs to be controlled so that the
thermal gradients remain small.

The cure rate of thermoset materials is usualy
described according to the empirical autocatalytic
model used by Kama and Sourour [14]. In
practice the chemical process of transformation
cannot be reduced to cross-linking, it involves
some inhibition period which depends on the
thermal history of the material. To account for this
induction time, the following curing kinetic model
equations were adopted and applied with success
to different resins and rubbers

da i Ot <tjq(T)

o TR L mg@)ts tym @

The unknown functions g(@),t,,(T).k(T), to
be determined are taken in the following forms

g@)= § gw,(@)0<a<Lg®=0 (21a)
i=1..,p
T
(1) = ki (- AGZ- 19 (21b)
e u
5 (210)

) ér, y
Q exp(- Andé_d' ]bdt -1y =0
eT

where the reference temperature T is chosen in

the temperature range of transformation,
t.o(T),K(T) are in the form of Arhenius laws.

The function g(a) isapproximated asin eq. (13).
Typica values of the cure rate determined for an

epoxy resin [17-18] are shown on fig. 10a, the
parameters of the curing model are
T,y =423K,A=176,k,, =0.007s "

The modeling equations (20)-(21) can be used
to predict the cure of a “thin” part of resin. The
influence of the heating cycle isillustrated on fig.
10b. The temperature of the part is rised from
T, =300K up to T__ =420k at different heating

rates (0.1°C/s,..,05°C/s), and hold at T, .
The kinetic model together with the heat

conduction egs.(11), was validated by curing
“thick” parts (thickness = 15mm) of composite
material made up of epoxy resin and glass fibers.
But to compare measured and computed
temperatures, the thermal conductivity | (a,T)

has to be known. See the next section.
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Fig. 10b Influence of the heating cycle on the cure of a

“thin” part of epoxy resin.

Other approaches were explored to estimate
the kinetic parameters of curing processes. One
was based on genetic algorithms [19]. Others used
the solution of an inverse heat transfer problemsin
thick parts of rubber (isotropic case) [20], or
composite material (orthotropic case) [21].

Kinetic of solidification. Modeling the heat
conducting process within “thick” parts of semi-
crystalline thermoplastic  materials, during
solidification is also chalenging. Because of the
low thermal conductivity of the material, high
cooling rates induce high thermal gradient in the
part which in turn generate cristallinity gradient
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and affect the mechanica properties of the
material. In practice, in the injection molding
conditions of such material, the cooling rate is
greater than 15K/s, so in order to improve the
quality of the part, it is important to well predict
the coupling phenomena between cristallization
and heat conduction during solidification.

The cristallization rate can be described
according to the non isothermal kinetic model of
Nakamura [24]

da

== F(T,a)=k(T)g@),T, <T<T, (22a)
hep® A e B O

KM =koepg 33200 T 102 ooy

g@@)=n@- a)gn%g (22¢)

Typical values of the crystallization rate for
polypropylene are shown on fig. 11a.
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Fig. 11b Influence of the cooling conditions on the

crystallization of a “ thin” part of polypropylene.

The modeling equations (22) can be used to
predict the crystalization of a “thin” part of
polymer. The influence of the cooling conditions
isillustrated on fig. 11b. The temperature of the
part goes from T, =160°C downto T =25°C at

different cooling rates ,and ishold down at T, .

In fact with the calorimeter it is impossible to
control sufficiently high cooling rates (>5K / s).
So the inverse approach described above for “thin”
parts is not practicable for investigating the
cooling conditions of the injection molding
process. An experimental set up has been designed
[25] in order to analyze the heat transfer process
during the solidification of “thick” parts of such
materials. The analysis is based on the kinetic
model, egs.(22), coupled to the heat conduction
€gs.(11). Thermal conductivity | (a,T) has to be

known.

Estimation of the thermal
conductivity | (a,T)

Modeling the heat conduction process within
“thick” parts of materials characterized by low
thermal conductivity, while occurs some chemical
or physical transformation with kinetic highly
sensitive to the temperature, and which generates
internal heat sources, is not an easy task. The two
previous examples (curing and solidification
processes) explain why it is challenging and
illustrate the different steps of our approach for the
thermal characterization. The last step consists in
checking the ability of the model, egs. (11), to
predict heat flow within “thick” parts. Then the
parameter values of | (a,T)are required. In
practice, “on-ling” experimental measurements of
the temperature within the part are available
during the transformation, and can be compared to
the predicted values. This is not the case for the
variable a , hence the complete validation
remains difficult. However experiments have been
done for the curing and the solidification processes
described above. Experimental set up are based on
the same principle than on figure 6. In both cases,
the following linear approximation was adopted to
model the variations of the parameter | (a,T)

l@,T)=@1-a)l @ =0T)+al @ =1T) (23

During the curing process of “thick” parts of
composite material at T =140°C, an overheating
is observed in the middle of the part, fig.12. It is
well predicted by the solution of the modeling
equations.
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Fig. 12 Curing of thick parts of composite material
(epoxy resin/ glass fibers) - Temperatures measured and
computed in the middle of the part.

Moreover to complete the validation of the
kinetic model for “thick” parts, a strategy based on
“partia curing” was developed with success [22-
23]. It consists in the determination of optimal
heating conditions to apply at the boundary of the
part in order to hold a spatially uniform degree of
cure at a preset value. The heating cycles are
determined by solving an inverse optimal control
problem.

During the solidification process of “thick”
parts of semi-crystalline polymer, it is observed
that high cooling rates at the boundary of the part
shift down the solidification temperature. This
observation is predicted by the modeling egs. (22).
But more experimental investigation is needed to
confirm the adequacy of the model for high
cooling rates. An inverse approach is under study
to estimate the kinetic function k(T), eg. (22b),
from temperature measurements recorded during
solidification. The influence of the thermal contact
resistance between the part and the mold has also
to be taken into account a the boundary
conditions.

CONCLUSION

The interests in using methods based on the
resolution of inverse heat transfer problems for the
thermal characterization of materials were
illustrated. This approach usually involves several
main steps: @) Choice of the mathematical model
of the heat transfer process , b) Development of
the inverse problems (IP) agorithms and
validation by numerical experiments, c) Design of
experiments and experimental data gathering, d)
use of the IP agorithms and analysis of the
results, to verify finaly the adequacy of the
process description. The presented results were

developed according to a fruitful combination of
al these steps. More often, conventional testing
techniques offer limited practical solutions to
characterize thermal properties under conditions
close to processing conditions. It was shown how
the use of specific experimental set up together
with adapted inverse agorithms enables us to
overcome these limits. Most of the examples were
related to the thermal characterization of polymers
because the control of heat transfer in the
manufacturing processes of these materials (like
curing or injection molding) is challenging for the
improvement in productivity and quality of
polymer components.
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ABSTRACT

The paper presents a new methodology for
identifying a distributed parameter with complex
and unknown structure, such as the hydraulic
conductivity of a heterogeneous aquifer. The
basic idea of the methodology isto find asimplest
structure from al equivalent structures with
respect to the given model applications. A series
of new concepts, such as the identifiability of
parameter structure, the reliability of model
application and the sufficiency of observation
data are rigorously defined. Some quantitative
relationships between them are derived. Based on
these theoretical results, the paper presents an
algorithm that can judge the sufficiency and
robustness of an experimental design before it is
actually conducted in the field. A numerica
example is given that shows how a robust
experimental design is found by a heuristic
procedure.

NOMENCLATURE

AE Structure error measured in the
prediction space.

D An experimental design

RE Minimum fitting residual.

SE Structure error.

O Objectives of prediction aternative E.

Up Designed measurements without

observation error.

Up Designed measurements with
observation error.

h The norm of observation error.

e Accuracy requirement of application.

e The unknown parameter.

Frank T.-C. Tsai
Department of Civil & Environmental
Engineering, University of California at Los
Angeles, Los Angeles, CA 90095
ftsai@seas.ucla.edu

m Weighting coefficient.

Q Admissible region of the unknown
parameter.

(S,q) A parameterization representation (PR).

INTRODUCTION

The identification of hydraulic conductivity of
a heterogeneous aquifer is a very chalenging
problem. During the past four decades, this
problem was studied by many hydrogeologists
and petroleum engineers (Jacquard and Jain 1965,
Neuman 1973, Chavent et a, 1975, Yeh and
Yoon, 1981, Kitanidis and Vomvoris 1983, Sun
and Yeh 1985, Carrera and Neuman 1986,
Woodbury and Smith 1988, Sun 1994,
MaLaughlin and Townley 1996, among others).
From the point of view of mathematics, hydraulic
conductivity is the coefficient of the second-order
terms of a parabolic or an dliptic PDE. The
coefficient identification problem of these types
of equations has been studied extensively in
mathematics and many engineering fields (Beck
et al. 1985, Chavent et al. 1995, Engl et a. 1996,
Isakov 1998, Grimstad and Mannseth 2000,
among others).

A mgjor difficulty of identifying the hydraulic
conductivity of an aguifer is the determination of
its structure. This difficulty is caused by the
complexity and high variability in the structure of
natural formations. In most of previous studies, it
is assumed that the structure of the unknown
parameter is known a priori and only the values
associated with the structure need to be identified.
The parameter identification problem is thus
transferred into an optimization problem of best
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fitting the existing observed data. Unfortunately,
the so identified parameter is often unreliable
when it is used for prediction or management
purposes even though the fitting residual is small.
Table 1 shows how the error in model prediction
(or model application) isimpacted by the error in
parameter structure and the error in parameter
values associated with the structure. In Case 1,
both structure and value errors are small, and
accurate result in model prediction can be
expected (small + small = small). This case is
ideal but difficult to achieve in practice because
of the limitations in prior information and
observation data. Case 2 is often seen when the
unknown parameter is over-parameterized
(attempting to estimate a complex parameter
structure with limited datd). In this case, the result
of model prediction may become very unreliable
(small + large = large). Case 3 is seen when the
parameter structure is roughly estimated but the
parameter values are conditioned by the directly
measurements at some locations. In this case, the
result of model prediction is again unreliable
(large + small = large). When both structure and
value errors are large, two cases are possible.
Besides Case 4 (large + large = large), we may
have Case 5 (large + large = small), in which, the
two types of errors cancel each other.

Table 1. The combinations of errors

Case | FErrorin Error in Error in
structure values prediction
1 Small Small Small
2 Small Large Large
3 Large Small Large
4 Large Large Large
5 Large Large Small

It seems that only Case 5 is feasible and
practical in the field of groundwater modeling. In
this case, the identified parameter structure and
values are not their true physical counterparts and
thus can only be called as the “representative
structure” and “representative values.” The
methodology described in the paper attempts to
lead us to this case by identifying the best
“representative structure” and its associated best
“representative values.”

The classical theory of inverse problems aims
at finding conditions and methods to make the
inverse solution to be unique and stable. When
the parameter structure is not exactly known,
however, to require the uniqueness of the inverse

solution becomes meaningless because different
parameter values may be identified when different
structures are used to represent the unknown
distributed parameter. In this paper, we introduce
a generalized inverse problem that circumvents
the uniqueness of the identified parameter in both
its structure and its values, instead, it requires
finding the simplest “representative structure” to
assure the reliability when the model is used for
prediction or management purposes. With the
concept of “structure identifiability” defined in
this paper, a complex parameter structure can be
identified in a reduced level of complexity
provided that the observation data can overcome
the impacts of both observation and structure
errors. For a given structure, the worst- case
parameter (WCP) is such a parameter that is the
most difficult one to be identified than al other
parameters in the admissible region. One can
prove that if the WCP isidentifiable then all other
parameters with the same structure or simplified
structures must be identifiable too.

To successfully solve an inverse problem, we
must have sufficient information, including the
prior information and the information extracted
from observed data. When the existing data are
insufficient, we must conduct experiments to
collect more data. A successful experimental
design should ensure that sufficient information
would be provided when the designed experiment
is actualy conducted in the field. The optimal
design seeks either to maximize the information
provided by the experiment or to minimize the
cost for conducting the experiment. Severa
criteria of optimal experimental design have been
used in the field of groundwater modeling and
other fields of engineering (Qureshi et al. 1980,
Rafajlowicz 1986, Sun 1994, Wouwer et a. 2000,
Ucinski 2000, among others). Most of these
criteria were borrowed from the theory of linear
systems. When they are used for nonlinear
systems, the optimal design will depend on the
unknown parameters and a sequential experiment-
design process is needed. For groundwater
modeling, however, to conduct such a process is
often impractical. When the structure of the
unknown distributed parameter is also unknown,
the optimal design problem becomes extremely
difficult because a more complex structure needs
more information to identify. If we cannot judge
the sufficiency of a design, the optimal design
problem becomes meaningless. In this paper, the
optimal design is chosen only from such designs
that are sufficient for identifying the simplest
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“representative structure” and the WCP. We can
prove that if a design is sufficient for identifying
the WCP, it must be sufficient for identifying al
other parameters in the admissible region. In
other words, it is arobust design.

In the following sections, a systematic
methodology is introduced that allows usto find a
reliable model for prediction or management
purposes when parameter structures of the model
are complicated and unknown. Quantitative
relationships between the reliability of model
prediction, the identifiability of parameter
structure, and the sufficiency of data are
established. Algorithms for finding the WCP,
solving the GIP and designing the best
experiment for parameter structure identification
are given. A numerical example shows how this
methodology is used for identifying the hydraulic
conductivity of a heterogeneous aquifer.

A GENERALIZED INVERSE PROBLEM

It is impossible to identify a distributed
parameter g(x) with limited data when the
dimension (or the degree of freedom) of the
unknown parameter is very high or infinite.
Parameterization is a way to approximate a
distributed parameter by a function with lower
degree of freedom. The genera form of
parameterization can be represented by

(0> & af ,(xv) ®
j=1

where the integer m is caled the dimension of
parameterization, {qj} (=12, ...m) is a set of

coefficients, {f ;(x,v) } isaset of basis functions

with a set of shape parameters v (vector). We will
use the combined notation (S,q) to denote a

parameterization representation (PR) of a
distributed parameter q(x) , where Srepresents a
parameter structure determined by m basis
functions, and q =(q,,d,,-...4,,)' iS @ vector
representing the parameter values associated with
the structure. The same distributed parameter may
have different PRs when it is approximated by
different structures.

In Sun and Sun (2002), three types of inverse
problems are identified: the classical inverse
problem (CIP), the extended inverse problem
(EIP), and the generalized inverse problem (GIP).
In CIP, it is assumed that structure Sis given and

only the parameter values g need to be identified.
With certain assumptions on the probability
distribution of observation error, the estimated

values (i of the unknown parameter is obtained
by solving the following optimization problem:

UObS _ UM (q;XObS)

+lfa-a.f@

(i=argmin{]
q

In (2), |4, and [f, are norms defined in the
observation and parameter spaces, respectively,
u®sis the observed system state at a set of

observation locations and times x**, uM isa set
of corresponding model outputs, | is a
regularization coefficient, and q, theinitial guess
of the unknown parameter based on prior
information. If there exists no such kind of prior
information, but we know the range of the
unknown parameter: q <q<q ,wheregand q
are the lower and upper bounds of the unknown
parameter vector, we can take | =0 in (2) and add
constraint g1 Q to the optimization problem,

where Q=(g,q_) is a mdimensional box and
called the admissible region of q. Usudly, it is
difficult to find the global solution of problem (2)
because of its non-convex nature. When a
gradient-based approach is used, only a loca
minimum can be found. In fact, the most difficult
problem of solving CIP is how to determine the
complexity of parameter structure. When mistoo
small (under-parameterized), the fitting residual

R =u%s - yM (d' XObS)

e, @

may have alarge value. On the other hand, when
m is too large (over-parameterized), the model
prediction becomes unreliable. Moreover, even
we can find an appropriate m, the identified
parameter may be still very different from the real
one if the structure pattern of the unknown
parameter is not correctly assumed.

In EIP, structure Sand parameter values q are
identified simultaneously by solving the
following optimization problem

(S.q) = argmin{[lu® - u™ (S,q,x*®)

(Sa)

L [[S.a)- (S.a0)[} (4)

+
D
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The second term on the right-hand side can be
deleted when the lower-upper bound constraint
ql Q(S) is used instead. Equation (4) is a
combinatorial optimization problem and is very
difficult to solve because the dimension of the
shape vector v in (1) may be high. Sun and Sun
(2002) presented a tree regression procedure to
solve EIP that can find a nearly optimal solution
with less computation effort. Tsal et a. (2002)
used the genetic algorithm (GA) in combination
with alocal search to solve the EIP, in which the
unknown parameter is represented by the natural
neighbor parameterization. By sequentially
increasing the number of basis points and
optimizing their locations, the fitting residual s can
be effectively decreased and the over-
parameterization problem can be avoided.

Note that the parameter structure obtained by
solving the EIP is only based on existing
observations without considering the reliability of
model applications. After the EIP is solved, we
cannot answer whether or not the complexity of
the identified parameter structure is appropriate,
and whether or not the observation data are
sufficient.

The GIP aims at finding an appropriate
parameter structure to satisfy the accuracy
requirement of model applications. Let g be a

set of predictions or management decisions, the
reliability requirement may be stated as

loe(s.a)- ge@h)]_< e ®)

where ||§|_ is a norm defined in the objective

(prediction or management) space, q'is the true
parameter, which , of course, is unknown.
Condition (5) can be satisfied by different PRs
with different parameter structures and different
parameter values. The GIP requires finding the
simplest parameter structure and its associated
parameter values from al PRs that satisfy the
accuracy requirement (5).

The so defined GIP has the following
advantages. First, the rdiability of model
application is incorporated into the identification
procedure. Second, the uniqueness requirement of
the inverse solution is avoided and replaced by a
weak requirement (5). This condition may be
satisfied by such parameters that are not close to
the true parameter in the parameter space. Third,
the data requirement is minimized because the

GIP attempts to find the simplest parameter
structure. Once the complexity of parameter
structure is determined, the sufficiency of existing
data can be judged.

The stepwise regression method presented by
Sun et a. (1998) can be used to solve the GIP, in
which a max-min problem must be solved in each
iteration step. With the theorem developed in the
next section, however, we can find a more
effective method to solve the GIP.

STRUCTURE ERROR AND STRUCTURE
REDUCTION

Letting (S,.q,) and (S;.q9;) be two different
PRs of a distributed parameter q(x) , the distance

between them can be measured in parameter,
observation and prediction (or management)
spaces, respectively, by

dp(Sa04: Ss.05) = ”q_A - q_B”P
dp (Sarbs; S5.05) = ”uD(SA!qA) - uD(SB!qB)"D
de(Sa 05 S006) = ”gE(SA!qA) - gE(SB!qB)"E

where q, andq, are spans of g, andg, to the
parameter space P, u, is the model outputs
corresponding to an observation design D, g is
a vector of model applications corresponding to a
set of objectives E, || 4| means a norm defined in

a space as denoted by its subscript.
In Sun et al. (1998), the distance d between

two PRs (S,.q,) and (S;.q;) isdefined by

d(S,.0,; S5.0g) =dg +nd, +1 d, (6)

were Mand | are weighting coefficients. In this

paper, we take | =0, i.e, we do not consider the
difference between the two PR’s in the parameter

space. Let (S,,q,) be a PR and S; be a
structure different from S,. A PR (S;.9,5) 1S

called a projection of (S,,q,) onto the structure
Ss, when

qupe=ag rg!nd(SAlqA;SB'qB)
st. gg1 Q(Sy) (M

To find q,; from (7) is equivalent to solving a
classica inverse problem, i.e. using a fixed
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parameter structure S; but changing the
parameter values q, to best fit both the model
output u,(S,.q,) and model application
9e(Sada) -

Definition 1. The structure error SE(S,,S;) of
using parameter structure S; to replace

parameter structure S, is defined by the
following max-min problem:

E(Sy, ) = ngax rgind(SA!qA;SB!qB)
st a0 QS and g,1 Q(S,) ®)

Generdly, SE(S,,S;)* SE(S;.S,) - When §; is
a simplification of S,, we have SE(S;,S,) =0.
If SE(S,,Sg) and SE(S;,S,) are both less than a
given error bound, the two structures are said to
be equivalent. When S, isasimplification of S,,
to judge their eguivalence we only need to
calculate SE(S,,S;) . If wetakel =0 and m=0in

(6), the equivalence of two parameter structures
means that we can use one structure to replace
another one for specified model applications. The
max-min problem (8) is very difficult to solve.

Definition 2. A PR (S, q,,) is called the worst-
case parameter (WCP) for simplifying a structure
S\ to astructure Ss, when it satisfies

SE(S,.S,) = ngind(sA,EA; S:.0s) »
st. g1 Q(Sy) 9)

If we know the WCP, the structure error can be
obtained by solving the min problem (9) rather
than the max-min problem (8).

Theorem 1. When a k-zone structure S, is

simplified into a one-zone structure S; , the WCP
must be located at such vertices of the admissible
region Q, where the differences between the k

parameter values reach either their upper bounds
or their lower bounds.

The proof of Theorem 1 and its more general
form can be found in Sun (2002). For the case of

k = 2, we have SE(S,,S;) =cL?, where c is a

coefficient and L is the maximum difference
between the parameter values of the two zones in
the admissible region. For example, if the ranges
of the parameter values associated with the two
zones are 10£qg,;£20 and 8£q,, £30,

respectively, then we have L =30- 10=20. For
the case of k >2, the WCP may depend on the
flow conditions (boundary conditions and/or
since/source terms). Although Theorem 1 cannot
give us a unique solution of the WCP, it limitsthe
search of the WCP to a small set. From physics,
WCP is the most unlikely one to be ssimplified to
a homogeneous one, and thus, it can often be
guessed from the available prior information of
the physical problem under study.

SOLUTION OF GIP

To solve the GIP by the stepwise regression
method presented by Sun et a. (1998), we
construct the following structure sequence

S1 ST 81 »d 1 Syl = (10)

where S is a homogeneous structure, S, is a
structure  with two zones, and so forth.
Generdly, S,,,; is obtained from S, by dividing
one zone of S, into two sub-zones. In this case,
the shape vector is described by the location of a
linear boundary dividing one zone of S, into two
zones of S,,; and thus the shape parameter v in
the representation of parameterization has a low
dimension. For each complexity level m, we

solve the EIP to find the optima PR by
minimizing the following fitting residual:

RE,, =min
S

u%bs b l'ID(Sm'qm)"D
st g, Q(S,) (1)

where u%® are the observed values of u, and

U, (S,q) =u"(S,q;x™) are the corresponding
model outputs. At the same time, we calculate
the maximum model application error of using
Si.1toreplace S, which is defined by

AEr, = max min|ge (S dm) - G (S 1.8 1)
st. Ol QSn1), Anl QS (12
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Let us consider three cases. (1) If AE, >e and
RE, >2n, where e is the given accuracy

requirement of model applications and h is the
norm of observation error, we increase mto m+1.

S is obtained by dividing such a zone of S,

into two zones that is the most sensitive one to the
specified model applications. The boundary
between the two zones is determined by
minimizing the fitting residua RE..; (2) If

AE, <e, stop and use (S, .q,,) asthe identified
parameter. (3) If AE,>e but RE, <zh, new

data need to be collected.
Because S,,; is obtained from S, by

dividing one zone of S, into two sub-zones, the

WCP is very easy to determined and AE,, can be

calculated by only solving a min problem rather
than a max-min problem. As a result, the above
stepwise regression procedure becomes very
effective.

STRUCTURE IDENTIFIABILITY

The classical identifiability requires that the
mapping between the observation space and the
parameter space be a one to one mapping. This
requirement can never be satisfied when the
observation error exits. The output least square
identifiability (Chavent 1987) requires that the
solution of (2) be unique and continuously depend
on observation data. The extended identifiability
defined in Sun and Y eh (1990) uses the reliability
of model application to replace the requirement
on the uniqueness of the identified parameter. In
the statistic framework, aparameter isidentifiable
if a change in parameter is always accompanied
by a change in the probability distribution of the
observed data (Stark 2000). In al of the previous
definitions on identifiability, it assumes that the
structure of the unknown parameter is known. In
practice, however, this assumption is often
unsatisfied and, instead, the structure of the
unknown parameter must be identified together
with its unknown values. In this section, we will
define a new kind of identifiability that does not
reguire knowing the parameter structure. In fact,
it alows the non-uniqueness in both parameter
structure and parameter values.

Definition 3. A parameter q, with structure S,,
i.e., aPR (S,,0,), issaidto be d-eidentifiable at
a smplified structure level & (or d-eS

identifiable) if there is an observation design D
that

”gE(SArqA) - gE(SquB)"E <e (13

is satisfied for any PR ( Sg,qg ), provided

Jup (Sadia) - Up(Se.ae)], <d (14)

The values {uD(SA,qA)} in (14) can be

considered as the observations under design D
without observation error. Condition (14) means
that we can fit these observations to a certain

extent by a parameter qg with a simplified
structure S.  Equation (13) means that when
(Sg.0g) isused to replace (S,,0,4) asthe model

parameter, reliable results of model application
can be obtained. Therefore, if a distributed

parameter is d-e-S; identifiable, we can identify it
at the simplified structure level S;.  The

following theorem gives a sufficient condition for
the d-e-S; identifiability.

Theorem 2. If the projection (Sg,qag) Of
(Sa.ga) ONt0 S5 is di-e identifiable, i.e.,

luo (Ss.qe) - UD(SB!qAB)"D < d implies
loe(Ss.ag) - gE(SquAB)"E <& (15)

for any parameter qg with the structure Sy , then
(Sa,0,) isd-e-S; identifiable, where

d =d; - d(Sa, qa; S5) /m
e=e +d(Sy q. Ss) (16)

The Proof of Theorem 2 can be found in Sun
(2002). When observation error is involved,
Equation (14) is replaced by

U (Sa,aa) - uD(SquB)"D <d 17)

where Up(Sa,q,)= Up(Saga)+ h and h isthe

observation error (vector), In this case, we have to
change (16) to

d =d;- d(Sa, qa;S;) /m-h
e=e +d(S,, d,S) (18)
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In the above equation, h is the upper bound of
Il

Definition 4. A parameter structure S, issaidto
be d-e-S identifiable, if all PRS(S,, q,) within
the admissible region Q, are d-e-S identifiable.

Theorem 3. |If al PRs (Sg,qg) ae di-e
identifiable (Sun, 1994), i.e.,

|lup(Se.A8a) - Up(Ss.Gs.2)|, <ch implies
[HEXHE gE(SBqu,Z)”E <e (19)

for any two PRs (S3,0p,) and ( Sg.qp ») Within
Qg, then structure S, is d-e-S identifiable,
where

d =d; - SE(Sx,Ss)/m-h and
e=e +SE(Sy, Sp) (20)

This theorem can be proved similarly as
Theorem 2 (Sun, 2002). Equation (20) clearly
shows that to make a distributed parameter to be
identifiable, the information provided by
observation data must be able to overcome the
effects of both structure error and observation
error. The effect of structure error is
deterministic rather than random, and, in most
cases, it dominates the effect of observation error.
If the structure error between the true and
simplified structures is too large, no observation
design can make the unknown parameter to be
identifiable at the simplified structure level.

ROBUST EXPERIEMENTAL DESIGN

When the structure of a distributed parameter
is unknown, the problem of experimental design
for parameter identification becomes extremely
difficult because a more complicated parameter
structure needs more data to identify. If we
cannot judge the sufficiency of a design, both the
concepts of optimal design and robust design
become meaningless. In this section, we will
define the sufficiency of a design when the
parameter structure is unknown and then present
an effective approach for finding a robust design.
A design D for identifying a distributed parameter
system consists of a set of decisions on where,

when and how the system is excited, and where
and when the states of the system are observed
(Sun, 1994).

Definition 5. A design D is said to be sufficient
for identifying a PR (S,.,q,), if the PR is

ey - dgp - Sy identifiable, i.e.,

”GD(SArqA)' uD(SB!qB)”D <d, implies
|9e(Saaa) - gE(SB!qB)||E< € (21)

for any PR (Sz.0g) in Q(Sg). Here, dy must
be at least larger than 2h , and e, should not

exceed the given accuracy requirement e of model
application.  From this definition, when a
sufficient design is actually conducted and the
data are collected, we can assure that an
equivalent parameter for model application can be
identified from the data.

Theorem 4. If adesign D satisfies the following
condition at a complexity level Sg:

||UD(SB!qB,1)' UD(SB'qB,2)||D<
2[SE(Sa, Ss)/m+h]  implies

||gE(SquB,1)' gE(SB'qB,2)||E<
€- SE(SA' SB) (22)

where S, is the structure of the unknown
parameter, then the design should be sufficient for
identifying a parameter at level Sy to satisfy the

following accuracy requirement of model
application:
||gE(SB'dB)' gE(SAvq,tA)"< e (23)

where qL is the true parameter but unknown and

(iB is obtained by solving a CIP with the fixed
structure S, i.e.,

Qg =arg min
B gs! Qg

U%bs - UD(SquB)"D

The proof of Theorem 4 can be found in Sun
(2002). Theorem 4 tells us that the inverse
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solution obtained by solving the CIP can be
reliable for model application if the observation
data can provide sufficient information to
overcome the effects of both structure and
observation errors.  The following theorem
provides a basis of finding a sufficient and robust
design.

Theorem 5. Under the conditions of Theorem 3,
if adesign D issufficient for identifying the WCP

(Sx.0,) of an admissible region Q,, then it
should be sufficient for identifying all parameters
with structure S, or with a structure that is a

simplification of S, in the admissible region.

This theorem is a deduction of Theorem 3.
When the structure error in (20) is decreased, d
will be increased and e will be decreased. This
means that the data obtained from the same
design are sufficient for satisfying the
requirement of identifiability with d >dyand
e<e,.

ALGORITHMS FOR SUFFICIENT AND
ROBUST DESIGN

Experimental design depends heavily on how
much prior information that is available. Different
physical parameters in different fields may have
different prior information. For example, if the
unknown parameter is the hydraulic conductivity
of an aquifer, prior information may be obtained
from well logs, well tests, local pumping tests,
tracer tests, and various  geophysical
measurements. If we can use more prior
information, less information is needed from the
designed experiment. A good design approach
should demonstrate how prior information could
be effectively and quantitatively incorporated into
the design procedure. The design method
presented in this paper requires that after
transformation, analysis and judgment, all prior
information can be integrated into the following
form: The definition region can be divided into L
zZones {V\lI i =:I,2,...L} and the values of the

unknown parameter are relatively homogeneous
within each zone. Moreover, the upper and lower
bounds of the unknown parameter q(x) at these

ZOones can be estimated, i.e., we have two sets of
numbers.  {g(W)}and {q (W)}, such that
a(W) £q(xT W) £q (W) for al i=12,..,L.

With this information, we can use the following
algorithm to find a candidate of the WCP:

Sep 1. If the parameter value associated with
zone(W,) has not been assigned, then let it be

its upper bound ¢ (W) .

Step 2. Consider al neighboring zones (W,) of
(W) . If the parameter value associated with
zone(W,) has not been assigned, then assign

q(W;) to (W,) when g (W,) isassigned to
(W), or assign q(W,) to (W;) when
q(W) isassignedto (W) .

Obvioudly, the so determined parameter satisfies
the condition of Theorem 1, i.e. the parameter
values between neighboring zones have the
maximum difference. To start the algorithm with
different i, we can move from one candidate to
another candidate of the WCP. Note that the WCP
is dependent on sink/source terms and boundary
conditions. Usualy, we start from such zones
where sink/source or inflow/outflow are involved.

Based on the concepts and theorems
developed above, we present the following
algorithm for judge the sufficiency and robustness
of adesign D:

Sep 1. Compile al available prior information.

Step 2. Set a most possibly complex structure S,
and guess its WCP (IA .

Sep 3. Run the simulation model to generate a set
of “observation data” up(S,.q,) according

to the designed excitation strengths,
observation locations and times.
Sep 4. Run the modd for given model

applications to generate a set of “prediction

data” ge(Sada) -

Sep 5. Form the structure series (10) as in the
solution of the GIP. From S, to S, the
most sensitive zone to the given model
applications is selected to divide into two
sub-zones, and the boundary between the two
zones is determined by minimizing the fitting
residua

RE,, = Sn:]iqr;"uD(SAIIA) - UD(Sm'qm)”D
st Gnl Q(S,) (24)
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Then, calculate the model application error
AE, :"gE(SA'qA) - gE(Sm!dm)"E , Where

(S,,.0,,) is the solution of (24).
Sep 6. If AE,,>eand RE,, >2h , increase m by
1 and repeat the above procedure to find

Sy

Sep 7. When m increases, the value of AE,
decreases to zero and the vaue of
RE,, decreases to until less than 2h. Thus,
finally we must have the following cases. (1)
AE,<e but RE,® 2h, (2) AE,<e for dl
RE, <2 ,and (3) AE, 3 ebut RE,<2h.
According to Definition 5, if we only have
the cases (1) and (2) during the optimization
procedure, we can conclude that the design is
sufficient. Otherwise, when Case (3) appears,
the design is insufficient.

Since the so obtained design is sufficient for
the WCP, according to Theorem 5, it should be a
robust design.

THE OPTIMAL DESIGN

The principle of optimal design is either to
minimize the experimental cost while the
infformation provided by the experiment is
sufficient, or to maximize the information with a
certain budget. After we know how to judge the
sufficiency of adesign, we can define the optimal
design problem as follows.

Definition 6. Let f(D) be the cost of an

experiment design D. The optimal design D" is
the solution of the following optimization
problem:

D’ =min (D), st D1 {D} (25)

where {D} contains such designs that must be

feasible and sufficient.

Problem (25) is amixed integer-programming
problem with very complex constraints, and thus
it is very difficult to solve. In practice we often
search a sub-optimal  solution with less
computation effort instead of solving (25). The
following is a proposed heuristic procedure that
might be useful for many environmental and
geophysical systems.

Sep 1. Collect al existing records on excitation
locations and strengths, observation locations
and frequencies.

Sep 2. Use the procedure given above to test if
the existing data are sufficient and robust. If
the answer is “no”, then go to the next step.

Sep 3. Perform sensitivity analysis for existing
observations. We calculate the sensitivities of
O to the parameters for all mzonesof S,.

The zone with the maximum sensitivity is
selected to divide into two sub-zones. Now
we caculae the senstivity of each

observation U ;to the parameter of each

zone. Locations where the observations only
make contributions to the identification of
those parameters that are not sensitive to
model applications can be deleted from the
further observation design.

Sep 4. Perform sensitivity anaysis for planned
observations. Either increase the strength of
excitation or increase the number of
observation locations and freguencies
depending on which one is more effective
and feasible. New observation locations
should be so selected that they make the
maximum contribution to the identification of
the most sensitive parameters to the model
applications. This can be done by the adjoint
state method (Sun, 1994).

Sep 5. After new observations are planned in the
last step, test the sufficiency of the new
design and calculate its cost. Repeat Step 4
and Step 5 severa times, a nearly cost-
effective and feasible design may be found.

NUMERICAL EXAMPLE

In this section, the identification of hydraulic
conductivity of an aguifer is used as an example
to explain the presented methodology. Figure 1
shows a two-dimensional confined aquifer. Itis
assumed that the head is fixed to be 100 m at the
boundary sections AB and CD and there is no
flow through other boundary sections. The initial
head is 100 m everywhere. The purpose of this
study is to predict the steady state head values in
three pumping wells: W, W, and W, when their
pumping rates are 2000, 10000 and 4000
(m®/day), respectively. The prior information

available for the hydraulic conductivity includes:
(2) It consists of 24 homogeneous zones, and (2)
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the upper and lower bounds of each zone can be
estimated. Their ranges vary from 5 to 50

mday*.

® W3

oW1l
o W2 c

O

02 |p

Figure 1. Theflow field

One candidate of the WCP is shown in Figure 2,
which is obtained by the procedure described in
the last section with consideration of the flow
conditions. With this WCP, the values of steady
state head in the three pumping wells are
W, =78.60m, W, =66.8Im and W, =74.02m,

respectively. These values, of course, will change
significantly when the distribution of hydraulic
conductivity changes.

Figure 2. The worst-case parameter

Now we want to design a pumping test to
identify the hydraulic conductivity so that the
accuracy requirement of model prediction,
e =1.0m, can be reached, i.e.,, the norm of the
differences between the model predicted heads
and the real heads in the three wells must be less
than 1 meter. Note that to compare with the large
drawdown in these wells (more than 20m), this
accuracy requirement is very high. The upper
bound of observation error is assumed to be
h=01m.

Using the adjoint state method for sensitivity
analysis, we can find that the local hydraulic
conductivity around Well 2 plays the most
important role for the short-term pumping test.
For the long-term steady state, on the other hand,
the values of hydraulic conductivity aong the

inflow boundaries AB and CD play the most
important role. Using the sensitivity equation
method, we can find that O, and O, in Figure 1
are the best observation locations for identifying
these values. The sensitivity analysis methods
based on the forward or reverse modes of auto-
differentiation are important tools for the
presented design process.

The first pumping test design D; consists of
(1) pumping 1,000m’day* from W,, (2) three
observation locations at W, W, and W, (3) five
observation times at t = 0.01, 0.05, 0.1, 0.5 and
1.0 (day). Following the steps described in the
last section, we find RE; =0.09m, which is less

than 2h =0.2m, when K, =27.29 mday*, but

AE; =4.1m, which is larger than the accuracy
requirement e=1.0m. Therefore, we can
conclude that the design D; is insufficient. The
second pumping test design D, is the same as D,
but increasing the pumping rate in W, to
2,000m?/day . Repeating the steps described in
the last section, wefind RE; =0.15m<2h when
Ki; =28.02 m/day, but AE =4.60m>e.
Therefore, the design D, is insufficient too. The
design Ds is formed by adding two observation
wells O, and O, to the design D,. Unfortunately,
it is till insufficient. Design Dy is formed from
the design D3 by pumping 500 from W, 2000

from W, and 1000 (m®/day) from W,. With
D4, wefind RE; =0.31>2n , when K;; =25.28,

and AE, =3.0Im > e Thismeansthat the design

allows us to identify atwo-zone structure. Under
the optimized two-zone structure, we find

RE,=0.18<2h, when K,;=3313, and
Ky, =11.39(m/day), but AE,=187m > e

Therefore the design Dy, is ill insufficient. A
sufficient design, Ds, has been found which is
based on D4 but increasing the period of pumping
test to 3 days. The five observation times are t =
0.05, 0.1, 0.5, 1.0 and 3.0 (days). In this case,
during the search of the best fitting two-zone
parameter (including both pattern and values), we
aways have either (AE, <e and RE, <zh) or

(AE,>e and RE,>2h). The best fitting
parameter values are K,, =17.99nvday and
K,, =34.61m/day, for which RE, =0.18and
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AE, =0.52. When the Zone 1 of the two-zone
structure is further divided into two zones, we
aways have AE, <e and RE, <2h during the
procedure of pattern optimization. The best three-
zone pattern is shown in Figure 3 and the best
fitting parameter values are K;, = 20.27 m/day,

K;, =33.27 m/day, and K;; =7.02 m/day. With

this parameter, the steady state heads in the three
wells predicted by the model are h(W,) =77.82m,

hW,) =67.24m, and h(W,)=74.17m. The

identified parameter is thus equivalent to the
WCP. Note that the boundaries of the three zones
in Figure 3 do not represent any real physical
boundaries of discontinuity. What we found is
that the real hydraulic conductivity distribution
can be replaced by such a three-zone structure for
model prediction.

Figure 3. An equivalent structure to the WCP

To verify the robustness of the design Ds, two
randomly generated hydraulic conductivity
distributions are tested. Their values in each zone
are randomly specified within the range of the
given upper and lower bounds. First, we run the
simulation model to obtain the heads at the
specified times and locations according to the
design Ds, then a set of observation errors with
norm h = 0.1mis added to them to obtain a set of
“observation data’. For the first test case, we
found that the condition RE <2h is satisfied

when the number of zonesisincreased to 3 during
the solution of GIP. For the second test case, the
condition RE < 2h is satisfied when the number

of zones isincreased just to 2. According to our
theory, the reliability requirement of prediction
e=1.0m must be satisfied by these equivaent
parameters. From Table 2 we can find that the
headsin all three wells can be predicted with very
high accuracy indeed. Note that these results can
be expected at the design stage based on the new
methodology.

Table 2. Results of the two test cases

Casel Case 2
Head | Red Model Resal Model
predicted predicted
W, | 79.84| 7967 |8043| 80.57
W, | 7048 | 7051 | 7213| 72.05
W; | 75.05| 7504 | 7589| 76.18

CONCLUSIONS

In this paper, we have introduced a new
methodology for identifying a distributed
parameter when its dimension is high and its
structure is unknown, such as the hydraulic
conductivity in groundwater modeling. The basic
idea is to solve a weak inverse problem, the GIP,
to find an equivalent parameter that can give
almost the same results for model application as
what the true parameter does. The weak solution
has the minimum complexity in structure and thus
it needs minimum data to identify.

We have found that the error of structure
reduction can be calculated effectively by solving
a CIP if we know the worst-case parameter
(WCP). We have proved that the WCP is always
located at one vertex of the admissible region of
the unknown parameter. A set of sufficient
conditions for structure identifiability is presented
that requires the information provided by the
observation data be able to overcome the impacts
of both structure and observation errors. We have
proved that if an experimental design is sufficient
for identifying the WCP then it must be sufficient
for identifying al other parameters in the
admissible region, and thus, it is a robust design.
Based on these new concepts and theorems, we
have presented algorithms for determining the
WCP from prior information, for judging the
sufficiency of a design, and finaly for finding a
cost-effective, sufficient and robust design.

A numerical example is given, in which the
unknown hydraulic conductivity with complex
structure is replaced by a very simple but
equivalent structure for the given model
application. In this example, we have shown how
the WCP can be found from prior information and
flow conditions and how a sufficient and robust
design can be found through a heuristic process.
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ABSTRACT

Consider linear ill-posed problems with a pri-
ori information about their unknown solutions. We
discuss what one should know about the given data
to construct a regularizing algorithm. It is shown
how properties of regularizing algorithms depend
on known properties of the solutions. The uni-
form and a posteriori errors of an approximate so-
lution, rates of convergence for regularizing algo-
rithms are considered for problems on sourcewise
represented and compact sets of exact solutions.
For various a priori restrictions to the exact solu-
tion several numerical methods are offered to con-
struct regularizing algorithms. These methods are
applied to inverse problems in astrophysics, elec-
tronic microscopy and vibrational spectroscopy.

INTRODUCTION

The majority of all problems investigated in a
modern science are inverse problems. When a re-
searcher has enough information about properties
of an unknown solution of a problem, then he or
she almost always may £nd a solution that are sta-
ble in relation to perturbations of input data. It
is well known that a century ago many scientists
thought that only such stable problems are in na-
ture and all other problems are only model mathe-
matical ones. Therefore, to study these “real” prob-
lems J. Hadamard offered a notion of a well-posed
problem in [1].

Let us consider a linear inverse problem written
in the form of the operator equation

zeZuelU 1)

where Z, U are normed spaces. The problem (1) is
called well-posed on the class of its “admissible”
data if for any pair {4, a} from the set of “admis-
sible” data the solution of (1):

1. exists,

Az =1

2. is unique,

3. continuously depends on errors in A and @
(is stable).

Valery N. Titarenko
e-mail: ill-posed@mail.ru

Stability means that if instead of {A,u} we are
given “admissible” {A;,, us} such that || A, —A]| <
h, |lus — @| < 6, the approximate solution con-
verges to the exact one as h,5 — 0. The num-
bers h and ¢ are error estimates for the approx-
imate data {A,,us} of the problem (1) with the
exact data {A,u}. Denote n = (h,d). If at least
one of the mentioned requirements is not met, then
the problem (1) is called ill-posed. Remark that
the most important requirement is the third one,
since the others may often be made just. For ex-
ample, the £rst requirement is fulflled if instead of
the solution of (1) we introduce some generalized
solution. If one makes additional restrictions for
the considered problem, then the problem (1) often
becomes a problem with a unique solution. Re-
gretfully, stability of the problem (1) depends on
properties of the given spaces Z and U, which can
not be changed by other spaces in practice.

As a generalized solution, it is often taken the
so-called normal pseudosolution (a solution in the
sense of the least-squares method with a minimum
norm or sometimes with a minimum distance from
a given £xed element). This solution Z exists and
is unique for any exact data of the problem (1) if
A€ L(Z,U), u € R(A) @ RH(A), 2 = Ata.
Here R(A) and R1(A) denote the ranges of the
operator A and its orthogonal complement in U,
and A* stands for the operator pseudoinverse to
A. See, e.g., [2] for details. In the paper we £nd Zz
as a normal pseudosolution, i.e. z = Z.

As opposed to well-posed problems ill-posed
ones are in some sense underdetermined problems.
This means that a researcher has not enough infor-
mation to solve an ill-posed problem. Therefore,
he or she should assume that the solution has addi-
tional properties. Some assumptions make the con-
sidered problem well-posed as it will be shown for
the compact sets. Unfortunately, for many prob-
lems these assumptions often help to construct only
so-called regularizing algorithms.
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In spite of the existence and uniqueness of a
normal pseudosolution Z for any admissible data,
the problem of its £nding, as well as the problem
(1) itself, may be unstable with respect to perturba-
tions of A and @. Thus, it is important to answer
the question, what means to “solve” such an un-
stable problem. Tikhonov answered this question
in his famous de£nition of a regularizing algorithm
[3, 4]. To solve an ill-posed problem means to pro-
duce a map (regularizing algorithm) R(A, us,n)
such that

1. brings an element z, = R(Ap,us,n) into
correspondence with any data {Ap, us,n},
Ay € L(Z,U), us € U, of the problem (1);

2. has the convergence property z, — z =
Atwasn — 0,u € R(A) ® RH(A).

A mathematical problem is (Tikhonov) regular-
izable if there exists a regularizing algorithm. It is
evident that a well-posed problem is regularizable.
Unfortunately, regularizing algorithms do not exist
for all mathematical problems. Therefore, we may
divide all inverse problems into three groups:

1. well-posed problems,
2. ill-posed regularizable problems,
3. ill-posed nonregularizable problems.

More than 40 years ago the question arose
whether it is possible to construct a regularizing
algorithm that would not depend exactly on the es-
timates of errors h and §. Regretfully, such an ap-
proach can solve only well-posed problems.

Theorem 1[5]: Let R(Ay, us) be a map of the
set L(Z,U) @ U into Z. If R(Ap,us) is a regu-
larizing algorithm (not depending explicitly on n),
then the map P(A,u) = A™w is continuous on its
domain L(Z,U) ® (R(A) & R*(A)).

Proof The second condition in the defnition
of regularizing algorithm implies in the equal-
ity R(A,u) = A*tu = P(A,u) valid for each
(A,u) € L(Z,U) ® (R(A) ® R+(A)) and
the convergence P(Ap,us) = R(Ap,us) —

Aty = P(A,u) when h,§ — 0 valid for any
(A1) € L(Z,U) @ (R(A)® R (A)), (An,us) €
L(Z,U) ® (R(A) @ R*+(A)). Therefore, the map
( u) is continuous on L(Z,U) ® (R(A) &
R*(A)) Cc L(Z,U) ® U. The theorem is proved.

It is clear from Theorem 1 that a regularizing
algorithm not using » and ¢ explicitly can only ex-
ist for problems (1) well-posed on the set of the

data L(Z,U) @ (R(A)® R*+(A)) C L(Z,U)®U.
The theorem generalized the assertion proved by
Bakushinskii in [6].

Let us discuss the very principal question: is it
possible to estimate an error of an approximate so-
lution of an ill-posed problem? Regretfully, the an-
swer is negative. The main and very important re-
sult was obtained by Bakushinskii (see, [7] or [8]).
For simplicity we assume h = 0, i.e.,, A, = A.
Let R(us,d) be a regularizing algorithm that de-
pends on 4, us only. Denote by A(R,§,2) =
sup{||R(us,0) — Z|| : Vus € U, ||AZ — us|| < 0}
the error of a solution of the ill-posed problem (1)
at the point z using the algorithm R. If the prob-
lem (1) is regularizable by a continuous map R and
there is an error estimate, which is uniform on D,

sup{A(R,d,Z) : z€ D} <e(0) —» 0
then the restriction of A=! to AD c U is continu-
ouson AD.

Usually the accuracy of the approximate solu-
tion zs = R(us,d) of the problem (1) could be
estimated as

K(0) 2

where K does not depend on ¢ and the function
©(0) defnes the convergence rate of z;5 to z.

Note that pointwise and uniform error esti-
mates (2) should be distinguished. For pointwise
estimates the exact solution Zz is £xed, the constant
K and the function ¢(§) depend on z. For the case
of uniform estimates the inequality (2) is just for
some set M of exact solutions z. Then K and ¢(4)
depend on properties of the set M. Since the exact
solution z is unknown, pointwise error estimates
have no signifcant sense.

We consider the results obtained by Vinokurov
in [9]. Let A be a linear continuous injective oper-
ator acting in Banach space Z and the inverse op-
erator A=! is unbounded on its domain D(A~1).
Suppose that (4) is an arbitrary positive function
such that ¢(6) — 0asé — 0, and R is an arbitrary
method to solve the problem. Then the following
equality holds for elements z except maybe for a
£rst category set in Z:

A(R, 6, z)} e
) |

This means that a uniform error estimate can only
exist on a £rst category subset in Z.

llz5 — 2l <

lim sup {

6—0
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In uniform estimates the rate of accuracy of an
approximate solution ¢(d) does not depend on an
exact solution. Therefore uniform accuracy esti-
mates are widely spread in the theory of ill-posed
problems. However, uniform accuracy estimates
do not exist on any set M.

A compact set is a typical example of the £rst
category set in a normed space Z. For this set spe-
cial regularizing algorithms may be used [8, 2] and
a uniform error estimation may be constructed.

Clearly, a uniform error estimate exists only for
well-posed problems. For general ill-posed prob-
lems we can’t £nd an error of an approximate so-
lution z, and estimate the convergence rate of z,
to the exact solution z. Fortunately, for some ill-
posed problems it is possible to £nd a so-called
a posteriori error estimation. Following [10], for
the case, when there is an exact injective operator
A with closed graph and Z is a o-compact space,
we introduce a function x(us,d) such that vz € Z
36(z) > 0,Vé € (0,8(2)], Yus € U |lus—al| < 9:
IZ = R(us,9d)|| < k(us,d). The function (us, )
is a posteriori error estimation for the problem (1),
if K(us,0) — 0asd — 0.

THE  GENERALIZED
METHOD

Tikhonov in his papers [3, 4] not only clearly
de£ne the meaning of solving an ill-posed problem
(1), but also give a practical regularizing algorithm
to solve (1).

We follow [8]. Let Z, U be Hilbert spaces,
D C Z be a closed convex set of a priori con-
straints such that 0 € D, A, Ay, be linear operators.
Given a set of the data {Aj, us,n} we introduce
the Tikhonov’s functional:

DISCREPANCY

Me[2] = [|Anz = us|* +afl2l* (3)

where « > 0 is a regularization parameter.
Consider the following extreme problem:

inf{M“[z] : z € D} 4)

Forany o > 0, us € U and bounded linear opera-
tor Ay, the problem (4) is solvable and has a unique
solution 2y € D.

The idea to construct a regularizing algorithm
using the extreme problem (4) for M “[z] consists

of constructing of a function o = «(n) such that
22, zasn — 0. We may £nd a regulariza-
tion parameter a priori or a posteriori. In [8] it is
shown that if A is a injective operator, z € D and

a(n) — 0, (h+6)%/a(n) — 0asn — 0, then
22 zasy — 0, ie., there is the a priori
choice of a.

De£ne the incompatibility measure of (1) with
the approximate data on D as

tn(us, Ap) = inf{||Apz — us|| : z € D}

Assume that the incompatibility measure can be
computed with an error x > 0, i.e., instead of
iy (us, Ap) there is s (us, Ap) such that

P«7](u67 Ah) g /»‘L:;(Uév Ah) g .Un(u& Ah,) + K

Let us introduce the so-called generalized dis-
crepancy:

() = | Az — usl|? — (5 + )2
— (1t (us, An))”

The generalized discrepancy pj(«) is continuous
and monotonically non-decreasing for o > 0.

Now we state the generalized discrepancy prin-
ciple to choose the regularization parameter:

1. Ifthe condition [[us||* > 82+ (% (us, Az))
is not ful£lled, then we take z,, = 0 as an ap-
proximate solution of (1);

2. Ifthe condition [Jus||> > 62+ (5 (us, Ap))
is ful£lled, then the generalized discrepancy
has a positive zero o* and z,, = z;‘*.

If A is a injective operator, then lim,, o 2, = Z.

Otherwise, lim,, g 2, = z*, where z* is the nor-

mal solution of (1), i.e., ||2*|| = inf{z € D : Az =

u}.

It is known that we can put u;j(ug,Ah,) =0
even if us ¢ A, D. However, we should change
the generalized discrepancy principle as follows.

1. If ||us|| > ¢ is not ful£lled, then z,, = 0;
2. If [Jus|| > d is ful£lled, then:

(a) ifthereisan a* > 0, which is a zero of

the function p, (a), then z, = z2";

(b) if py(a) > 0 for all & > 0, then
zy = lima—o0 2.

For the case, when A, A, are bounded linear
operators, D is a closed convex set containing the



4th | nternational Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazl, 2002

point 0, Z € D, it is proved in [8] that the gener-
alized discrepancy principle are equivalent to the
generalized discrepancy method: £nd

inf{||z|| c2eD, || Anz — us)?
K 2
< 5+ h)? + (5 (s An)) |

You may £nd the generalized principles of dis-
crepancy, quasisolutions and smoothing functional
for linear incompatible and non-linear general ill-
posed problems in [8, 2].

For simplicity suppose A, = A. Consider the
sets represented in the form M, = {z : z =
Bu,v € V,|v|| < r}, where V is an auxiliary
Hilbert space, B : V. — Z is a linear, injective
and compact operator, r is a £xed parameter. For a
method R of solving (1) we defne

A(R,0,r) = sup{|| R(us, ) — 2| :
zZ € M,,||us —al <5} (5)

Then, for a class R of all possible methods R for
solving (1) the optimal accuracy is

Dopt (0,7) = Inf{A(R,0,7) : R € R}

A method R is said to be optimal in order on
sets M, if the following inequality holds for its ac-
curacy (5):

A(R,0,7)

< k = const
Aopt (5, ’l")

as d — 0 and & does not depend on 6, 7.

The generalized principles of discrepancy, qua-
sisolutions and smoothing functional are optimal in
order on sets M,. with k = 2 [2].

Let us apply the generalized discrepancy prin-
ciple to solve a model example of an inverse prob-
lem for the heat conduction equation

wy = a*wy, xxt € (0,1) x (0,7T)
{ w(0,t) =0 (6)

There is a function us(€) = w(&, T) € L?(0,1], we
want to £nd z(z) = w(z,0) € WZ[0,1] such that
z(z) — z(x) asn — 0. We may write that

l
lu(©)]? = / u(€) [2dé.
0

Ou(x)

ox

! 2
l2(2)[I* = / (Iu(:v)l2 + ) da
0

The problem may be written in the form of integral
equation

l
u(§) = | G(& =, T)z(x)dx
/

where G (&, x, t) is the Green function:

2~ : ™\ . [mnT
G, x,t) = 7 Zsm <T) sin <T>
X exp (_ (@)2)

The problem is solved for the parameters a =
1.0, T = 0.1, 1 = 1.0, the function us(¢) is taken
such that 6 = 0.05 - ||a||. In Figure 1 there are the
exact function z(z) and the found solution z, (z).

2(x) W

0 1 X

QO <
N en?

Figure 1. The exact solution z(z) (——) and the
approximate solution z, (z) (— — ——) for the
generalized discrepancy method.

NUMERICAL METHODS

Consider a Tikhonov’s functional M <[z] writ-
ten as (3), which is a strongly convex functional in
a Hilbert space. We recall that a necessary and suf-
£cient condition for 2 to be a minimum point of
M=[z] onaset D of apriori constraints is that

(M[z3]) 2 —27) 20  VzeD

If 23 is an interior point of D, then this condition
takes the form (M“[z7])" = 0, or

AL Apzy + azy = Ajug 7
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Thus, in this case we may solve the Euler equation
(7) instead of minimizing M “[z].

To solve ill-posed problems it is usually nec-
essary to approximate the initial, often infnite di-
mensional, problem by a £nite dimensional one,
for which numerical algorithms and computer pro-
grams have been devised.

Consider the Fredholm integral equation of the
£rst kind

b
Az = / K(z,s)z(s)ds = u(x)

We take U = L2[c,d], Z = W#[a, b]. Assume that
K (z,s) is a real-valued function defned and con-
tinuous on IT = [a, b] X [c, d]. Suppose that instead
of K (z,s) we know a function K, (z, s) such that
[Kn — Kl[L2amy < h. Then [|[Ap — Allwz_r2 <
h, where A, is the integral operator Wlth kernel
Kh (.CC, S)

Let us choose grids {s;}1* C [a,b], {z;}T" C
[c,d]. The £nite dimensional operator is a linear
operator with matrix A = {a,;}. The simplest ver-
sion of the approximation is given by the formulas

wn — 1 Bnliss)),
* Kh(xi75j)/27

c<r<d

j=2,n—-1
j=1n

fori =1, m.

For simplicity we use uniform grids with steps
hs and h,. We put z(s;) = zj, us(z;) = u,,
2= (21,--,2n), & = (u1,...,uy). Using the
rectangle formula to approximate the integrals, we
obtain

2

Set bjx = ha Z?zl aikaij, fj = ha 350, aiju;.
Thus, we arrive at the problem of solving the sys-
tem of equations

B =B:+aCz2=f (8)

where B = {b;1}, f = (f1,..., fa) and C you
may £nd in [8].

We can use various numerical methods to solve
the system of linear equations (8). Moreover, we
should take into account that the matrix B is sym-
metric and positive defnite. Therefore it is possi-
ble to very efEcient methods to solve (8).

The square-root method is one such method.
We may write B¢ = (T%)*T*, where T is an
upper triangular matrix. The system (8) takes the
form

(T°) 7oz =

Introducing the notation §* = 7T“2%, we obtain

two equations

Ty e =F, T =g

Each of these equations can be elementary solved,
since each involves a triangular matrix.

Let write the equation (8) in the form of Euler
equation

(Ar Ay + o)z = A

Using the square-root method, the tridiagonal ma-
trix C' can be written as C = §*S, where S is
bidiagonal. Changing to §* = S2, we obtain

(Ap Ay +aC)S™ 1™ = Asa

Multiplying the lefthand side by (S~1)*, we obtain

(D*D + aE)j® = D*a, D= A,87"

where E is the identity matrix. The matrix D may
be written as D = QPR where @ is an orthogonal
(m x m)-matrix, R is an orthogonal (n x n)-matrix,
and P is a right bidiagonal (m x n)-matrix.

Now we make change of variables 2* = Rg*
and obtain (R*P*Q*QPR+ oE)R™'2* = D*q,
or (P*P+aFE)i® = RD*t, = f. The matrix P*P
is tridiagonal, and the latter equation can be solved
by the sweep method. The operator S~ R~ real-
izes the inverse transition form £ to 2.

Of course, to minimize M 2] one may use the
method of conjugate gradients.

In [8] you may £nd programs implementing the
considered algorithms.

SOURCEWISE REPRESENTED SETS

Consider the operator equation (1), where A :
Z — U is a linear bounded injective operator, Z
and U are normed spaces. Assume the next a pri-
ori information: the exact solution Zz is sourcewise
represented with a linear compact operator B act-
ing from a rezexive Banach space V into Z:

Z=Bv zeZoveV 9)
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For reasons of simplicity we suppose that the oper-
ator B is injective, the operator A is known exactly
and instead of @ there is u;s such that ||us —a|| < 6.
We want to construct a regularizing algorithm
to solve (1) with a priori information (9) using the
data {us,d}. Set n = 1 and defne the set Z,,:

Zn=4{2€Z:z=Buv,veV]|v| <n}

Then we minimize the discrepancy F'(z) = ||Az —
usl| ontheset Z,,. If min{||Az —us|| : z € Z,} <
9, then the solution is found. We denote n(d) = n.
Otherwise, we change n to n + 1 and reiterate the
process. If n(d) is found, then we defne the ap-
proximate solution z, 5y of (1) as an arbitrary so-
lution of the inequality

|Az —us|| <0 2z € Zy)

Theorem 2 [11]: The process described above
converges: n(d) < 4oo. There exists §g > 0
(generally speaking, depending on Zz) such that
n(d) = n(dy) forany 0 < § < do. Approximate
solutions z,, sy strongly converge to z as § — 0.

Proof The ball V;, = {v € V : |jv]| < n}isa
bounded closed set in V. The set Z,, is a compact
in Z for any n, since B is a compact operator. Due
to Weierstrass theorem the continuous functional
F(z) attains its exact lower bound on Z,,.

Clearly, z = Bv € Zy, where

N = l7]] |z is a positive integer
(l7l] +1 otherwise

[[] is the integer part of a number. Therefore
n(d) is a £nite number and there is § such that
n(d) = n(dp) for any 6 € (0,d0]. The inequal-
ity n(d) > N forany § > 0 is evident. Thus,
for all 6 € (0, o] the approximate solutions z,, s
belong to the compact set Z,, s, and the method
coincides with the quasisolutions method [12] for
all suftciently small positive 6. The convergence
Zn(s) — Z follows from the general theory of ill-
posed problems [8].

Remark 1: The method is a variant of the
method of extending compacts proposed in [13].

Theorem 3 [11]: For the method described
above there exists an a posteriori error estimate.
It means that a functional x(us, d) exists such that
K(us,6) — 0asd — 0and ||z, ) — 2|| < K(us,9)
at least for all sufEciently small positive §.

Proof De£ne the function x(us, §) as

k(us,0) = max{||z, @) — 2|l : 2 € Zy ),
[Az — us|| < d}

Since the operator A is bounded and Z,,; is a
compact set, then {z € Z,,(5 : || Az — us|| < &}
is a compact set too. Therefore, k(us,d) < +o0.
Note that z € Z,,(5). Then the inequality [ z,,5) —
Z|| < k(us,0) is just for all & < dp. Since the
method coincides with the quasisolutions method,
then x(us,d) — 0asé — 0.

Remark 2: The existence of the a posteriori
error estimation follows from [10]. If by Z C
Z we denote the space of sourcewise represented
with the operator B solutions of (1), then Z =
Ule Z,. Since Z, is a compact set, then Z is
a o-compact space.

An a posteriori error estimate is not an error
estimate in general meaning that is impossible in
principle for ill-posed problems [8, 2, 7]. But it be-
comes an upper error estimate of the approximate
solution for “small” errors 6 < &g, where §q de-
pends on the exact solution Z.

Let A be a linear injective compact operator, Z
and U are Hilbert spaces. Consider the case, when
zZ= (A*A)p/%, U € Z,p = const > 0.

Lemma 1: The operator (A*A)?/2 is a com-
pact injective operator from Z to Z for any p > 0.

Proof The operator A* A is compact and self-
adjoint. The compactness of (A*A)P/? follows
from the properties of eigenvalues of linear com-
pact selfadjoint operators [14]. The injectiveness
is obvious.

Consider the extending compacts method in
the case: Z and U are Hilbert spaces, V = Z,
A : Z — U is a linear compact injective operator,
B = (A*A)P/2, p = const > 0.

Theorem 4 [11]: For this case the method of
extending compacts is an optimal in order of accu-
racy regularizing algorithm.

Proof Both Theorems 2 and 3 are valid, there-
fore the method of extending compacts is a regu-
larizing algorithm with an a posteriori error esti-
mation. For all § € (0, do], where d, is defned in
Theorem 1, the method coincides with the quasiso-
lutions method on the convex balanced compact set
BV, (54)- Thus, the method is optimal in order of
accuracy [7]. From [15] it follows that the accu-
racy of the method is at least O(57/(»+1)) for all
p>0.

Clearly, in the method of extending compacts
instead of integer numbers n = 1,2,... one may
use another increasing sequence r, 7, . . . of posi-
tive numbers such that lim,, oo 7, = +00.
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The case, when the operators A and B are
known with errors, is considered in [11]. In the
paper we write only the results obtained there. Let
there be linear operators A;, ,, By, and errors h 4,
hp such that HA},,A —AH < ha, ||Bh13 —BH < hp.
Denote the vector of errors by n = (6,ha, hp).
For any integer n defne a compact set

Znhg ={2 € Z 1 2= Bpgv,v € V,|Jv| < n}

Set the problem: £nd a minimal positive integer
number n = n(n) such that the inequality

|An, 2 — us|| < 6+
(hallBrgll + hpl|An, || + hahs) n(n)

has a nonempty set of solutions. Then the a poste-
riori error estimation is

k(us, An,, Bhy.n) = hen(n)
+ maX{Hz —Znll 2 2 € Znp)hgs
[An 2z — us| < 6+ (hallBhg ||

+ hpllAn,|l + hahs) n(n)}

We now apply the method of extending com-
pacts for the solution of the inverse problem for the
heat conduction equation (6). It is evident that for
any moment of time —¢. < 0 there is

l

z(€) = Bu(z) = /G(f,:c,tg)v(x)d:r

0

where v(z) = w(x, —t.). Suppose that V = Z =
U = L?0,1].

Clearly, we have obtained the problem (1) with
a priori constraints (9). Therefore, we may solve
the problem using the method of extending com-
pacts. Leta = 1.0, = 1.0,t. = 0.02, T = 0.1,
d =0.03 - ||al|. As a function o(x)

10 03<x<0.5

o) =< —4 05<z<0.8
0 otherwise
is taken. Solving the problem we go to the

Fourier coeffcients of the function v(x) and esti-
mate their ranges. After that in any point of the
interval [0, /] we £nd the maximal and the minimal
values of a function that has Fourier coefEcients in
the found intervals. In Figure 2 there are the found
zn(a) solution and the area, which is the a posteri-
ori error estimation for z, (x). We obtain n(d) = 5.

10

0.2 0.4 0.6 0.8 1

Figure 2. The approximate solution z, (z)
(— — =) and its a posteriori error estimation.

Other regularizing algorithms for ill-posed
problems with sourcewise represented solutions
may be found in [16].

COMPACT SETS

Suppose that there is the additional a priori in-
formation that the exact solution z of (1) belongs
to a compact set M and A is a linear continuous
injective operator. It is shown in [8] that as a set of
approximate solutions of (1) it is possible to accept

Zi ={z€ M : ||Anz — usllu < hllz||lz + 0}

Then z, — zasn — 0in Z forany z, € Z},.

In practical problems there is often a priori in-
formation that the exact function of (1) is a mono-
tone or convex bounded function or a function with
a given Lipschitz constant. These functions are
given on line segments [a, b]. Then the sets may be
considered as compact sets. In [8] it is proved that
on some subsets of [a,b] any approximate func-
tion z,, () in LP[a, b] converges to z(x) uniformly.
Moreover, there is the algorithm to £nd the error of
the approximate solution for the sets [17].

Assume that z is a function z(x) on [a, b], uisa
function u(¢) on[e, d], Z = L?[a,b], U = L?[c,d].
For many problems instead of the function us(€)
there are only its grid values. For the function
us(§) we assume that |lus — @llcre,qg < g(h),
where g(h) — 0as h — 0. Therefore the grid
values for the function w;s(&) are close to the grid
values for the function @(¢). For the compact
sets M it is convenient to use grid values of the
function z(z), since the conditions of compactness
for M may be easily written for the grid values.
For example, these conditions for monotone non-
decreasing function are

zip1— 2z <0 i=1,n-1,

Ci<zu<Cy i=1n
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where z; are grid values of z(z) onagrid {x;}} C
[a, b]. Thus to £nd an approximate solution of (1)
we go to £nite dimensional Euclidean spaces. De-
note a grid for u(§) by {¢;}7* C e, d] and grid
values by {u;}7". For any function z(z) € M we
may introduce the piecewise linear function z,, ()
such that

Zit1 — Zi (@ — )
Tit1l — X4 (10)
Vo € [z, xip],i € L,n—1

zn(x) = 2z; +

By u,, (&) denote the function Az, (x). Suppose the
operator Ay, is known exactly. Defne an approxi-
mate operator A,, as an operator such that Vz € Z:
Apz(z) = u,(€). Since for the considered func-
tions z(x) the inequalities C, < z(z) < C- are
valid, then ||z, — z|| — 0 asn — —+oco. The norm
of the operator A is bounded, so |4,z — Az|| =
1A(z0 — 2)]| < 1A - [l2n — 2I| — 08 1 — +00.
As the set of approximate solutions we take

Zl ={z€ M :||Anz — uslly < A}

where A = H + 6, H = sup{||4A,z — Az|| : z €
M},

To distinguish variables for the infnite dimen-
sional problem (1) from variables for the appro-
priate £nite dimensional one we use the symbol *
(“hat™). Thus, to £nd the inEnite dimensional set
Z}, we should £nd the appropriate £nite dimen-
sional set

Zl,={seMczm:
Az — as]jum < A} (12)

where 2 = (21,...,2,), & = (ug,...,Up), Z"
and U™ are £nite dimensional Euclidean spaces, A
is an m xn matrix, A is an error of the £nite dimen-
sional problem. The sets M of a priori constraints
are convex polyhedrons in the paper. Instead of the
exact grid values @; of the function @(&) there are
Vectors dis = (uy,...,up)and é = (&1,...,0m)
such that |u; — @;| < d;, j = 1,m. For the vec-
tors @5 and & we may construct the linear piecewise
functions uk (&) and u¥(¢) similarly to (10) using
the grid values u; — ¢, and u; + d;, j = 1, m, ac-
cordingly. As above, we assume that V¢ € [c, d]:
up(€) < al€) < ug(8).

Let A, 45, M, A be known. To £nd a £nite di-
mensional solution of the problem (1) an approx-
imate solution 2, € Z7, of (11) should be found.
We obtain a problem to minimize the discrepancy

®[2] = || A% — as]|2, which is convex and differen-
tiable, on the convex polyhedron M. Clearly, the
Fréchet derivative &'[2] = 2(A* A2 — A*Gs). One
may £nd all the vertex of M using the method to
cut convex polyhedrons [17]. Therefore it is possi-
ble to use the method of conditional gradient. Note,
for the sets M of monotone, convex functions these
vertex are found analytically in [8]. However, it is
better to use the method of projection of conjugate
gradients. The programs to solve these problems
are in [8]. After the vector 2, has been found we
construct the function z, using the formula (10).
There are several applications of this approach in
astrophysics [18, 19] and in electronic microscopy
[20].

To £nd the error of the found solution we
should construct the set Z7, or a set approximated
it. For this purpose we do the following. First,
we £nd the minimum and the maximum values for
each coordinate of Z;L,. Denote them by 2!, 2%,
i = 1, n. Secondly, using the found grid values we
construct functions z!(z) and z*(x) closed to Z7,
such that vz € Z7,: 2!(x) < 2(x) < 2%(x) for
each x € [a, b]. Clearly, on the segment [a, b] it our
aim are the functions z!(z) = inf{z(x) : 2 € Z},}
and z%(z) = sup{z(z) : z € Z}, }.

The set Z}, = Z" N M, where M is a convex
polyhedron and Z7 = {2 : ||A%2 — as]| < A} is
an ellipsoid. Thus to £nd 2!, 2* we should min-
imize linear functions on the convex bounded set
224. One may circumscribe a convex polyhedron
near Z7,. The problem to minimize the linear func-
tion will be reduced then to a linear programming
problem, which can be solved with the usage of the
simplex-method. Since it is necessary to solve 2n
linear programming problems and the minimum of
a linear function are in its vertex, it is better to £nd
all vertexes of the polyhedron. For these purpose it
is possible to use the method to cut convex polyhe-
drons [17].

Now we consider the problem to £nd the func-
tions z“(z), z'(x) for the set Z}, and M is a
set of non-decreasing functions. Clearly, Vax €
[a,b]: 2M(z) = inf{z}(z) : 2 € ZI}, 2%(x) =

sup{z¥%(x) : 2 € ZJ,}. Let the vectors 2! =
(24, ...,2L), 2% = (2%, ..., 2%) be known exactly.
Then,
l
oy 5w €T Ti)
Z(x)_{ 2ox=b
{ 27 T=a

zi1 @€ (@4, it
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When we solve the problem numerically, the vec-
tors 2!, 2* are found approximately. Therefore
suppose that instead of 2!, 2“ vectors 2* =
(2.0 2k, v = (z{‘*, ..., 2%) are known
such that Vi € T,n: 2/* < 2L, 2%* > 2. Using the
vectors 2, 24* we should construct the least vec-
tor 2! and the most vector 2 that satisfy to the last
inequalities. The least vector 2! is considered as
the vector each coordinate of it is equal to the mini-
mum value of the appropriate coordinate for the set
Zl,. The most vector 2* is considered as the vec-
tor each coordinate of it is equal to the maximum
value. From the de£nition of a non- decreasing
function we obtaln Vieln—1: 2z < le and
2t < 2ty 2l < Z’Tl Therefore we set » 2h = 2t
and Vi € 2,n: = max(z!_;,2l*).  Simi-
larly, for 2 we set =zandVi € n—1,1:
z¥ = min(z} Z+1, z;“‘*) Evidently, if 3i € 1,n:
zt > 24, then Z], = o, i.e. the problem has no
solutlon

Note that for the considered approach the main
data is the function us (). Its grid values are used
only to approximate this function by the piecewise
linear one. This way is in some sense arti£cial,
since we really have only the vector 4 of grid val-
ues. The inequality ||us — @|| < ¢ determines a
wider set of functions in U than the inequalities
luj —uj| < &j, 7 = 1, m. Therefore if the problem
to construct the set Z}/; is solved by minimization
of | A2 — ;]| exactly, then the found set is wider
than the “real” set of approximate solutions. To be
de£nite, for this “real” set we use symbol Z7,.

We use the problem to minimize the consid-
ered quadratic function for the following reasons.
First, it is necessary to associate the inEnite dimen-
sional spaces Z, U with the appropriate £nite di-
mensional ones Z™, U™ more closely. Secondly, if
only an approximate solution should be found and
we do not want to construct the functions z!(x) and
z*(x), then this problem is reduced to the prob-
lem to minimize a quadratic function on the convex
polyhedron, i.e., it is solved very fast. Thirdly, the
considered problem is changed very easy to £nd an
approximate solution of a real ill-posed problem,
i.e., when there is no information that the exact so-
lution z(z) belongs to a compact set M. Then we
should minimize a Tikhonov’s functional.

When we want to £nd not an error estimation of
an approximate solution but to construct the func-
tions z!(z) and 2%(x), then we may use another
approach. Instead of the function us(§) we con-
sider the vector us of the grid values as the given

data. The choice of the norm for the space U is not
important, since the function (&) is not approxi-
mated by a function of the vector .

Therefore, we may obtain the following in-
equalities

—5j<Aj2—’LL]<H;L+(Sj

j=1m (12)

_ Hf

where A’ are n vectors. The set of all the points
2 € Z" satisfying these inequalities is denoted by
Z7.. For the reasons written above the inclusion
2}, c Z], is valid. After the functions z'(z),
2% (z) have been constructed for the set Z7/, we ob-
tain the “real” set Z7/, of the approximate solutions
of the problem (1). The construction of the func-
tions z!(z), 2*(x) for the set Z7, is the same as
for the set ZAJ’\Q. Since the inequalities (12) are the
equations of half-spaces in Z™, i.e., the set Z}\Q is
a polyhedral set, then to construct the vectors 2/
z* some linear programming problems should be
solved.

There is a difference between the approaches
considered in this section. In the £rst approach to
£nd the vectors 2, 2% it is necessary to £nd an ap-
proximate solut|on 2 e Z7, since we approximate
the convex set 217(4 by a convex polyhedron when
solving the problems to minimize linear functions.
In the second approach an approximate solution is
not found, it may always be constructed after the
vectors 2!, 2* have been found.

Let us soIve the problem (6) on the set of con-
vex upward functions z(x) such that 0 < z(z) <
C. Assume thata = 1.0, = 1.0, T = 1.0,
C = 1.2, n = 20. In Figure 3 there are the exact
solution z(z) and the functions z!(x), z*(x) found
for the set Z7/,.

z(z)

1r eIl -~

0 1z
Figure 3. The exact solution z(z) (— — ——), the
functions 2!(x), 2% (x) for the sets Z7, (—).

CONCLUSIONS
In the paper we have shown how to con-
struct regularizing algorithms and provide an er-
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ror estimation using a priori information about
the exact solution. We discuss the algorithms
for a general ill-posed problem (minimization on
Tikhonov’s smoothing functional), for a problem
with a sourcewise represented set of solutions (the
method of extending compacts) and for ill-posed
problems on compact sets. If there is more infor-
mation about the exact solution, then there is more
information about properties of approximate solu-
tions, i.e., the convergence, the a posteriori error
estimation, the uniform error estimation.

The regularizing algorithms considered in the
paper are applied in astrophysics [18, 19], elec-
tronic microscopy [20], vibrational spectroscopy
[21].

The authors thank the Russian Foundation for
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ABSTRACT

A discussion of various methods used to
compute sensitivity information is presented. The
methods include differentiation of analytical
solutions, finite difference, complex step, software
differentiation, sensitivity equation method, and
adjoint methods. Example calculations are
presented for several of these methods. It is
emphasized that sensitivity information is
important in its own right as opposed to simply
being one of the many ingredients necessary to
perform parameter estimation and/or optimization
calculations. Strengths and weaknesses of the
various sensitivity methods are discussed.

NOMENCLATURE

A area, m?

C = pcy, volumetric heat capacity, J/m3-K

¢, specific heat, J/kg-K

h  convective heat transfer coefficient, W/m2-K
k  thermal conductivity, W/m-K

[K] global conduction matrix

L thickness of slab, m

n, number sensitivity coefficients (parameters)
ng number of sensors

©“

parameter vector

element of {p}

heat flux, W/m?

temperature, K

scaled sensitivity coefficient, = pd7/dp
time, s

SN T S

o thermal diffusivity, m%/s
€ emittance
o Stefan-Boltzmann constant

INTRODUCTION

When analyzing the response of a thermal
system, a large number of parameters must be
specified to characterize the system. These

Kevin J. Dowding
Sandia National Laboratories
PO Box 5800
MS 0828
Albuquerque, NM 87185 USA
kidowdi@sandia.gov

parameters include material properties (density,
specific heat, thermal conductivity, emittance,
etc.), geometry, and boundary conditions (heat
flux, convective heat transfer coefficient, etc.).
During the design phase of a project, some of the
parameters may change as the design evolves. In
many instances, these parameters are not known
with a high degree of precision. Also, a designer
may be free to choose among many different
competing materials. As an example, a design
might call for 304 stainless steel; alternative
stainless steels such as 316 might work equally
well and could be wused interchangeably
(depending on availability). Even if we
consistently use 304 stainless, there may be
manufacturer-to-manufacturer variability as well
as lot-to-lot variability from a single manufacturer.
Consequently, we need to play “what if” scenarios
with regard to the material properties in order to
assure  ourselves that the lot-to-lot or
manufacturer-to-manufacturer variability does not
produce undesirable consequences.

Historically, these “what if” scenarios have
been performed on an ad hoc basis; selected
parameter values would be changed and the
analysis repeated. Without the aid of a computer,
only a limited number of parameter studies could
be performed. However, today’s computers now
make it possible to perform a wide range of
parameter studies. Even with the computer, these
parameter studies still tend to be performed on an
ad hoc basis. Based on a designer’s intuition, the
most important parameters would be varied over
some range. Since intuition is only as good as
prior experiences, it is possible for even an
experienced designer or analyst to miss an
important parameter. It is also time consuming to
study parameters in an ad-hoc manner.
Consequently, a more formal procedure needs to
be developed. This is where sensitivity analysis
plays an important role.

A desirable goal of the design process is to
produce robust designs that can reliably function
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over a wide range of operating conditions. This is
particularly true for mission critical components.
For example, the on-board flight controller for a
rocket system must be capable of functioning
when the ambient temperatures range from high
altitude space to desert launch pad. Is it possible
for the hardware to operate if the system
parameters differ from the nominal values
assumed in the analysis phase? The robustness of
a design can be investigated by means of a
sensitivity analysis.

Sensitivity analysis is defined as the study of
how variations in input parameters of a
computational model cause variations in output.
Input parameters would include material
properties, boundary/initial conditions, and
geometry; output variables might be displacement,
stress and/or temperature. A measure of this
sensitivity is termed the sensitivity coefficient and
is (mathematically) defined as the partial
derivative of the output variable with respect to
the parameter of interest. For a general discussion
of sensitivity coefficients, see Beck and Arnold
[1] and Beck, et al. [2]. Since the focus of this
work is on thermal problems, let us define the first
order sensitivity coefficient of the temperature
field with respect to the thermal conductivity & as

thermal conductivity sensitivity coefficient )
_ 0
= ﬁT (x, t;k)

where it is understood that all parameters other
than thermal conductivity are held fixed during
the differentiation. The sensitivity coefficient is
also a field variable in that it depends on position
and time just like temperature. In order to
understand how one might use the sensitivity
coefficient to predict how a system responds if
you perturb the thermal conductivity, let us
expand the temperature field in a Taylor series
about the mean value of the thermal conductivity

T()?,t;k):T()?,t;l})+% k=% . Q)
i
19T 2
2o (k—k)+. ..
21> .

From this expansion, one can see how the first
order sensitivity coefficient is needed for a first
order analysis and higher order sensitivity
coefficients are required for higher order analysis.
This work will focus on first order sensitivity
analysis as the computational load scales
approximately linearly with the number of
parameters. For a second order analysis, the
computational load scales as the square of the
number of parameters; this may become

prohibitive for problems with hundreds of
parameters. If the system response and first order
sensitivity coefficients are known for the nominal
parameter values, Eq. (2) (with higher order terms
neglected) can be used to compute the response at
a neighboring point in parameter space. If higher
order sensitivity coefficients are required, an
initial approach might be to compute second order
sensitivity coefficients only for those selected
parameters that have large first order sensitivity
coefficients.

In some cases, only the sign of the sensitivity
coefficient is important. If for example, the length
of a system is increased, does the critical
temperature go up or down?

In many instances, the sensitivity coefficient is
often required as an intermediate step in the
solution of parameter estimation, function
estimation,  uncertainty  propagation, and
optimization problems. The emphasis of this work
is on calculating sensitivity coefficients because
they have importance themselves as opposed to
just numbers that are fed into a parameter
estimation or optimization process.

SUMMARY OF METHODS FOR COMPUT-
ING SENSITIVITY COEFFICIENTS

Sensitivity coefficients can be calculated by
many methods. These methods include the
following:

» differentiation of analytical solutions

» finite difference

e complex step

* software differentiation (e.g. ADIFOR/
ADIC)

e sensitivity equation method

e adjoint methods

Each of these methods has it place. In many
instances, multiple methods will be used on the
same problem to verify that the primary method
produces the desired results. Example calculations
will be presented for most of these methods.

DIFFERENTIATION OF ANALYTICAL
SOLUTIONS

Differentiation of analytical solutions is
probably the simplest method. It involves
differentiating an analytical solution with respect
to the parameter(s) of interest. If the analytical
expressions are very complex, then symbolic
algebra programs such as Mathematica®, Maple®,
Macsyma®, etc. will prove invaluable. Obviously,
this approach is limited to problems in which
analytical solutions are available; this severely
limits the problems which can be addressed by
this method. Recent work by McMasters, et al. [3]
using Green’s functions has produced software
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that will provide and evaluate analytical solutions
for a wide variety of 3-D time dependent heat
conduction problems in rectangular geometries. It
has been the author’s experience that one of the
most significant uses of this method is to serve as
a tool to verify other approximate numerical
methods.

As an example of this method, consider a 1-d

[ — L, — P L, >

Ty, ky ky T,
I x

Figure 1. Problem definition for 1-D two layer

slab problem.

2

configuration that might be used in the
comparative method for the determination of
thermal conductivity. This geometry is shown in
Fig. 1. Fixed boundary temperatures are applied
on the two ends and the steady state temperature
profile is measured. The conductivity of one
specimen is known and the other is to be
determined. The analytical expressions for the
temperature profile are

K LoTy + kol Ty, koly(T, = T,)

T (x) = RANE)
1 kL, +kyL, kiL,+kyL, L,
() = lesz]+k2LlTb2_k1L2(Tb]fTb2) x4

kyLy+kyL, k\Ly+k,L, L,
In the design of this experiment, one would like to
have a large sensitivity to the unknown thermal
conductivity and a small sensitivity to the known
thermal  conductivity. The two  thermal
conductivity sensitivity coefficients can be
computed analytically and are given by

ar,  kLykL,

kit =T, = (1, -T,)[1+Z), (5
Ok N L, L)t 2l Ll)

Ty =-Tp, L, <x<0

a7,  kLykL

kg =T =
Oky " (k Ly + kL)

X
(Tb‘_TbZ)(l_L_z)’ (6)
Tkl :_Tk2= 0<x<L,.

The temperature and conductivity sensitivity
coefficient profiles are shown in Fig. 2. Each
profile consists of two straight line segments. The
sensitivity coefficient T k. is positive throughout,

which indicates that increasing k; increases the

20

3

Temperature, °C

ENININT ANINANANE ANAUAUA ENAVAATE SUANAVANS INANINANE ANAANATE AR |
o
o

B . Ll Ll Ll
20—1 -0. 0 05 0
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Figure 2. Temperature profile and conductivity
sensitivity coefficients for two layer slab prob-
lem.

temperature. The sensitivity coefficient T, k, is

negative throughout, which indicates increasing k,
decreases the temperature. The location of
maximum thermal conductivity sensitivity Ty, is

at the interface between the two regions. This
might seem strange at first, but remember that the
conductivity sensitivity is identically zero on the
boundaries and positive in between. Consequently,
this forces the maximum sensitivity to be at an
interior point. Note that the two conductivity
sensitivity coefficients are correlated. This means
that from a parameter estimation perspective, you
can not estimate both thermal conductivities from
the same experiment. Hence, the name comparator
is appropriate.

The above sensitivity coefficients can be used
to choose the specimen lengths as well as sensor
locations.

FINITE DIFFERENCE DETERMINATION OF
SENSITIVITY COEFFICIENTS

If a sensitivity analysis requires an analytical
solution, then we would be severely limited in the
problems that we can address. Fortunately, general
purpose software is available to numerically solve
complex three dimensional, time dependent
thermal problems. The discretization schemes
include finite difference, finite volume, control
volume finite element and finite element methods.
In industry, commercially available software is
often used and source code is generally not
available. For this case, sensitivity coefficients are
often computed by running the software for two
different values of a parameter and using a first
order forward difference. Scaled sensitivity
coefficients are then determined from
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—T(py,pys e Pjr -

P+ 0p;,....p,) (7
)1/ 8p;+ O(Lp)).

This approach requires n+1 solutions for the
temperature field and will be first order accurate
in Ap, If a second order accurate central
difference is used instead, then 2n+1 solutions of
the temperature field will be required. There are
many examples in the literature where this
approach has been successfully used. An
advantage of this approach is that you numerically
solve the problem with different inputs. Since no
source code modification is required, the software
development costs for this method will be
minimal. Commercial software can be used to
accomplish this, provided the computational
results are available with sufficient precision.

Some numerical experimentation is strongly
recommended to determine an acceptable value
for the finite difference step size Ap. If it is too
large, the truncation errors will be excessive; if it
is too small, machine round off may become a
problem. In order to emphasize the importance of
this issue, consider the one dimensional, constant
flux problem given in Fig. 3. This example was

g = 4x10° W/m?

L k=10 W/m-K
- —
L=0.0lm
T,=300K

p = 8000 kg/m?
¢,=500 J/kg-K

o =2.5x10% m%/s
qL/k=400 K
adiabatic back wall

AR

_>x

Figure 3. Schematic of constant heat flux
problem for 1-d planar slab.

solved numerically using a control volume finite
element code with a lumped capacitance matrix
and a fully implicit time integrator; double
precision on a 32-bit machine (nominally 15
significant digits) was utilized. The final problem
time was 20 s, which corresponded to a

dimensionless  time o#L’ = 0.5. The
dimensionless thermal conductivity sensitivity
coefficient at x = 0 and ¢ = 20 s was computed,
utilizing a range of values for Ak for a forward
difference approximation. The relative error in
each computation was computed from

Tkﬂ B Tkﬂ

% Error = 100 ®)

k,

a

where the subscripts # and a represent numerical

and analytical, respectively; the error results are
presented in Fig. 4. Uniform grids of 10 and 20
10" T

—F—— 10 elements
——O—— 20 elements

1st order line

[®Error]
3

S SRR RESSTRETIT| RACASRETTY SARRIT SATRRTT LA R

10® 107  10° 10’5Ak/k10"‘ 10° 107 10"

Figure 4. Thermal conductivity sensitivity coef-
ficient errors at x = 0 and # =20 s as a function of
Ak/k for two grid refinements.

elements were used along with a fixed grid scale

Fourier number (aAz/ A = 5). Focusing on the
upper right hand corner of this figure, as you
decrease the relative finite difference step size
(Ak/k), the error decreases initially and then
reaches a plateau. From theoretical considerations
of the Taylor series truncation error, the errors in
the finite difference approximation to the
sensitivity coefficient (forward difference) would
decay linearly with decreasing finite difference
step size. However, there are additional
discretization errors in the numerically generated
temperature field. The curve in Fig. 4 labeled
“first order” is such a linear relationship and is
shown for reference. Due to the errors in the
numerical solution for the temperature field, it is
obvious that the sensitivity coefficient errors do
not decay linearly as the finite difference step size
is decreased. This is particularly noticeable for the
10 element case. As the mesh is refined from 10 to
20 elements, the errors are closer to the linear
relationship in the upper right hand portion of the
figure. If the finite difference step size is made
even smaller, it is possible that the errors will
become even larger. An example of this behavior
is shown in the next section.

COMPLEX STEP METHOD

The main criticism of the finite difference
method for computing sensitivity coefficients is
that the computational results exhibit a step size
dependence. In practice, this means that for each
(class of) problem(s), one needs to perform a step
size parameter study for each sensitivity
coefficient. Unfortunately, this could be a time
consuming process for practical problems with
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ten’s of parameters. The complex step method
offers a practical method of eliminating the step
size dependence of finite difference methods, but
at the expense of software modification and
increased run time.

The derivation of the complex step method
follows from a Taylor series expansion of the real
valued function f about the complex (imaginary)
parameter value p+iAp with i = J/~1. This
series is

fp+ idp) :f(p)+% inp ©)
P
2
197, 2 1af
_iaP?Ap 3'6 zAp +0(Ap)

Taking the imaginary part of Eq. (9), one obtains
Inlf(p + ibp)] = "f‘ fl"_fa T (10)
P

Solving for the first derivative yields

of | _ Im[f(p +ilp)] 2
%‘D—T--FO(AP). (11)

This simple result says that the derivative of
the function is obtained by taking the imaginary
part of the complex function f(p +iAp) divided by
the real parameter step size Ap. Note that this
result is second order accurate while Eq. (7) is first
order accurate. Computational results for the
complex step method have been presented by
Martins, et al. [4]; they have applied the method to
both analytical expressions as well as
multidimensional structural and fluid dynamic
codes. They demonstrated that the step size can be
made arbitrarily small without suffering the loss of
accuracy associated with the finite difference
method. However, this result comes at the expense
of code modification and increased run times

The computational procedure is as follows: 1)
in the source code, declare all parameter values
and the function f'to be complex variables; 2) for
the parameter p of interest, replace p by p +ilAp in
the input; 3) execute the software to compute fas a
complex variable; 4) evaluate Eq. (11) for the
sensitivity coefficient for parameter p. The
process outlined above must be repeated for each
parameter. Hence, the process of generating
multiple sensitivity coefficients is similar to that
for the finite difference method in that multiple
runs of the same software are required. However,
the big difference is that the step size Ap in Eq.
(11) can be set to roughly machine zero and the
results will be independent of step size. The
complex step method will eliminate the (generally

annoying) step of a parametric study in step size.

The complex step method has been applied to
the same example considered in
DIFFERENTIATION OF ANALYTICAL
SOLUTIONS and the results are given in Fig. 5.

T T T T T T T i

2
107 k,0T/ok, atx =0 7]
double precision

10* [
central finite difference /
10°

10-12 | \ |
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10-15 1 1 1 1
10" 10° 10° 107 10° 10" 10" 10™
step size (decreasing -)

relative error in sensitivity coefficient
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Figure 5. Relative error in conductivity sensi-
tivity coefficient as a function of finite differ-
ence step size.

For comparison purposes, the central finite
difference results are also shown. Both methods
are second order accurate in the finite difference
step size. Therefore, one would expect similar
accuracy provided there are no machine precision
problems. Both methods display second order

behavior for step sizes down to 107, as evidenced
by the straight line behavior with a slope of -2.

Further reductions in step size below 107 cause
the central difference method errors to increase.
Contrast this with the complex step method which
is capable of driving the errors to machine zero.
Although there may be a wide range of step sizes
for which the central difference method produces
acceptable accuracy, one is never sure what this
range might be for a different problem. The rule of
thumb on step size that is given in Nocedal and

Wright [5] suggested that 2x107!"" would be
appropriate for a central difference. For this
problem, it appears that this rule of thumb is
optimistic.

The authors have also applied the complex step
method to a finite volume heat conduction code
and computed sensitivity to multiple thermal
conductivities and a contact conductance.
References [6]-[9] apply the complex step method
to compute sensitivity coefficients for a variety of
aerodynamic problems. Some computational aids
for converting a code from real to complex can be
found in Reference [10].

SOFTWARE DIFFERENTIATION

The software differentiation method is a recent
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development. An  existing source code
(FORTRAN 77 or C) is input into a special pre-
processor (ADIFOR or ADIC) that performs line-
by-line differentiation of the original source code
while producing a new source code for the
sensitivity  coefficient. Examples of this
technology are presented by Bischof, et al. [11],
where they have successfully applied it to large
codes. If there are multiple parameters for which
sensitivity is desired, multiple runs of the pre-
processor ADIFOR or ADIC are required. If the
original source code is modified (enhancements,
bug fixes, etc.), then the pre-processor must be run
again. Since our work has been focused primarily
on techniques that can be readily applied to
software under development as well as many
parameter problems, we have not personally
exercised the software differentiation methods.

SENSITIVITY EQUATION METHOD

A sensitivity coefficient is a field variable just
like temperature and will have its own describing
equation. In this section, we will demonstrate how
to derive the field equation(s) for sensitivity
coefficients; this method is termed the Sensitivity
Equation Method (SEM). This process involves
the differentiation of the describing equation,
along with associated initial/boundary conditions,
with respect to the parameters of interest. These
sensitivity equations are then solved numerically,
using the same kind of algorithm as is used to
solve the energy equation. To demonstrate this
process, consider a 1-D planar slab with a
radiation boundary condition on one face and
convection boundary condition on the other face;
this problem is shown schematically in Fig. 6. Due

- L >

_>
q = sc(Tf - T4)

_>
q = h(TiToo)

— x

Figure 6. Schematic of 1-D problem with radi-
ation and convection boundary conditions.

to the nonlinear radiation boundary condition, this
problem is unlikely to have an exact analytical
solution. Hence, a numerical solution will be
explored. The energy equation and boundary
conditions can be written as follows:

oT Oq

ot dx -0 (12)

ar
= kg (13)

ar

al, - = k3. e ec(Tf—T“)L:O (14)
or

al,_, = ks - WT-T) (19
T(x,0) = T,. (16)

The parameters for this problem are given by the
vector

n'={cker. nr)” (17)

Now, we differentiate Eq. (12)-Eq. (16) with
respect to each element in the parameter vector,
Eq. (17). Starting with the volumetric heat
capacity  sensitivity  coefficient, we  will
differentiate Eq. (12) with respect to C, resulting
in

6C< 67) 6C<6CQ

ar ac aT :x@qc) (18)

where it has been assumed that the order of
differentiation can be interchanged. Again, we
will introduce the scaled sensitivity coefficient by
multiplying Eq. (18) through by C to obtain

)+ 0 %)~ . (19)

The volumetric heat capacity sensitivity
coefficient is readily identified in Eq. (19). The
sensitivity of the heat flux to changes in the
volumetric heat capacity can be determined by
differentiating Fourier’s Law with respect to C,
resulting in

d 0 (0T T¢
e A e S N 10
Eq. (19) can now be written as

0Tc g 0T¢ _ 0T
k) = 5 1)

Eq. (19) is the partial differential equation that
describes the field variable 7. Note that the left
hand side of this equation is identical in form to
that of the original energy equation. However,
there is an apparent source term on the right hand
side that was not present in the energy equation. If
the temperature field is known, then this source
term is a known function of position and time.

We will continue the development of the
equations governing the behavior of T~ by

differentiating the initial/boundary conditions with
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respect to C. Evaluating Eq. (20) at the x = 0
boundary and differentiating Eq. (14) with respect
to C, this boundary condition becomes

a7,

Ox

9q
acC

= ~4e0T'T| . (22)
=0 -0 x=0

While the left hand side boundary condition for
the energy equation was nonlinear and
inhomogeneous, the corresponding 7~ boundary
condition is [linear and homogeneous. This
assumes again that the temperature field is known
prior to the computation of the sensitivity field.
Through a similar procedure, the boundary
condition for the right face is given by

%4

6C =hTC’x:L' 23)

x=1 =L
This boundary condition is linear and
homogeneous. Since the initial condition is
independent of the volumetric heat capacity, the
corresponding sensitivity initial condition is the
zero condition

or|  _ _
ol el ™ O (24)

The formulation of the field equation and
associated boundary/initial conditions for T~ is
complete and is given by Eq. (20)-Eq. (24). Due to
the similarities in form of the energy equation and
the volumetric heat capacity sensitivity equation,
the same technique can be used to numerically
solve these equations. It does not matter if the
discretization algorithm is finite difference, finite
volume, control volume finite element or finite
element. In fact, the existing software coding used
to include the effects of capacitance, diffusion and
source terms for the energy equation can be used
to form the analogous terms for the sensitivity
equation. The computational procedure is to first
time march the energy equation one time step and
then solve the sensitivity equation. The source
term for T in Eq. (21) is known from the

temperature solution. Even though the original
energy equation was nonlinear because of the
radiation boundary condition, the corresponding
sensitivity equation is a [linear equation. This
linearity may afford computational savings,
depending on the algorithm used to solve the
nonlinear algebraic equations resulting from the
discretization of the energy equation.

From Eq. (21), the time rate of change of
temperature drives the volumetric heat capacity
sensitivity field. If the temperature field is not
changing with time, the volumetric heat capacity
sensitivity will tend toward zero. For a problem
with a positive temperature rise rate, this source
term is negative, suggesting a negative sensitivity

to the volumetric heat capacity. Similarly, for a
body that is cooling, the source term is positive
which suggests a positive sensitivity to the
volumetric heat capacity. As one can see, insight
into the thermal response can be gained by simply
studying the describing equation for the sensitivity
coefficients. In some cases, trends may be
determined without actually solving the sensitivity
equations. However, it is best to continue the
process and numerically solve the sensitivity
equations in order to gain maximum insight.

Next, we will derive the equation for the
thermal conductivity sensitivity. The thermal
conductivity sensitivity equation will be more
complicated because thermal conductivity appears
in both the differential equation and boundary
conditions. Following the same procedure as
above, the differential equation for 7, can be

written as

a;( aD ax( aqk) - C_ _x =0 (29

Differentiating Fourier’s Law with respect to
thermal conductivity k, we obtain

_,0q _ 9Ty a1
ap = kst = kg Foko (26)

While Fourier’s Law involves a single term, the
sensitivity of Fourier’s Law with respect to the
thermal conductivity involves two terms. The first
term involves what can be thought of as a flux of
sensitivity information plus a second term that is
the heat flux itself. Combining Eq. (25) and Eq.
(26), the T}, equation becomes

0T, 9(0Tp  a(,0T\ g
5 - alig) = aer) = -3 @7)

Again, the left hand side of the T} equation is

identical in form to the energy equation; the right
hand side has a fictitious source term that is equal
to the negative of the gradient of the heat flux.
Gradients in local heat flux drive the thermal
conductivity sensitivity field.

Care must be exercised in deriving the
boundary conditions for the T equation.
Intuitively, one might be inclined to derive a
boundary condition on kd7T,/dx. However, we
need a condition on ¢, which can simply be

derived by differentiation of the right hand sides
of Eq. (14) and Eq. (15) with respect to the
thermal conductivity. The results are

= —4€O'T3Tk‘ o (28)
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Again, the nonlinear, inhomogeneous boundary
condition for the energy equation has become a
linear, homogeneous boundary condition for the
thermal  conductivity  sensitivity  equation,
provided the temperature field is known. The
initial condition simply becomes

or  _ _
Gr| = T, O (30)

The only inhomogeneous term in the thermal
conductivity sensitivity equation is the gradient of
heat flux term on the right hand side of the T}

equation in Eq. (27).

We have addressed two of the three gradient
type boundary conditions that commonly occur.
The third type of gradient boundary condition is a
specified heat flux. This kind of boundary
condition can occur, for example, when there is an
electric heater present. Since the magnitude of a
specified flux is independent of either the thermal
conductivity or the volumetric heat capacity, this
boundary condition becomes “adiabatic like”

T,
ar b*qk|b*0 (31)

where the subscript b designates the generic
boundary along which this boundary condition is
applied. Note that for the thermal conductivity
sensitivity ~coefficient, 97,/0x#z0 along a

specified flux boundary. This is a subtle point that
requires careful thought.

The last boundary condition type that we will
address is the specified temperature boundary
condition. Again, since this is an imposed
boundary condition that is independent of
volumetric heat capacity or thermal conductivity,
specified temperature boundary  conditions
become specified sensitivity coefficient boundary
conditions with a value of zero.

TC|b = Tk’b = 0, along specified T boundaries (32)

Of the parameters listed in Eq. (17), the thermal
conductivity k and volumetric heat capacity C are
special in that they both appear in the describing
differential equation. For their respective
sensitivity describing equation, inhomogeneous
terms are present. For all other parameters that do
not appear in the energy differential equation,
their sensitivity describing equation can be written
as

oT, g 0T

P P\ =
E ’a_x(ka_x) =0,p#k C (33)

where T, is the sensitivity coefficient for

parameter p; note that this is a homogeneous
equation.

The boundary conditions for the four
remaining parameters in Eq. (17) will now be
addressed. Differentiating the x = 0 boundary
condition given by Eq. (14) with respect to these
parameters results in

dq _ 4 oA oT
5 s[o(T, ™) 4soﬂag‘x_0 (34)
= [sc(Tf—T4)—4£073T€] -
g _ B oT
A5 - AT{4£0TZ’ 450736Tj ) (35)
= 4e0(T)AT,—T'T,)
"x=0
0q _ 0 _
hﬁx:o = h( 450736_2 ‘X_O 48073Th‘x:%36)
Ogq B orT
Mg = ATOO(—4£0T3m) (37)
x=0 x=0
= _4g0T'T,
“lx=0

Rather than using 7, and T, to scale their

respective sensitivity coefficients, a temperature
change AT, or AT, is used. This eliminates

problems with zero temperature when absolute
temperature units are not used. These reference
temperature changes represent a characteristic
temperature change for the problem. As an
example, one might choose the maximum

temperature rise of the system, 7, - 7;. The same

reference temperature rise could be used for both
T, and T, sensitivities, although this is not
necessary. Since the describing equation is
homogeneous for those parameters that do not
appear in the energy equation, the
inhomogeneities in the boundary or initial
conditions will drive the remaining sensitivities.
For example, the emissivity sensitivity is driven in
Eq. (34) by the radiative heat flux term

ea(Th - 1%

By now, one should see a pattern developing in
the sensitivity equations. With this in mind, the
remaining results will be given as

an = hT,

== (38)
oe oL
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a4 —ar, (39)
raTr "lx=1L
x =1L
9q - _
hﬁx:L [W(T-T,)+hT}]| (40)
ar %4 _
T.29 = (T -BT,)| . (41)
aToo - “ x=1L

The inhomogeneities in the 4 and T,, sensitivity
boundary conditions at x = L are the convective
heat fluxes #(T-T,) and hAT, respectively.

We have discussed the initial conditions for
both T~ and T}, Eq. (24) and Eq. (30) respectively;
they are both zero. It is easy to see that if the
parameter of interest is anything other than the
initial temperature itself, the initial condition for
T, will be zero. The initial conditions can be
summarized as follows:

0,p. 2T,
=T | = : ) 42
pi’){yo (AT[,p[: T. ( )

x, 0
As with other sensitivity coefficients related to
temperature, we have used a temperature change
as a scale factor.

ar
p[api

After the implementation of the sensitivity
equations, the first step is to perform verification
calculations to insure that the equations are being
solved correctly. Since we already have evaluated
the analytical solution for the problem described
in Fig. 3, we will repeat the solution to this
problem using a control volume finite element
method with a lumped capacitance and fully
implicit time integration scheme. We will compute
a percent error as a function of a grid metric using
Eq. (8). This will allow one to verify that the order
of convergence of the scheme as the grid is
refined. All calculations were performed with a

fixed grid scale Fourier number (aA¢/ Ax* = 5.0).
We focus on the spatial location x = 0 for times of
4 s (ay/L* = 0.1) and 20 s (az/L? = 0.5). The grid
refinement results are shown in Fig. 7. The 4 s
results are all less accurate than the 20 s results.
The errors for Tj, are highest for a given time;
however, the ordering of the errors for the other
two sensitivity coefficients are not consistent as
time increases. Although not shown, the error in
temperature rise will be the same as the error in
the heat flux sensitivity. The line labeled “2nd
order” is a reference line indicating a slope of -2;
the algorithm used to numerically solve the
equations is theoretically second order accurate
for a spatially uniform mesh. These results
confirm the approximate second order behavior of
the numerical algorithm for sensitivity
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Figure 7. Grid refinement error in sensitivity
coefficient calculation for 1-D planar slab with
constant flux.

coefficients. The results of Fig. 7 also point out
that if a certain level of accuracy is required for all
sensitivity coefficients, then a different mesh may
be required for each sensitivity coefficient. For
example, if an error of approximately 0.4% is
required, then 10, 20, and 40 elements would be

required for 7, Tc and T}, respectively for ar/L? =
0.5.

Additional details on the sensitivity equation
method can be found in references [12]-[30].

COMPARISON OF SEM AND DISCRETE
ADJOINT METHODS FOR STEADY STATE
PROBLEMS

The discrete form of the steady state energy
equation can be written in matrix-vector form as

[K{T} ={$ 43)

where [K] is the global conduction matrix, {7} is
the vector of unknown temperatures and {S} is the
source/right hand side vector. Sensitivity
coefficients can be computed by differentiating
the discrete energy equation with respect to p;, an
arbitrary element of the parameter vector {p}, to
obtain

AL Ay Sy 4

op; op; op;
Experience indicates that scaled sensitivity
coefficients, which are defined by
_ 0T
TP,- = pia—p[ (45)

are useful concepts. Multiplying Eq. (44) by the
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nominal parameter value p; and rearranging, the

linear system of equations that determines the
scaled sensitivity coefficient becomes

KT = p S5t - p 2 i = 1., (46)

For each parameter value p;, an additional system

of linear equations must be solved. This solution
will give the scaled sensitivity coefficient at each
nodal point in the computational domain. For
parameter sensitivity studies, it may be desirable
to have the sensitivity coefficient at every point in
the computational domain. However, in parameter
estimation work, the sensitivity coefficients may
be desired only at selected locations. For example,
in the estimation of thermal properties from
temperature measurements, a finite number of
sensors are used and the sensitivity coefficients
are desired only at the temperature sensor
locations.

Adjoint methods offer some potential
computational savings when the number of sensor
locations are few and the number of parameters
are large. Following Kirsch [31], the adjoint
method can be developed by multiplying the
sensitivity coefficient equation, Eq. (46), by the
inverse of the global conduction matrix.

KW} = w1 ot pfolin | @

The left hand side of Eq. (47) yields the vector of
sensitivity coefficients for parameter p; at all nodal
locations; however, we are only concerned with
the sensitivity coefficient at a few selected
locations in the computational domain. To extract
the sensitivity coefficient at a single location in the
computational domain, define a row-vector that
has zeros everywhere except for unity at the j-th
nodal location

{1y" =1{0,..,0,1,0,...0} (48)

and multiply Eq. (47) by this vector results in

(1), = (111 1K1(7) (49)
- K [t -p 2 |

Eq. (49) gives the sensitivity coefficient for
parameter p; at nodal location j. It is
computationally convenient to define the
coefficient of the square brackets on the right hand
side of Eq. (49) as the adjoint variable vector and
is

& =k (50)

Taking the transpose of Eq. (50) yields

(&) =k =axahH 'y 6
which can be written as

[KIE} =41}, /= 1,....m,. (52)

Although Eq. (52) is valid at all n-nodal locations,
the adjoint variable approach is attractive only
when the number of sensors 7, is a small subset of
n. Note that Eq. (52) is independent of the
particular sensitivity coefficient one is trying to
compute; this means that the adjoint variable
vector depends only on the spatial (sensor)
location in the computational domain (and [K]).
Once Eq. (52) has been solved for the adjoint

variable vector {&} . the sensitivity coefficient

for all parameters of interest (at this nodal
location) can be computed from Eq. (49), which is
written as

(), =& Ak phn | i oy

Eq. (46) defines the discrete form of the SEM
while the Eq. (52) and Eq. (53) define the discrete
adjoint equations. Both approaches have a single
left hand side matrix but multiple right hand side
vectors. The number of right hand side vectors can
be used as a rule of thumb for when one method is
computationally more efficient than the other.

use SEM when n,, <n

use adjoint when g <n,

Obviously, when 7, and ng are approximately

equal, this rule of thumb will have to be inspected
more closely.

FIRST ORDER PROPAGATION OF
UNCERTAINTY IN COMPUTATIONAL
MODELS

Sensitivity coefficients are used in the
propagation of uncertainty through computational
models. The process is very analogous to
experimental uncertainty estimation. Following
Coleman and Steele [32], the first order
uncertainty propagation equation is

o, )2 0,2
o = (TBIB_‘?] +[TBZB_‘?] T (54)

Note that the uncertainty propagation equation has
been written in terms of scaled sensitivity
coefficients. If the sensitivity coefficients are
computed at every nodal location in a
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computational domain, then the uncertainty
estimation due to parameter uncertainty is just a
post processing of all the field variables. An
uncertainty estimation for a thermally activated
battery is given in Blackwell, et al. [I5].
Additional details on uncertainty propagation are
contained in Fadale [33] and Fadale and Emery
[34].

SUMMARY
Six methods for computing sensitivity
coefficients have been discussed. Example

calculations were presented for several of them.
The methods discussed can be divided into two
broad categories; code invasive and code non-
invasive. The finite difference method is non-
invasive and probably the most general; it can be
applied when the source code is not available.
This means it can be used in conjunction with
commercially available software. An objection to
the finite difference method is that for non-linear
problems such as temperature dependent
properties, each perturbed parameter solution is a
non-linear solve. If the same problem is solved
using the sensitivity equation method (very code
invasive), the sensitivity coefficient equations are
linear equations. If the source code is available
and the sensitivity equation method is not a viable
option, then the complex step method should be
seriously considered since it eliminates the step
size issue. No matter which method is chosen to
be the primary method, differentiation of
analytical solutions is an important part of the
process of verifying that your equations have been
implemented correctly.
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ABSTRACT

Genetic Algorithms and Neural Networks are
relatively new techniques for optimization and
estimation. These techniques can, of course, be
applied to the solution of inverse problems. This
paper presents a tutorial for application of these
techniques to the solution of some simple inverse
problems. A description of each of the techniques
precedes  presentation of the algorithms.
MATLAB is used to solve these problems.

INTRODUCTION

Genetic Algorithms are a class of search
methods, which are patterned after evolutionary
processes. These algorithms have existed for
perhaps 20 years, but were first popularized
following the publication of David Goldberg’s
text on the subject (Goldberg, 1989). These
algorithms search a solution space by
manipulating populations of candidate solutions.
These populations are evaluated to determine the
best members of each generation, and each
generation reproduces to create the next
generation. Notions from evolution are borrowed
to manipulate the population after reproduction:
randomly triggered crossover and mutation enter
in to widen the search region. At the end of a pre-
specified number of generations, the results are
examined.

A Genetic Algorithm is a type of search
procedure. Simply put, it is a localized random
search. It requires no evaluation of the derivative
of the performance measure, and is therefore
highly suited to nonlinear problems.

Neural Networks describe another type of
algorithm that is borrowed from nature. Neural
Networks are an attempt to model the massively
parallel operation of a brain. A collection of
simple neurons is interconnected with links. Each

link will be assigned a weight during the training
of the network. During operation of the network,
the output of each neuron is the result of the
weighted sum of all the inputs connected to it
passed through an activation function. This
activation function is some suitable non-linear
mathematical function. It is through the sum total
action of many connected neurons that the
network is able to “learn” its behavior and
produce intelligible results.

A Neural Network 1is an interpolative
procedure. Through training, the network
“learns” an association between a collection of
inputs and their corresponding outputs. In
operation, when the network is presented inputs,
which were not present in the training set, the
network will produce a result, which is consistent
with the training data.

This paper has two parts, one devoted to
Genetic Algorithms and one dedicated to Neural
Networks. In each section a basic description of
the method is given, followed by application to a
simple optimization problem of parameter
identification. Then each method is applied to a
classic inverse boundary problem. The
MATLAB programming language is used to
illustrate the algorithms.

GENETIC ALGORITHMS

These algorithms mimic the evolutionary
processes that have led to development of higher
organisms in nature. An initial population of
candidates reproduces to create a new generation
of the population. In each generation there are
random occurrences of mutation in the
population. Above all, survival of the fittest
ensures that the “best” members of the population
are retained.



Randomness plays a central role in the genetic
algorithm search process. A random number
generator will be called thousands of times during
the execution of a genetic algorithm.

A “genetic algorithm” is one that possesses
the following characteristics:

1. An initial population of a fixed number of
candidate solutions is selected.

2. The “fitness” of each of the members of the
population is  determined using the
performance measure for the problem.

3. The members of the current generation of the
population reproduce to form the next
generation. The reproduction should favor
the better members as “parents”. During
reproduction, crossover of the genes results
in new members not originally in the
previous generation but related to them.

4. Random mutation of some of the “children.”
These mutations introduce new
characteristics not in the previous generation
and not directly related to the previous
generation but which may result in a “more
fit” child.

5. The reproduction continues until a preset
number of generations have been created.

At least two types of encoding are possible
for the members of the population: binary strings
and real number arrays. The latter are more
useful for numerical problems, but the former are
classic in the genetic algorithms and will be
discussed first.

Binary Encoding

Early applications of genetic algorithms clung
to the notion of an organism (member of the
population) represented as a geme through a
binary string of chromosomes. The binary string
could be interpreted as a color code, and ASCII
letter code, an integer code, etc., depending on the
problem at hand. But the use of binary encoding
facilitates application of the analogy to
evolutionary processes.

Initial Population. The initial population is
typically seeded randomly, but this need not be
the case. In the case of binary strings, this could
be done bit-by-bit with random selection of a zero
or a one for each location.

Selection of Parents. Parents are chosen
for reproduction based on their fitness. One
complicated method for selection of parents is
called roulette wheel selection (Davis (1991)),
however any method that favors the fitter
members of the population may be used.

Reproduction. Two  Binary  strings
reproduce  through  crossover of  their
chromosomes. After two parents are selected, the
child of the two parents is created by splitting the
gene (binary string) at one or more points
(randomly chosen) and splicing the pieces
together.

Figure 1 illustrates reproduction with binary
strings. Once the two parents are identified, a
crossover point is randomly selected. The Child
“AB” results from splicing the first portion of the
genetic string “A” onto the second portion of the
genetic string “B”. Note that a scond child “BA”
could easily be produced by splicing the
remaining portions of the strings.

Crossover Point
(randomly selected)

ryjoj1r{1yo0f(1}]11]o0

Parent A

Child AB

l1{of1({o0(1]0|1]O0

Figure 1. Reproduction through crossover with
binary strings.

Mutations. After the new generation is
created, mutations occur. For each member of the
population a random number in the range (0,1) is
generated. If the random number is below some
prespecified mutation threshold, then the gene is
allowed to mutate. Mutation in a binary string is
accomplished by selecting one or more (but not
all!) of the chromosomes in the string to be
altered. Of course “alteration” of a binary digit
can only mean changing its sense (flipping it’s
bit): if it’s a zero, make it a one, and if it’s a one,
make it a zero.

Real Number Encoding

Binary encoding can literally be applied to any
problem at hand. However, if the problem at
hand happens to be numerical, and the unknowns
of the problem happen to be continuous real
numbers, then it is very convenient to represent
the members of the population using real number



encoding. A simple example that will be
presented below is identification of the slope and
intercept of a line based on knowledge of a few of
the points on the line. Although these two real
numbers (the slope and intercept) most certainly
can be represented as a string of binary digits
(indeed, in the heart of our computers that is the
only form in which they exist!), it is much easier
to let the “gene” be an real array of length two.
For such a representation we must discover
suitable methods for initial population generation,
reproduction, and mutation.

Initial Population. The initial real number
arrays are of course generated randomly. There
are at least two possibilities for this and either one
could be used, but in any case the domain of the
individual variables must be known. Remember
that the genetic algorithm is only a search
mechanism, and the limits of the search region
must be known. One possible method of seeding
the initial population is to generate a random
number for each member of each of the arrays. A
second possibility is to generate a random number
for each array in the population and assign each
array a constant value.

Selection of Parents. My technique for
selection of parents for reproduction of the next
generation is simple. After evaluating the fitness
of all the members of the population, sort them in
best-to-worst order, then use a specified number
of the “best” as parents for the new generation.
This assures that the next generation is
reproduced using characteristics of the best of the
previous generation.

Reproduction. The key to reproduction is
some sort of crossover mechanism that combines
characteristics from each of the parents. In arrays
of real numbers both the magnitude of the
individual members and the order of the array are
important. At least two methods of crossover are
possible that address these two characteristics.

To alter the magnitude, averaging of the two
parent strings will achieve the desired effect
(Davis, 1991). Rather than a simple arithmetic
average, | have employed a weighted average
with the weight being chosen randomly.

To modifiy the order of the numbers in each
child array, I use a crossover technique identical
to that in Fig. 1 for binary strings. Choose a
random location in the array, and crossover the
sub-arrays from each partner.

Mutation. The main purpose of mutation is
to introduce new information into the population
that can’t be obtained directly from the parents.

The method I use was suggested by (Davis, 1991)
and is a simple replacement of the array with a
randomly generated array within the search space.
A mutation threshold must be passed first before
the mutation is applied.

Creep. This is really a second type of
mutation but proves very necessary to refine the
search. Creep (Davis, 1991) refers to the drift of
the members of a real array around their present
value. For each member of the population, a
creep threshold is applied, and if the member is
eligible to creep, the magnitude of each number in
the array is scaled by a random number in the
range (1 — C, 1 + C), where C is a fraction
between 0 and 1.

Elitism. One final mechanism that often is
introduced into genetic algorithms is elitism.
When elitism is employed, the best (or N, best)
members of each generation are retained in the
next generation. This allows the characteristics of
the “super-individual” to dominate over several
generations.

A Simple Example
To illustrate the techniques for real number
encoding, consider a simple parameter estimation
problem. Suppose we have a number N, of
(x;,y;) data pairs and we want to know the
equation of a straight line that passes thorugh
these points (or close to them):
y=b+mx; )]
in other words, the constants b and m are to be
determined. The classic solution to this problem
involves the minimization of the sum of the
squared errors between the model-predicted value

and the corresponding data value:
Nty

S=> -y @)
This same methodology will be used to solve this
problem using genetic algorithms.

MATLAB was used to code a genetic
algorithm to solve this problem, and the main
function is shown in Listing 1. Several parameters
are passed to the routine: the xvals at which the
known ydata are supplied, the domain of the
search (low, high), which applies to both the slope
m and intercept b. Other parameters must be
specified for the search: Npop is the number of
members of the population; Nbest is the number
of the best members of the population to used for
reproduction at each new generation; Ngen is the
number of generations to produces before the
program  terminates; mut chance is  the



probability threshold for a gene mutation;
creep_chance is the threshold for creep of the
member and creep_amount is the maximum
magnitude of the random creep (the parameter C
introduced above).

The routine begins with initialization of some
arrays and constants. The value Nelite is set to
one, which means that only the best member of
the population is retained from one generation to
the next. The population is an array of real
numbers with Npop rows and two columns (one
for intercept b and one for slope m). This array is
initialized using uniform random numbers in the
range (low, high) for the intercept and slope.

The main loop of the routine performs the
following steps. The model (Eq. (1)) is used to
compute the values yfest using the function
straight line and all the current members of the
population. These yfest values are compared to
the ydata values supplied and a fitness index is
computed for each member of the population
using Eq. (2). These fitness values are used to
sort the population from best to worst, and the
Nbest members are used for reproduction of the
next generation. The reproduction is performed
by the routine reproduce by weighted avg using
the weighted averaging scheme described earlier.
Only after new children are produced, the
crossover mechanism is applied to all the new
members, and the mutation and creep
mechanisms are applied randomly based on the
thresholds specified.

As a demonstration, the data for a straight line
with intercept b =1 slope m =2 is used (xvals =
[12345]; and ydata= [3 57 9 11]. The
parameter mut chance was set to 0.1, meaning
that there is a 10% chance that a child will mutate
(have its values completely replaced by randomly
generated numbers in the domain (low, high)).
The parameters creep _chance and creep _amount
were set to 0.90 and 0.25, respectively, meaning
that there is a 90% chance that the child will have
its value randomly scaled by +/- 25%.

As a first attempt, 50 generations are
computed using a population of only 10 members
and allowing only the best two for reproduction.
At the end of the 50 generations, the best member
of the population was b = -0.0756and m = 2.2994.
The resulting “convergence history”, which is the
error of the best member of the population at each
generation, is shown in Fig 2. The corresponding
estimates for the points on the line are shown in
Fig.3. These results were obtained in 0.22

seconds of CPU time on a 1000 MHz Pentium 4
processor.

The values obtained are not very good. The
size of the population is too small to allow the
effects of mutation and creep to widen the search.
Note that without mutation and creep, the search
space will be constrained to that enclosed by the
initial randomly generated population as the
weigted averaging cannot create a candidate
outside that domain.

For the next attempt, the population is
increased to 50 and the number of the best to use
for reproduction is increased to 10. The number
of generations to compute is increased to 100. At
the end of the 100 generations, the best member
of the population was b = 0.9851 and m = 2.0042.
The convergence history is shown in Fig. 4 and
the computed y values are compared with the data
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Figure 3. Model estimates (circles) and exact
values (line) for Npop = 10 and Nbest = 2.
(Ngen = 50)



in Fig.5. These results were obtained in
10.22 CPU seconds on the 1000 MHz Pentium 4
processor.

Note that the results here are much better than
those obtained previously, with the minimum sum
squared error below 10~. From the convergence
history (Fig. 4) we can see that, after the initial
drop, there is little improvement in the lowest
error. In fact, a good solution is obtained after 20
generations or so.
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Figure 4. Convergence history for Npop = 50 and
Nbest = 10.
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Figure 5. Model estimates (circles) and exact

values (line) for Npop = 50 and Nbest = 10 (Ngen
=100)

Classic Function Estimation Example

As a much more challenging example,
consider the classical problem of estimation of the
surface heat flux history for a one dimensional
slab insulated at x =L. This problem was
considered previously by Raudensky, et al.
(1995), but they worked with an unknown heat
transfer coefficient rather than the heat flux. The
triangular heat flux history popularized by Beck,
et al. (1985) will be used as the “unknown
function” to generate data for the estimation

problem. For simplicity, the parameters are taken
as k = pc, = L = 1, which of course is the same as
using non-dimensional data. Two cases of data
are considered: data with an interval 0.18 s and
another with interval 0.06 s. The heat flux history
has the following character:

0, <024
1-024 024<t<0.84
q(t) = .3
0.6—(1—0.84) 0.84<¢<1.44
0 t>1.44

Data were generated for a sensor located at x =L ,
and the data generated for the two data intervals
are shown in Table 1 and Table 2.

Table 1. Artificial data for large time interval

(0.18 s).

t, secs T C
0.00 0.00000
0.18 0.00000
0.36 0.00037
0.54 0.01338
0.72 0.05446
0.90 0.12720
1.08 0.21959
1.26 0.29501
1.44 0.34067
1.62 0.35655
1.80 0.35942
1.98 0.35990

Data Representation. To estimate the heat

flux variation, a suitable parameterization of the
heax flux function ¢(?) is necessary. We will
choose a piecewise constant heat flux, and will
estimate one component of heat flux between
every temperature data point. So, in the case of
the large time interval data of Table 1, there will
be 12 unknown heat flux comonents, and the in
case of the small data interval in Table 2, there
will be 35 unknown components. (Our algorithm
estimates a heat flux component for every data
point, even the first one; this assumes a zero
temperature initial condition).  Again, each
member of the population will be a real vector of
the appropriate length.
Function Evaluation. The objective function
for fitness will again be the sum of the squared
errors between the model-computed values (
objective function for fitness will again

be the sum of the squared errors between the
model-computed values (yfesf) and the data
(ydata). The model-computed values will be
produced using the Duhamel’s summation as



Table 2. Artificial data for small time interval

(0.06 s)

t, secs T.C t, secs T C
0.00 0.00000 1.08 0.21959
0.06 0.00000 1.14 0.24768
0.12 0.00000 1.20 0.27293
0.18 0.00000 1.26 0.29501
0.24 0.00000 1.32 0.31371
0.30 0.00001 1.38 0.32895
0.36 0.00037 1.44 0.34067
0.42 0.00217 1.50 0.34882
0.48 0.00632 1.56 0.35376
0.54 0.01338 1.62 0.35655
0.60 0.02366 1.68 0.35809
0.66 0.03732 1.74 0.35894
0.72 0.05446 1.80 0.35942
0.78 0.07515 1.86 0.35968
0.84 0.09939 1.92 0.35982
0.90 0.12720 1.98 0.35990
0.96 0.15788 2.04 0.35995

1.02 0.18929

described in Chapter 3 of Beck, et al. Note that
this computation will be approximate, especially
for the larger time intervals.

Algorithm Description. The MATLAB
main function for this genetic algorithm is shown
in Listing 2. Many of the features are the same as
in the SimpleGA function, but several
enhancements have been made. Specifically, the
parameters for the problem (Ngen, mut chance,
creep_chance, creep_amount) are all vector
quantities to facilitate modification of these
parameters during the simulation. Also, some
regularization has been added via a Tikhonov
term, and the coefficients for this are passed
through the funciton call. These enhancements
will be described in more detail below.

Large time interval data. The case of a
larger time step in the data is easier from a
classical solution point of view and thus this case
will be take first.

As a starting point, use the same parameters
that were used at the end of SimpleGA — Npop =
50, Nbest = 10, and Ngen = 100. After 100
generations, the sum squared error S is less than
10°, and the results for the computed
temperatures ytest can be seen compared to the
data in Fig. 6. The convergence history can be
seen in Fig. 7. These results are obtained on a
1.6 GHz Pentium 4 in 5.7 CPU seconds.
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Figure 6. Computed temperatures (circles)

compared to data (line) history for first large time
interval run.
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Figure 7, Convergence history for first large time

interval run.

The sumsquared error is pretty low, and the
computed values of 7(#) are relatively close to the
data values (as shown in Fig.6). But the
estimated heat flux components bear little
resemblence to the actual input (see Fig. 8).
Considering the results (Fig §8.) and the
convergence history, it seems plausible that the
problem is not converged well enough. Note that
the convergence history decreases past 80
generations, but then levels out. Note also that
the history exhibits a mix of large-scale changes
(probably caused by mutations) and smaller scale
decreases (perhaps brought about by creep). But
after 80 generations, the large scale changes (in
the domain (-1, 1) and small scale changes (on the
order of 25%) are too large to bring any
improvement. What is needed is a multiple
parameter approach.
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Figure 8. Computed (circles) and actual (line)
heat flux input for first large time interval run.

A modification to the algorithm allows for
this. Next let’s try the allowing larger more
mutations for the first 50 genreations
(mut_chance = 0.2), but then decrease the
mutation chance to 0.1, and keep the creep chace
the same, but decrease the creep amount:
mut_chance = 0.1, creep chance = 0.9, and
creep_amount = 0.1). The idea is to let the search
fine-tune the result after “getting close”.

One other modification was made to the
program. After each “break” in the generational
loop (after the 50 generations, say), the domain
for mutations is changed from the initial values to
the (minimum, maximum) of the heat flux vector.
The idea is to keep the mutation changes within
the most reasonable range.

The convergence history, seen in Fig. 9, shows
improvement in both the final value and the
sustained decrease past 80 generations. The final
S parameter is about 2x10, which is pretty good.
Considering Fig. 9, more generations may help
reduce the error.

The convergence history for several
subsequent runs are seen in Fig. 10. The final run
corresponds to the lowest line, which achieved an
S parameter of almost 8x10™. This last run
corresponds to a parameter strategy of Ngen =
[ 50 100 200 300], mut_chance = [ 0.2 0.1 0.05
0.02], creep_chance = [0.9 0.9 0.9 0.9], and
creep_amount = [0.2 0.1 0.05 0.02]. The
graphical comparison of the computed ytest and
the given data ydata is seen in Fig. 11, and it can
be seen that the comparison is quite good. The
estimates for the heat flux history, seen in Fig. 12,
are quite good, and do reproduce the input curve
favorably.
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Small Time Interval Data. The data from
Table 2, which has a (dimensionless) time step of
0.06, is known to cause estimation problems
using unregularized methods (such as Stoltz data
matching). We next apply the genetic algorithm
search to this data.

The same parameters used were the same as in
the last run with large time step in the data (Ngen
=[50 100 200 300], mut chance =[ 0.2 0.1 0.05
0.02], creep_chance = [0.9 0.9 0.9 0.9], and
creep_amount = [0.2 0.1 0.05 0.02]). The
convergence history (Fig. 13) suggests the results
should be good, and the comparison between the
computed and measured temperatures confirms
this view (Fig. 14). However, the plot of the
estimated heat fluxes shows that the underlying
ill-posedness of the problem prevents a
reasonable result from being obtained (Fig. 15.).

To get a better result in the face of ill-
posedness, some regularization must be added to
the problem. A familiar Tikhonov regularization
term can be added to the objective function
(fitness measure) to penalize changes in the first
derivative of the heat flux. This is implemented
in a discrete form (as described in Chapter 4 of

Beck, et al, 1985) as:
N,

data

2
S=>0-»)+
i=i
Ndam72 5 (3)
Otl(q j+l —-q j)
j=1

The a, parameter is the regularizing parameter
and must be specified.
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Figure 13. Convergence History for small time
step data.
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Figure 16 shows the results from a simulation
using the same parameters as before, but with a
First order Tikhonov regularizing term (o, = 1.e-
3). The converged solution more clearly defines
the input heat flux. Note that the algorithm has
difficulty where the heat flux is zero (Figs. 8, 12,
15, and 16).

Genetic Algorithms Conclusions

Genetic algorithms are a random search
procedure that search in a fixed domain without
using function gradient information. They can be
applied to linear or nonlinear problems and are by
nature computationally intensive. Real number
arrays can be used as “genes” in the population to
represent engineering data. Genetic algorithms
can be applied to ill-posed problems such as the
inverse heat conduction problem, but this solution
technique does not evade the inherent ill-
posedness of the problem. Some regularization,
such as Tikhonov regularization, must be applied
in the objective (fitness) function to combat the
ill-posedness.

NEURAL NETWORKS

Neural networks have been used for perhaps
50 years, dating from the early works of Frank
Rosenblatt (Rosenblatt, 1961). The main feature
of neural metworks is in pattern recognition. The
network “learns” the relationship between given
input and output, and then generalizes this
“knowledge”. The result is that when the network
is given inputs that are not exactly the same as
those from the training data, the output from the
network will be something consistent with the

training data. In this way the neural network can
be considered an interpolative algorithm.

An early application of Neural Networks was
in simple pattern recognition. A classic example
is a network designed to “recognize” letters based
on a set of optically encoded inputs. A network
might be designed and “trained” to identify the
letters of the alphabet based on the sense of a *x6
grid of inputs. But if the network was well
trained using, say, a Times Roman font, we might
expect the netowrk to yield resonable results if it
was shown letters from another font family, such
as Ariel.

Application of Neural Networks, then, have
two distinct phases: training and simulation. In
the training phase, many pairs of inputs and
outputs are shown to the network and the weights
within the network are adjusted until the network
(hopefully) produces the desired output. In the
simulation phase, the training algorithm is
deactivated, and the network merely computes the
output based on the given inputs.

There are many classifications of Neural
Networks according to the construction and of the
network. Two broad classes are concurrent and
recurrent or dynamic networks.  Concurrent
networks have all their input given at once and
the output of the network depends only on these
inputs.  In contrast, recurrent or dynamic
networks receive their inputs sequentially, and the
output of some of the neurons in the network are
fed back into the input for subsequent
computations. In this paper I consider only
concurrent Neural Networks.

Neural Network Topology

A schematic of a Neural Network is shown in
Fig. 17. A typical network is composed of one or
more hidden layers of neurons which are
interconnected by weighted links. The output of
each neuron is typically passed through some
linear or non-linear filter or activation function.

A neuron is shown schematically in Fig. 18.
The neuron receives inputs from perhaps n
neurons in the previous layer. The output of the
summation node is the dot product of the weights
w; and the value of the inputs:

SUMout = zwip[ (4)

where p; is the value of the input ‘i’. If an output
filter is used on the neuron, then the output of the
neuron is the result of the filter on the SUM,,,.
Several output filter are possible, including



linear, tangent sigmoid, or hyperbolic sigmoid. A
sigmoid function has a mathematical character
similar to:

OuUT, = 1
1+exp(-SUM ,,,)
which asymptotically approaches constant values
as SUM,,,, becomes very large or very small.
During the training phase of the network, the
network processes given inputs in an attempt to
produce given target outputs. The weights of the
interconnections are adjusted by an appropriate
algorithm to produce the desired outputs. This is

(6))
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Figure 17. A Schematic of a Neural Network
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Figure 18. A Schematic illustrating the neuron.

an inherently iterative process, and the number of
passes (called epochs) through the network during
the training may be in the thousands. To train a
Neural Network to solve an inverse problem, the
mathematical model (forward solution) is used to
generate training data.

MATLAB Toolbox

MATLAB has an excellent toolbox add-in for
Neural Network analysis. This collection of
programs and interfaces, written by Mark Demuth
and Mark Beale, allow easy design and training of
a wide range of networks: backpropagation
networks, cascade feedforward networks, radial
basis function networks, and many recurrent

networks as well. The examples presented here
make use of this toolbox add-in.

A Simple Example

As a simple example, consider the parameter
identification problem considered -earlier: the
estimation of the slope and intercept of a line
based on knowledge of several data points. We
will design our network to estimate the slope m
and intercept b of a line over 0 < x < I, and we
restrict the range of b and m to the interval [0,1].
Furthermore, the values of y at specified x
locations of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 will be
given to the network to estimate b and m.

A backpropagation network with 6 inputs (for
the 6 values of y) and two outputs (for the two
values b and m) is created. One hidden layer
with 12 neurons is employed, and a tangent
sigmoid is chosen for the activation function on
the hidden layer. The input layers have linear
activation functions (filters).

A set of training data are generated which
covers the solution space. [ used the » and m
pairs in Table 3 to generate y data on the specified
intervals for x, resulting in 20 training vector
pairs: input vectors of length 6 containing the
values of y at the specified locations, and the
corresponding output values of » and m in vectors
of length 2.

Table 3. Intercept and slope used to generate data
sets for training.

b m b m
0.00 1.00 0.00 0.00
0.25 0.75 0.25 0.25
0.50 0.50 0.50 0.50
0.75 0.25 0.75 0.75
1.00 0.00 1.00 1.00
1.00 0.00 1.00 1.00
0.75 0.25 0.75 0.75
0.50 0.50 0.50 0.50
0.25 0.75 0.25 0.25
0.00 1.00 0.00 0.00

The network was set up and trained in the
MATLAB toolbox. A scaled conjugate gradient
training method (Demuth and Beale, 2001) was
used to adjust the weights in the network. After
3000 epochs in the training, the sum squared error
between the network output and the targets was
3.E-7.

After training, the network was tested with the
eight vector inputs shown in Table 4. Note that



these vector inputs are not in the training set but
do cover the range of inputs used in the training.
The actual parameters corresponding to the rows
of y values in Table 4 are shown in Table 5, along
with the values computed using the trained Neural
Network. As can be seen in Table 5, the values
estimated from the Neural Network are
reasonably good: the RMS errors are 0.0255 for b
and 0.0069 for m.

Table 4. Test vectors (in rows) for the Line
Identification Neural Network

Y1 V2 V3 Ya Js Ye
090 | 1.04 | 1.18 | 1.32 | 146 | 1.60
0.10 | 0.28 | 0.46 | 0.64 | 0.82 | 1.00
090 | 092 | 094 | 096 | 098 | 1.00
030 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80
0.50 | 0.56 | 0.62 | 0.68 | 0.74 | 0.80
030 | 0.44 | 0.58 | 0.72 | 0.86 | 1.00
070 | 0.76 | 0.82 | 0.88 | 0.94 | 1.00
070 | 0.88 | 1.06 | 1.24 | 1.42 | 1.60

Table 5. Actual and Computed Line
Parameters for the rows in Table 4 using single

hidden layer
ACTUAL NN Output
b m b m
0.9 0.7 0.8533 0.6928
0.1 0.9 0.1001 0.8997
0.9 0.1 0.9003 0.0997
0.3 0.5 0.2766 0.4958
0.5 0.3 0.5140 0.3139
0.3 0.7 0.3001 0.6999
0.7 0.3 0.7000 0.2999
0.7 0.9 0.7476 0.9110

Table 6. Actual and Computed Line
Parameters for the rows in Table 4 using two

hidden layers
ACTUAL NN Output
b m b m
0.9 0.7 0.9009 0.6601
0.1 0.9 0.0997 0.9003
0.9 0.1 0.9005 0.0997
0.3 0.5 0.3021 0.4871
0.5 0.3 0.4996 0.3170
0.3 0.7 0.3001 0.7000
0.7 0.3 0.6999 0.3001
0.7 0.9 0.6997 0.9384

Another approach to the line parameter
identification problem is to try to train the
network to learn the relationship between
arbitrary groups of (x,y) data and the parameters b
and m. We’ll try this by adding an extra 6 inputs
to the network, corresponding to the x locations.
The network with two hidden layers was trained
using the same data as before, but giving the x
values as input also. The network learned this
relationship very easily — in 6 epochs the SSE is
less that 10, Next, the network was tested by
generating y data values for x values not in the
training set: ( 0.1, 0.3, 0.45, 0.55, 0.7, 0.9). The
six (x,y) data pairs for the eight test lines were
input to the trained network, and the results are
seen in Table 7. The results are not as good as
those obtained previously with fixed x value
inputs.

Table 7. Actual and Computed Line
Parameters for the rows in Table 4 using one
hidden layer and (x,y) inputs

Another Neural Network was constructed and
an additional hidden layer with 12 neurons was
added. This network was trained using the same
data (generated from Table 3) and after 3000
epochs the sum squared error was 2.3E-8. The
test data from Table 4 was again shown to the
network, and the results in Table 6 were obtained.
The RMS errors for this case are 0.0008 for b and
0.0210 for m. Note the improvement in the
estimates with an additional hidden layer in the
network.

ACTUAL NN Output
b m B m
0.9 0.7 0.92865 | 0.68718
0.1 0.9 0.14523 | 0.87785
0.9 0.1 0.93050 | 0.092988
0.3 0.5 0.33520 | 0.48794
0.5 0.3 0.53171 | 0.29446
0.3 0.7 0.33841 | 0.68561
0.7 0.3 0.73234 | 0.29215
0.7 0.9 0.73396 | 0.88615

Application to Heat Flux Estimation

Time and space constraints do not allow the
demonstration of the neural network to the
solution of the inverse heat conduction problem.



However, this problem was considered by Krejsa,
et. al (1999). In that work they considered two
possible approaches: the whole domain estimation
problem (as was considered in the genetic
algorithm problem earlier, where all heat flux
components are estimated simultaneously) and a
sequential estimation scheme. Only concurrent
neural networks were considered. Their
conclusion was that the whole domain method
offered the best possibility for solution of the
inverse heat conduction problem using concurrent
networks. However, I note here that recurrent
networks may offer the possibility of sequential
estimation.

The approach to solving the whole domain
estimation of heat fluxes is similar to that taken in
the line parameter estimation problem. Training
data must be generated over the whole solution
space of (¢, g). This might be done by considering
a range of different types of inputs: linear ramps
of different slope, steps, parabolas, etc. The key
is that the generated training data must cover the
whole space of possible inputs for the neural
network.

Neural Network Conclusions

Neural networks offer the possibility of
solution of parameter estimation problems and
also boundary inverse problems. Proper design of
the network itself and the training data set is

essential for successful application of this
approach.
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Listing 1. Main function for the estimation of parameters of a straight line

% function simpleGA( xvals, ydata, Npop, low, high, Nbest, Ngen, mut chance, creep chance,
creep_amount )

% function to perform simple GA search

% find the slope and intercept of a line described the

% data in 'xvals' and 'ydata'

% 1) randomly initialize Npop' candidate vectors in range

%  'low'to 'high'

% 2) evaluate the fitness using least squares criteria

% 3) sort to find best 'Nbest' candidates to use for reproducing

% 4) repopulate using random selection from the Nbest and random recombination

%  (use elitism - keep the top performer)

% 5) allow mutation of new generation at 'mut_chance' rate of magnitude

%  mut amount

% 6) repeat for 'Ngen' new generations

function simpleGA( xvals, ydata, Npop, low, high, Nbest, Ngen, mut chance, creep chance,
creep_amount )

Nunknown =2; % slope and intercept are the two unknowns

Nelite =1; % clone the super-individual

Ndata = length( ydata );

% generate the initial population

population = gen_rand_real( Npop, Nunknown, low, high );

% create matrix to keep best values and fitness for each generation
best = zeros( Ngen, Nunknown + 1 );

index = zeros( Ngen, 1);

% loop for the generations
for gen =1 : Ngen
% use model to compute values from population
ytest = straight line( population, xvals );
% compute the fitness using least squares
fitness = sum_square_fitness( ytest, ydata );
% sort them
sorted = sort_by_fitness( fitness, population );
% copy generation champion into storage array
best( gen, : ) =sorted( 1, : );
index(gen)=gen;
% copy best candidates into top of population
population( 1:Nbest, : ) = sorted( 1:Nbest, 2:Nunknown+1 );
% reproduce to fill the bottom of the population
population = reproduce by weighted avg( Nbest, population, Nelite );
% crossover the children
population = crossover( Nelite, population );
% creep the children
population = creep( Nelite, population, creep chance, creep_amount );
% mutate the children
population = mutate( Nelite, population, mut_chance, low, high );
end
figure(1);
semilogy( index, best(:,1) );
b_best = best( Ngen, 2 );



m_best = best( Ngen, 3);

ybest =b_best * ones( 1, Ndata ) + m_best * xvals;
figure(2);

plot( xvals, ydata, '-');

hold on;

plot( xvals, ybest, '0');

hold off;

best

sorted;

population;

Listing 2. Main Function for Estimating Heat Flux History

% function estimateQ GA( xvals, ydata, dt, Nunknown, Npop, low, high, Nbest, Ngen, mut chance,
creep_chance, creep_amount, alpha )

% function to estimate a heat flux function of time using simple GA search

% the location(s) of the sensors are contained in 'xvals', and the corresponding

% measurements vectors are in 'ydata' (for more than one location xvals(1),

% xvals(2), etc., the data are ydata = [ ydata(1), ydata(2), etc. ].

% The time step in the data is 'dt’

% The vector 'alpha’ is length 2 and contains the tikhonov regularization

% scalar weights.

%

% 1) randomly initialize Npop' candidate vectors in range

%  'low'to 'high'

% 2) evaluate the fitness using least squares criteria

% 3) sort to find best 'Nbest' candidates to use for reproducing

% 4) repopulate using random selection from the Nbest and random recombination

%  (use elitism - keep the top performer)

% 5) allow mutation of new generation at 'mut_chance' rate of magnitude

% mut_amount

% 6) repeat for 'Ngen' new generations

function estimateQ_ GA( xvals, ydata, dt, Nunknown, Npop, low, high, Nbest, Ngen, mut chance,
creep_chance, creep_amount, alpha )

nx = length(xvals);

Nloop = length( Ngen );

Ndata = round( length(ydata) / nx ); % number of values in the unknown vector

Nelite=35; % clone the super-individuals

% generate the initial population

% for random distribution

% population = gen_rand_real( Npop, Nunknown, low, high );
% for uniform distribution

values = gen_rand_real( Npop, 1, low, high );

population = ones( Npop, Nunknown);

for i = 1:Npop
population( 1, : ) = population( i, : )* values(i);
end

% create matrix to keep best values and fitness for each generation
best = zeros( Ngen(Nloop), Nunknown + 1 );
index = zeros( Ngen(Nloop), 1);

t x=[dtxvals ]; % special data vector for the evaluation function



% loop for the generations
gen = 1;
for loop = 1 : Nloop

for gen = gen : Ngen(loop)

% use model to compute values from population

ytest = eval_qvec( population, t x, Ndata );

% compute the fitness using least squares

fitness = sum_square fitness( ytest, ydata );

fitness = fitness + tikhonov_term( population , alpha );

% sort them

sorted = sort_by _fitness( fitness, population );

% copy generation champion into storage array

best( gen, : ) =sorted( 1, : );

index(gen)=gen;

% copy best candidates into top of population

population( 1:Nbest, : ) = sorted( 1:Nbest, 2:Nunknown+1 );

% reproduce to fill the bottom of the population

population = reproduce by weighted avg( Nbest, population, Nelite );
% crossover the children

population = crossover( Nelite, population );

% creep the children - modify slightly each value (by chance)
population = creep( Nelite, population, creep chance(loop), creep_amount(loop) );
% mutate the children - random replace of chromosome

population = mutate( Nelite, population, mut_chance(loop), low, high );

end
range = minmax( best( gen, 2:Nunknown+1 ) )
low = range(1);
high = range(2);
end
figure(1);
semilogy( index, best(:,1) );
time max = Ndata * dt;
dt unk = time max / Nunknown;
time = zeros( Ndata, 1);
time_half = zeros( Nunknown, 1);
time(1) = dt;
time_half(1) = dt unk/2;
for i = 2:Nunknown
time_half(i) = time_half(i-1) + dt_unk;
end
for i =2:Ndata
time(i) = time(i-1) + dt;
end
last = best( Ngen(Nloop), 2:Nunknown+1);
figure(2);
plot( time_half, last, 'o");
t exact=[0.24.841.441.8];
g exact=[0 0060 0 ];
hold on;
plot(t exact, q_exact, -');
hold off;
gbest = best(Ngen(Nloop),2:Nunknown+1)
% use model to compute values from population



ybest = eval qvec( gbest, t x, Ndata );

figure(3);

plot( time, ybest, '0');

hold on;

plot( time, ydata, '-');

hold off;

sum_sq_err = sum_square_fitness( ybest, ydata );
rms_error = sqrt(sum_sq_err/Nunknown)

sorted;

population;
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ABSTRACT

This work presents numerical methods for the
determination of the free boundary in the two-
phase Stefan problem. This paper does not
directly concern the idenfication from measured
data, which will be a futur development. The
method is based on a Feyman-Kac representation
of the solution: the position of the free boundary
is the solution of an algebraical equation
involving the means of random variables. This
equation can be numerically solved by iterative
methods and the free boundary can be determined
by algebraical calculations.

The approach introduced is based on a
Feynman-Kac representation involving the mean
of a convenient random variable. The numerical
methods have some interesting properties: they
are meshless (i.e., they may be implemented
without introducing a spatial discretization).
Other features are the independence of the
dimension and a natural parallelism. In addition,
the methods are adapted to both the tracking of
the front and the direct evaluation of the position
at a few given moments without discretization in
time.

The method has been tested in two and three
spatial dimensions. The result of a numerical
experiment is presented.

NOMENCLATURE
a;,b; lower and upper bounds for x;
C diffusivity; ¢, on Qg(t), ¢ on (1)
cL diffusivity in the liquid region
Cs diffusivity in the solid region
Ce regularized function ¢
E(Y | X) Mean of Y conditional to X

Divergence of u = (uy, u,, us),

divw) | i) = duy/Ox, +Oun/dxs +uy/Oxs
Id Identity Matrix
n Vo /|V¢), unitary normal to Z(t)
Normal distribution having mean
N(©0.0) zero, standard deviation ¢
Multidimensional normal
N(0,01d) distribution having mean zero,
Covariance matrix ¢ Id
Q QxT
Q (0 € QO >0, }
Qs {x.H) e QO <6
R The set of real numbers
S {(x0D € QO(x.H) =86}
t, T time variable and maximum time
v velocity of the free boundary
X, X; spatial variable, a component of x
W, Wiener process
0Q boundary of Q
e regularization parameter
X indicator of the solid region
Xe regularized function y
0] equation of the free boundary
(0] numerical approximation of ¢
A latent heat of the material
Z (1) free boundary: 6=0., =0
0 field of temperatures
0. temperature of solidification
Os, O, Os restriction of 6 to Qg,Qp or S
0o initial field of temperatures
020 field of temperatures on 0€
Vu Gradient of u,
Vu = (0u/0x,, du/0x,, Ou/OX3)
Q spatial domain
Q; (1) liquid region: 6>6., >0
Qs(t) solid region: 6 <6., $ <0




h . . . .
4" International Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazil, 2002

INTRODUCTION

Multiphase and multiregion problems arise in
several significant situations in Engineering. In
those problems, the determination of the
interfaces, i. e., of the surfaces or regions
separating the different phases, is a crucial point,
which leads to mathematical and numerical
difficulties. In this framework, many works have
considered a heat transfer problem frequently
introduced as a simple model for melting or
solidification phenomena: the two-phase Stefan
problem.

The usual formulation of a Stefan problem
leads to evolution equations describing the
temperature of the material and the moving
boundary. The major difficulty in a direct
problem lies in the fact that the unknown
boundary intervenes explicitly in the equations
giving the thermal state of the system. The
problem is frequently rewritten in order to
eliminate the unknown boundary (see, for
instance [1], [2]).

A different standpoint considers the
temperature as an auxiliary variable (instead of
the position of the moving boundary). In this case,
the main variable is the position of the free
boundary : the field of temperatures is determined
by solving two linear heat equations on each
region (liquid and solid), once the moving
boundary has been found. Level set methods may
be considered as included in this approach (see,
for instance, [3],[4])

The numerical resolution of two-phase Stefan
problem has been extensively treated in the
literature since 30 years (see, for instance, [5], [6],
[7]). In this paper, we introduce an original
numerical approach based, on the one hand, on a
formulation of the Stefan problem leading to a
non-linear evolution equation verified on the
whole domain (see, for instance, [8]) and, on the
other hand, on Feynman-Kac representations of
the solutions of linear parabolic equations (see,
for instance, [9]).

An interesting feature of the numerical
methods associated to Feynman-Kac
representations is the absence of discretization in
space (i. e., they are meshless). Usually, when we
are looking for the position of the free boundary
on the interval (0,T), we must introduce N
subintervals of length At involving N+1 values t;
such that 0 =t, <t; <t <...<tyy =T and the
solution is constructed at the N discrete times t; ,
..., ty. The construction of the solution at each
one of the considered times t; involves a Finite

Difference or Finite Element Method. The
proposed approach does not involve such a
discretization in space.

Other interesting properties of the Feynman-
Kac approach are the independence of the number
of dimensions and its natural parallelism (see, for
instance [10], [11]).

In the next section, we recall the formulation
of the Stefan problem which will be used. Then
we recall some elements concerning the
Feynman-Kac representation and, at last, we shall
present the results of some numerical experiments
show that the resulting numerical method is
effective to calculate.

A MODEL FOR THE PROCESS

In this section, we shall present the notations
and a model for the situation previously
described. Main results and formulations
mentioned are stated in [8] and will be not
detailed here.

Description

The solidifying material is inside a rectangular
cavity. In a first approximation, we consider that
the temperature is known on the boundary: the
method extends to given fluxes or Newton's
conditions. We assume that the system is well
described by a two dimensional problem. These
simplifications allow us to point the essential
difficulties and are not essential: on the one hand,
as previously observed, the results and the method
can be extended to upper dimension, and, on the
other hand, cavities of arbitrary but regular
enough shape can be considered. Thus, we
consider the open bounded domain Q c R®
defined by

Q= {x=(x, X2, X3) | 8;<X; < b;} (D

The boundary of Q is denoted by 0Q. The
time is denoted by t € T = (0, T), T > 0 and we
set Q = QxT. The field of temperatures is a
function 6 : Q = QXT — R. At each time t, Q is
partitioned as follows:

Q= Qq(t) U Qr(t) U Z(t) 2)
where
Qg(t) = {xe Q[0(x,t) <8}, (3)

Qut) ={xe Q|0(x,t) >0}, “)
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X(t) ={xe Q|0(x,t)=06.}. %)

We assume that the solid/liquid interface X(t)
can be represented at each time t by a curve
described by an equation ¢(x,t) = 0 and the sets
Qq(t), Q(t), Z(t) are characterized respectively by
o(x,t) < 0, ¢(x,t) > 0, d(x,t) = 0. Thus, the
different regions can be also characterized by

Q) = {xe Q[(x,t) <0}, (©)
Q) = {xe Qlo(xt)>0j, ™
() ={xe Q|o(x,)=0}. (8)

We assume also that ¢ is regular enough in
order that the unitary normal n to X(t) is defined
forany xe X (t) and te T:

n=Vo/Ve|. ©)

We notice that n points inwards Qi (t) (and
outwards Qg(t)).

The natural choice for ¢ is ¢ =6 - 6., but ¢
can take infinitely many values: the previous
equations hold for an arbitrary function such that
sign(¢) = sign(0 - 0.), where

1, a>0;
sign(a) =40, a=0; (10)
-1, a<O.

The Stefan condition

Let us introduce A, the latent heat of the
material; cg and ¢ , the diffusivity in the solid
and liquid parts, respectively; Os, 6p the
temperatures in the solid and liquid parts,
respectively:

05= 6lo, ; 6.= 6lo, (1n
Qs={(x0e Q| xe )} ; (12)

Q={xHe Q| xeQ®} . (13)

As previously observed, two heat equations
are verified on each region (solid and liquid):

a;Lts—div(cSVHS):O on Qg (14

ag—tL—diV(cLVQL):O on Q. (15

On the free boundary, the Stefan condition is
satisfied:
c.VOL.n-csVO.n=Avn on S, (16)
where v is the velocity of the free boundary.

We denote by c(e) the function

¢, a>0.

c(a)z{cs’ @< (18)

Let us introduce a function (e) such that:

0<0;

1(o)= {1’ (19)

0, o=0.

With these notations, (11)-(16) is equivalent to
(Cf. [8]):

g—?—div(c((p)ve) = —k%(x((/ﬁ)) on Q (20)

sign(¢) = sign(0 - O.) on Q (21)

We point that the equations (20)-(21) are verified
on the whole Q and, as above mentioned,
infinitely many choices of ¢ are possible.

The evolution problem
We denote by 6, , the initial field of
temperatures:

0(x,0) = By(x) on Q (22)

We assume that 6, has square summable
partial derivatives: 8, € H'(Q). We assume also
that the temperature on the boundary is known:

0(x,t) = B0(x,t) on OQ (23)
We assume also that 8, is square summable:

0,0 € L*0Q). Moreover, the following
compatibility condition is satisfied:
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Baa (x,0) = 8y(x). 24)

The unknowns (0, ¢) satisfy
boundary value problem:

the following

Problem 1: Find (6, ¢) satisfying (20)-(24).
From [8], we have the following result:

Theorem 1: The field of temperatures 6@ and the
regions Qg(t), Q(t), 2(t) are uniquely determined.

As previously observed, ¢ is not uniquely
determined.

Regularization

In order to obtain a more regular problem, we
shall introduce continuously differentiable and
lipschitzian approximations of ¢ and %, denoted c,
and 9, respectively. In order to construct such an
approximation, let us consider

0, a<0;
n(e) =< 30% —20%,0<a<; (25)
1, a>1.

We observe that m is continuously
differentiable on R.m is not uniquely determined.
More  regular  approximations  involving
differentiability at an arbitrary order n can be
introduced by convenient choices.

Let € > 0 be a given parameter. We shall
approximate the discontinuous functions c(e) and

x(®) by

¢y ()= Csn(%JHLn( "; 8] (26)

Ze(@) =n['7“j 1))

We have
c(P)=c(9) , if [p/=¢e ; (28)

Ye(0) =%(0) , if ¢< -€or $=0. (29)

ce and X are used in order to obtain a
regularized boundary value problem. The
equations of Problem 1 are approximated as
follows:

aeg_ . _ 3
5 divies(9)V0,) = xat(x.gwg)) onQ (30

sign(Qg) = sign(Be-6.) on Q 31
0¢ (x,0) = 0p(x) on Q (32)
B¢ (X,t) = Oan(x,t) on 0Q (33)

and we denote by (0., ¢.) the solution of the
associated boundary value problem:

Problem 2: Find (0, @.) verifying (30)—
33)

From [8], we have the following result:

Theorem 2: The field of temperatures 6, and
the associated approximated regions Qg(t),
Q, 1), 2(t) are uniquely determined. Moreover,

0, ———— 6 in [}(0O,TH'(Q) (34

=0+

DISCRETIZATION OR ITERATION IN TIME
FOR THE REGULARIZED PROBLEM

As previously observed, the numerical
resolution of two phase Stefan problem has been
extensively treated in the literature and many
methods of discretization in time have been
proposed. We present here only the particular
methods used for the  Feynman-Kac
approximation.

In order to alleviate the notations, we shall
drop the index €.

Iterative solution of the regularized
problem

The problem 2 may be solved by an iterative
procedure. Let us set

0=0-6, . (35)
We have

J _ ()90
g(x(af))—x (@) p» (36)

Thus, Equation (30) is equivalent to
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(+4y (¢))%? —div(c(9)VO)=0  (37)

Let be given an initial guess (6°, ¢°) (such as,
for instance, 8° = 0, , (1)0 = 0 - 0.). We define a
sequence {(6“, ¢) }iso by

k+1
1+ Ay'(@")) a%t —div(c(¢*)VO ) =0 on Q (38)
¢k+1 _ ek+l _ ec (39)
051(x,0) = 0y(x) on Q (40)
05 (x,t) = Oaa(x,t) on OQ 41)

We have the following result:

Theorem 3: For each k 2= 0, the field of
temperatures 6 and ¢ are uniquely
determined. Moreover,

0" ——— 0. in P(OTH'(Q) (42)
Approximation of the free boundary by
interpolation

In order to alleviate the notations, we shall
drop the indexes k and k+1.

Let us introduce an integer N > 0 and, for

0<i<N,
At=T/N; t=iAt (43)

Bi(x) =0(x, t) ; 0i(x) =o(x, ti) (44)

The function ¢ is approximated by a function
¢: ¢ = @. The approximation uses an interpolation
procedure involving the the values ¢, ..., On.
Many interpolation procedures can be considered.
Here, we shall consider two kinds of
approximation: a polynomial approximation of
degree N and piecewise constant approximations.

Polynomial interpolation. In this appro-
ximation, we set

o) =kox) +ki(x) t+ ... +kyx) N, (45)

where

ki = ki(do, 01, ...
is such that

> &) (46)

O(x, t) = ¢i(x) (47
For instance, for N=1, we have
kKo=do ; ki =(¢1- ¢)/T (4%)
while for N =2 we have
ko=00; ki=(401-300-02)/T; ka=2(02-21+ o)/ T* (49)

We observe that, when (48) is used, ¢(x,T) is
calculated without discretization in time. Into an
analogous way, the use of (49) furnishes 0(x,T/2)
and O(x,T) without the evaluation of the free
boundary for other values of t.

Piecewise constant approximation. In
this case, we set

ox,t) = 0i(x) for t;<t<ty (50)
This approximation leads to an explicit

method: on each each subinterval (t;, ti), ¢; is
known and ¢y, can be determined by solving

A+27'(¢, ))% —div(c(4;,)V0) = 0 on Qx(1;,1;,,) (51)

0(x,t) =0;(x) on Q (52)
0(x,t) = Opa(x,t) on 0Q (53)
Oir1 = 641 - 6. (54)

This approach leads to the tracking of the free
boundary by its calculation at the times ti, ...ty,
but can also be used analogously to (48) by
performing a few steps in order to get 0(x,T).

A FEYNMAN-KAC METHOD FOR THE
DETERMINATION OF THE FREE
BOUNDARY AT A GIVEN TIME

As mentioned in the introduction, we shall
introduce a method based on Feynman-Kac
representations of the solutions. By reasons of
limitation of the room, we give only some
elements concerning the construction of
representations. The reader interested in more
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complete developments is invited to refer to [9],
[10], [11].
Ito’s Formula

The main tool for the construction of
Feynman-Kac representations is the Ito’s formula.

Wiener processes. Let {W,}, be a family
of real random variables. We say that {W}0 is a
standard Wiener process if and only if

Wo=0; (55)

W,— W, is N(O, (t-5)"?) (t=5) (56)

W, — W is independent of W, (t=s = z) (57)
Multidimensional ~Wiener processes are
defined into an analogous way, by considering
W, — Wy as Gaussian vectors having the

distribution N(0, (t-s)"*Id).

Ito’s stochastic Integrals. Let y: R - R

be a function and {Z}o be a stochastic process.
We define

h(2)= [zt (58)
0

Lz = [ 1z, (59)
0

as follows: let p > 0 be an integer and h = t/p.
We note

Zi:Zti 5 Wi:w‘i 5 ti=ih (60)

And we consider the finite sums:

)4
P (Z)=hY 1(Zy) (61)
i=1
p
H(Z)=Y 1Z )W~ W) (62)
i=1
We define

L(y,Z)= lim I (y,Z,) , i=12 (63)
p—>teo

when such a limit exists.

Ito’s formula. Let us denote by {W}ix a
standard Wiener process and X; the following
Ito’s diffusion

dXi= adW, ;dS;= -B(X,t)dt (64)
Xo=X ; So=s (65)
Then, the diffusion
Y. =uX, Sy (66)
verifies the following Ito’s formula:
dy, =[div(%ZVu(Xt,St)]—ﬁ(Xt,SJ%(X“S‘) dt 67)

+a(X,,S)OVu(X,,S,)dW,

Numerical determination of the free

boundary

Representation of the solutions of
linear parabolic problems. Let u satisfy the
equation

2
ﬁ(x,t)%‘tl - div(°‘7 Vu) = f(x,t) on QX (0,T) (68)

Then equation (67) becomes
dy, =—f(X,,S))dt + a(X,,S)Vu(X,,S,)dW, (69)

So, we have, forany 1>0:

T T
Yo = Yo == [ f0X,. 8 dt+ [ (X, S )VOX, .8, )W,
0 0

and, taking (57) into account :

E(Y, -Y,)= E[— J‘f(X[,Sl)dt]
0
Thus,
u(x,8) = Y, = E[Yr + J‘f(Xt,S[)dtJ (70)
0

Numerical solution of a parabolic equa-
tion using the representation. Equation (70)
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furnishes a simple way for the numerical
evaluation of u(x,s): let us assume that the
following data is given:

u(e,0) = ug(e) on Q (71)
u(e,t) = usa(e.t) on 0Q (72)
u(e,t) = ug(e,t) if o(e,t)=0 (73)

Then, we consider T as the first time where u
takes a known value, 1. e. :

T =inf{t[XeS)eQ }; (74)
So,

Y = u(Xt,ST)+J.f(Xt,St)dt (75)
0

corresponds to the given data (71)-(73) and we
have:

u(x,s) = E(Y) (76)

Thus the value of u(x,s) may be approximated
by using an empirical mean: we may generate NS
values of Y, denoted by Y, , ..., Yns and we
have

u(x,s) = (Y] +...+ YNS) /NS (77)

The values of Yy, ..., Yns can be generated
by simulation of (64)-(65). Methods of simulation
can be found, for instance, in[10], [11]. A simple
method of generation is the Euler’s discretization
involving a step h > 0 and a gaussian vector Z ~
N(0, Id) (Z; denotes a value from Z)

XHI = Xi +oh Zi 5 Si+1 = Si - hB(Xl,t) (78)

Determination of the interface. As
previously observed, the free boundary satisfies
an algebraical equation such as, for instance,

q) =0- ec
This equation may be considered as being of
algebraical type and solved by iterative methods

such as fixed point or Newton’s iterations. For
instance, we can consider the iterations

q)kﬂ — ¢k+ n (9 k1 _ .- ¢k)

where 1L € R is a parameter to be conveniently
chosen. These iterations imply the evaluation of
¢ on the whole Q. In order to limit the evaluation
to the single interface, we may introduce 0s, the
restriction of O to S and observe that

6s ~ 0,

Thus, we can also consider the iterations
k
¢k+1 — q)k_,’_ H (ek+1,s _ ec) (79)

where 851 is the restriction of 6! to S~
Equations (38) and (51) can be reduced to the
form (68). Thus, 85" or its restriction 85"'s* can
be determined by wusing (76)-(78) and the
iterations can be performed without use of a
Finite Element of Finite Difference method for
the evaluation of the temperatures.
If the free boundary verifies:

O(x,t) = X3 - p(X1, X2, t)

the iterations reads as follows:
+ Sk
P =Pt (6 -0 (80)

A NUMERICAL EXAMPLE

By reasons of limitation of the room, we
present here the results of a single experiment
concerning the determination of the free boundary
atT=1.

Let us consider the situation where Q= (-1,1)3,
cg=10; cg=11; A=4;0,=0;

B(x,1) = (x;T1)+(xp+1)* Hxs+1)? - exp(-t)  (81)

In order to numerically perform the iterations
(81), we introduce a discrete set of np
calculation (and not measurement) points
distributed on the horizontal plane (Ox;, Ox;):

p(n) = (xi(1), x2(j)) , Osi<n;, O<j<n, (82)
n=i+(-Dn;; np=(n+hntl)  (83)
x;1(1)= -1+2i/n1; x,(j)= -1+2j/n2 (84)

The results presented concern n; = n, = 40.

The error in the evaluation of the free boundary is
measured by the mean quadratic deviation
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ek=JL§(pk(n>-p<n>)2 (85)

np n=l

p) = p(pm) ; pm) = p'(p(m)  (86)

For a generic point x, the value of p* is
obtained by linear interpolation using the values
(86). The initial guess is the initial position of the
free boundary: p” = p(x,x,0). The results
furnished by (80) with ns = 10* u = 0.5 and the
interpolation (48) are shown in Figures 1 and 2.
Results furnisheed by the Robbins-Monro
procedure with p, = 0.5/(1+k/4); ns = 10* and the
interpolation (48) are shown in Figure 3.

iterate k = 10

o

5oas|

Mean Square £

______
R S
_________________

Figure 2— Evolution OF&;e error (ejo = 6E-3)

ertor on the free boundary

Mean square error

20 30 40 50
iteration

Figure 3—Results obtained by Robbins-Monro

CONCLUDING REMARKS

We have presented a numerical method for the
determination of the Stefan free boundary, based
on a formulation of the Stefan problem as a non-
linear evolution equation verified on the whole
domain and a Feynman-Kac representation of the
solution of a linear parabolic equation. The
method does not involve spatial discretization: the

values of the temperatures are evaluated by
simulating a stochastic diffusion. The approach is
naturally adapted to parallel computation. It has
been tested in two or three dimensional situations
and has shown to be effective to calculate.
Improvements may be obtained by using more
sophisticated spatial and temporal interpolation of
the free boundary ore other methods of simulation
of the stochastic diffusion.
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ABSTRACT

We present an automated technique for the
approximate reconstruction of arbitrary spatial
and time varying source terms using the observed
solutions to the forward problem on a discrete set
of points. The numerical method is based on
computations of the derivatives of filtered
versions of the noisy data by discrete
mollification and generalized cross validation.

The unknown forcing terms are identified in a
compact subset of the domain where the solutions
are measured, the compact subset being
automatically determined by the amount of noise
in the data. We restore continuous dependence on
the data, estimate the rate of convergence when
certain conditions are met, and provide severa
numerical examples of interest.

1. INTRODUCTION
For 0<x<x,0<t<t__ ,considera
linear partial differential equation of the form

ut = (a(x!t)ux)x + f (X!t) ’ (1)
together with the corresponding initial (IC) and
boundary conditions (BC)

u(o,t) =u,(t),0st<t__, BC
u(x,t) =u/(t),0st<t__, BC
u(x,0) =u’(x),0<x< x. IC

Ordinarily, T (X,t) and a(x,t) are known func-
tions and we are asked to determine the solution
functions U(X,t) so as to satisfy equation (1)
and (BC-IC). So posed, thisisadirect problem.

Diego A. Murio
Department of Mathematical Sciences
University of Cincinnati
Cincinnati, OH 45221-0025, USA
diego@dmurio.csm.uc.edu

There is, however, an interesting inverse
problem that can be formulated. The objective of
this new problem is to determine part of the
structure of the system, in our case the forcing

teem f(X,t), from experimental information
given by the approximate knowledge of the
function U(X,t) at a discrete set of points in its

domain. This question belongs to a general class
of inverse problems, known as system
identification problems, and, in particular it is an
ill-posed problem because small errors in the
function U(X,t) might cause large errors in the

computation of the partial derivatives U, (X,t),
u,(x,t), and u,(Xt)which are needed in
order to estimate the forcing term function
f(xt).

To better illustrate the poor stability properties
of the mapping from the data function Uto the

solution function f, let's consider a dab in

the(X,t) plane, where the temperature function
U setisfies

u =u, + f(xt),0<x <m0 <t <o,

with homogeneous (zero) boundary and initial
conditions. We wish to recongtruct f (X,t) from
the exact transent temperature history
T(t) =u(x,,t) given a some point X,
0< X, <7T. Separation of variables leads to the
integral representation

T(t) = Jt.]zk(x,t —-s) f(x,s)dxds,
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where the kernel function is given by
2 i .
k(x,7) ==> """ sin(nx,) sin(nx).
=
Introducing the sequence of data functions

T (t)= n_g(z—e‘”zt)sin(nxo), n=0,

the source terms f_ are independent of t and we
obtain f, = 2\/ﬁsin(nx) . From here, it is clear
thatwhen N - o, T - 0 and

max,.... | f.()[=2vn - «,

showing that the problem is greatly ill-posed with
respect to perturbations in the data.

The identification of source terms in the one-
dimensional inverse heat conduction problem
(IHCP) has been extensively explored. However,
the available results are based on the assumptions

that the source term f depends only on one

variable (Cannon and DuChateau [1]) or that it
can be separated into spatial and tempora
components (Ewin and Lin [3], Nanda and Das
[5], Coles and Murio [2].) A historica and
technical review of general inverse source
problems can be found in the classical book of
Isakov [4].

The basic idea of the method presented in this
paper begins by attempting to reconstruct
mollified versions of several partial derivative
functions. The approximations are generated
initially by filtering the noisy data by discrete
convolution with an averaging kernel and then
using finite differences to numerically solve the
associated well-posed problems. Once the
approximate derivative functions have been
computed, the function f is evaluated providing

an estimate for the unknown forcing term. The
efficiency of this “direct” and simple approach is
demonstrated in section 3 where severa
numerical examples of interest are presented. In
section 2 the stabilized problem is introduced and
the corresponding error bounds are derived.

2. STABILIZED PROBLEM
In what follows we consider, without loss of

generality, the temperature function Uu(X,t)
measured in the unit sguare
I =1,x1,=[0,]%[0,1] of the (X,t)plane,
i.e,weset X, =1and t  =1inequation (1). On

the basis of this information we discuss the
problem of estimating the forcing term function

f (X,t)in some suitable compact set K [ 1.
We denote the X and t - projections of K by K,
and K, , respectively.

If C°(l) represents the set of continuous real
functions over | with norm

191l =maxX o [9( D)1,

we assume that the functions u(x,t), a(x,t),
a(xt), u(xt), u(xt), u,(xt)ad
f(x,t) OC°(l). We aso assume that instead
of the function U(X,t), we know some data
function u®(x,t) suchthat [[u-u®|l,, <&.

In order to stabilized the source problem, we
introduce the function

A Lew-X), x|< p
Psp(X) =173 o

01 IXI> pd’

po
with§>0, p>0, and A, = ( | exp(~-s’)ds)™.

_pJ

Ps, I C”(=pd, pd), is nonnegative, and

po
satisfies j Ps ,(X)dx=1.
-po

For g(x) OL*(1,), and for Xx 0 K, we define
the O -mollification of g by

3,000 = (p;00)(¥) =] ps(x-5)g(s)ds
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X+pd

= | ps(x-9)g(s)ds,

X—pd

with the P - dependency on the kernel  dropped
for simplicity of notation. We observe that
pd = distance(K,,dl ).

The following lemma and theorem are needed
for the stability analysis. The proofs can be found,
for example, in Murio, Mejiaand Zhan [6].

In al cases, the discrete (sampled) functions

G,G* ={g(x;),9°(x;): j0Z} are defined
on a uniform partition of |, , with step size AX,
and satisfy |[G—G° ||, <&. The symbol C

represents a generic positive real parameter.

2

d d
Lemma 1 |If g(x),&g(x) and yg(x)

OC°(l,), there exist constants C and C,,
independent of O and AX , respectively, such that

13,G° = 3Gl «, = C(e + ),

13,G" = gll.x, =C(e+5+ 1),

d . d £+ AX
15 95C" ~ g e < ClO+ ).
d? . d? £+ X
||y35G —yg|lwyKXSC(5+ 5 )
d Ax 2
100(3,6°) = 0l SCE+52) +Cy(89
and
170,69~ gl <C(E+ E50%) (00
X 0

where D, and DZdenote the centered and

backward - forward finite differences approxima-
tionsto the first and second derivatives, respecti-

vely.
In what follows we will use Dé, D and Doz’xto

indicate the corresponding finite differences
approximations to the partial derivatives.

Lemma 1 shows that attempting to reconstruct
derivatives of mollified noisy data functions is a
stable problem with respect to perturbations in the
data, in the maximum norm. This regained
stability property is naturally inherited by the

mollified reconstructed source term J5F°(X,t),

which is obtained as a linear combination of
partial derivatives of the measured temperature
function. More precisely, we have

J,F°(xt) =a,Dy(J,u’) +aDZ* (I,u’)
—Dy(Jsu°). )

We can now state our main theoretical result.

Theorem 1 Under the conditions of Lemma 1,
for fixed O> 0, the reconstructed mollified

source term  JsF°, given by formula (2),
satisfies

E+AX+ At
2

1sF* =Tl sClo+ ———1

+ C,[(Ax)° +(At)°].

Proof Rearranging terms in equations (1) and
(2), subtracting, and using maximum norms, we
have

135F° = f Il SHDa(Isu") =t L.

+ lladl,, 1D (J,u%) —u, [l
+ lladl, D7 (I,u7) =g L -

and by Lemma 1 we have

1 IsF = Fllx <
e+ At
o

+la |, [C(S+

C(o+ ) +C,(At)?

£+ X
o

) +Cs ()]
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+lall, 0@+ +¢,(207].

sating M =max(|[a|l_.lla, |l , ,2), weob-
tain the desired estimate

E+ A+ A
2

| IsF = f .« SCM {5+ }

+ Col()* +(4)°].

Corollary To get forma convergence, the ill-
posedness of the problem requires to relate al the
parameters involved.

The choice = (2(&+ X + /)" shows that
1 3sF° = f Il x =O(e+Ax+At)Y3,  which

implies formal convergence as &£, AX, and
At - 0.

Remarks In practice, when modeling, the
selection 0 = J( &) is performed automatically

by combining the mollification method with the
statistical  procedure of generalized cross
validation, as described in Murio, Mgjia and Zhan
[6].

We aso note that the choice of O
automatically defines the compact subset

K Ol where we seek to reconstruct the
unknown forcing term f (X,t) .

3. NUMERICAL PROCEDURE
Let h=Ax=1/M and k=At =1/ N be
the parameters of the finite differences discretiza-

tion of | . We denote by R" \W",Q/",U ", and
Fjn , the discrete computed approximations of the

mollified temperature function u®(jh,nk), the
mollified time derivative temperature
us (jh,nk), the mollified space derivative

temperature U; (jh,nk), the mollified second
space derivative temperature U, (jh,nk), and

mollified source term function f “(jh,nk),
respectively. Here, the & dependency on the dis-

crete functions has been eliminated to simplify
the notation.

Computation of Fjn throughout the entire do-

domain | requires the extension of the datato a
dightly larger domain | ; =[-pJ,,1+ pJ,] *
[-pd,,1+ pd,]. For computational efficiency,
the original two-dimensional problem is reduced
to a sequence of one-dimensional problems by
“marching” inthe X (or t) direction and we only
need to consider one-dimensional extensions. If
needed, by storing the radius of mollification at
each step, we can reconstruct K |, the
compact subset where the error estimate given by
Theorem 1 is valid. For details, see Zhan and
Murio [7] and the references therein.
Forj=1toM - 1, the space marching scheme

to compute W' ,Q',U', and F"is defined by

le—Rn_l
W' =———— n=12..,N-1,

R -R
Q;‘:%,niLZ,..HN—l,

R' -2R"+R"
ur=-—14 hzj 2 n=12..,N-1,

F' =W -a (jhnk)Q] —a(jhnk)U},
n=12,.. N-1.

The discretized measured approximations of the
temperature data functions are modeled by adding
random errors to the exact data functions. That is,
the reconstructions are attempted on the whole

domain | =[0,1] x[0,1], and

u®(jh,nk) =uj +¢&7,
j=0L..,M,n=01..,N,

where the Ej”’s are Gaussian random variables
with valuesin [—¢, £].

Examples
The numerical examples presented next cover
an interesting variety of possible behaviors for

the sourceterm f (X,t) . The first example des-
cribes a forcing term that is oscillatory in space
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while the second example illustrates a forcing
term which is highly oscillatory in time. Example
3 corresponds to a smooth source term that
decreases rapidly in time near the boundary
X = 0and very dowly near the boundary X =1.
Finally, example 4 involves a rather complicated
non-smooth rapidly varying forcing term in the
X - component.

Tables 1, 2, 3, and 4, illustrate the quantitative
behavior of the numerical method. For each of the

four examples, the average |2 relative error norm
-over 200 hundred random trials- corresponding
to f(xt), u(xt), u(xt), u,(xt) and

u,(X,t) , are reported.

The qualitative behavior of the method is
illustrated in Figures 1, 2, 3, and 4, where we
show the exact and typical computed source terms
associated with each one of the examples. All the
graphs correspond to source terms reconstructed

with parameters h=AX:i =k=NA :i,
M N

M =128, p=3 and€ = 0.005.

Example 1
Identify f (X,t)in u, =(—xu,), + f(Xxt)if
the exact data temperature is given by

u(x,t) =€ sin(10t).
In this example, the exact source term function is
f (x,t) = (xsin10t +10cos10t) €.

Table 1 Relative l, error norms (M = N)

M € f u Uy | Uy | Uy

64 | .005 | .169 | .009 | .073 | .243 | .171
128 | .005 | .088 | .008 | .064 | .203 | .088
256 | .005 | .022 | .009 | .062 | .199 | .016
64 | .010 | .171 | .010 | .074 | .243 | .173
128 | .010 | .087 | .011 | .064 | .203 | .087
256 | .010 | .022 | .010 | .062 | .199 | .017

Figure la Exact source term

Figure 1b Computed source term

Example 2
Identify f (X,t)in

u, = ((% +sn20x)u, ), + f (x,t)

if the exact data temperature is given by
u(x,t) =e".

In this example, the exact source term function is

f(xt)= —(f—g +20c0s20x +sin20x)e*™ .
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Table 2 Relativel, error norms (M = N)

€

f

u

U x

uXX

Ui

M
64

.005

A71

.0085

.073

243

A72

128

.005

.059

.0024

.058

187

.028

256

.005

.022

.0087

.062

199

.017

64

.010

.079

.0048

.075

.251

.075

128

.010

.059

.0049

.058

187

.028

256

.010

.022

.0048

.062

197

.017

Example 3
Identify f (X,t)in

Figure 2a Exact source term

Figure 2b Computed source term

U, = ((L+4(x —%ﬁux)x +(x 1)

if the exact data temperature is given by
u(x,t)=¢e".

In this example, the exact source term function is
f(x,t) = —(4(x —%)2 +8(x —%) +2)e.

Table 3 Relativel, error norms (M = N)

€ f u Uy | Uy | Uy

M
64 | .005| .124 | .0027 | .075 | .259 | .059

128 | .005 | .088 | .0025 | .058 | .187 | .089

256 | .005 | .055 | .0023 | .055 | .174 | .081

64 | .010 | .119 | .0051 | .075 | .259 | .069

128 | .010 | .085 | .0049 | .058 | .187 | .069

256 | .010 | .063 | .0047 | .055 | .174 | .076

Figure 3a Exact source term

Figure 3b Computed source term
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Example 4
Identify f (X,t)in u, =(au,), + f(x1)
if the exact diffusivity coefficient is given by

1
0 x<=,
. 4
4y, 1sx<1,
3-2X,— < X<—,
2 4
3
15 —<x<
2 1

and the exact datafunction is
u(x,t)=e".

In this example, the exact source term function is

-2e"™, 0<x<1,

41 1

-(5+4x)e"", = <x <=,

4 2

f(xt)= 1 3

(-2+2x)e7, = sx <=,

2 4

—g§€*, Esxsl.

10 4
Table 4 Relative l, error norms (M = N)

M € f u ux l-*IXX u'f
64 | .005| .119 | .0025 | .075 | .026 | .070
128 | .005 | .101 | .0026 | .058 | .187 | .020
256 | .005 | .096 | .0025 | .055 | .174 | .059
64 | .010 | .118 | .0050 | .075 | .026 | .062
128 | .010 | .098 | .0049 | .058 | .187 | .045
256 | .010 | .092 | .0036 | .055 | .174 | .042

4. CONCLUSIONS
The simple approach and results offered in this
presentation indicate that the methodology is a
viable dternative to recover arbitrary source
terms depending on space and time.
Extension of the procedure
dimensional casesis straightforward.

to higher

Figure 4a Exact source term

Figure 4b Computed source term

Figures 1-4 illustrate numerical results obtained
with sensors placed at every single point of the
spatial grid. If the number of sensor is smaller
than M +1, or are not equally spaced, the data
should be carefully interpolated before applying
the algorithm.
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ABSTRACT

The Inverse Problems under consideration
consist in a reconstruction of the coefficients
of differential equations. These coefficients are
functions only of the space variables and char-
acterize the properties of a media. One coeffi-
cient is included in the Laplace operator, writ-
ten in the divergent form, another is the co-
factor at time derivative of the solution. We
suppose that the model has the source term,
includes an initial condition and the Dirichlet
or Neuman boundary conditions. This model,
described by a parabolic equation, corresponds
to the applied problems of heat-conduction and
also to the identification of the characteristics
of the porous media of confined aquifers. In the
case of a stationary process we have an elliptic
equation and the problem of the coefficient re-
construction corresponds to the Electrical To-
mography. The measurements of the equa-
tion solution and the source term at discreet
points, that usually do not form a regular net,
are used as the input data. We propose Local
Approach and the Full Spline Approximation
Method (F.S.A.M.) for the numerical solution
of these Inverse Problems. The theoretical jus-
tification of constructed algorithms and results
of numerical experiments are given.

NOMENCLATURE
A matrix
f;, % derivative of f on z
h grid step
q,u equation solution
Q source term
n number of points in a grid

T,  polar coordinates

Sk recursive approximation spline
t time

T,P coefficients of the equation

xz,y Cartesian coordinates
A Laplace operator

Q region

) error estimation

«a regularization parameter
Subscripts and Superscripts
l,i,7 subscripts

k recursion index

INTRODUCTION
Let us consider an equation

(T wyn) + a% (T @w0) M

+P q,(z,y,t) + Q(z,y,t) = 0,

where z,y € () - some region on a plane,
0 < t < tg, the functions T = T'(x,y) and
P = P(z,y) characterize the properties of a
media, @ = Q(z,y,t) is the source term. This
model corresponds to the heat-conduction ap-
plied problems (in this case T' < 0, P < 0) and
to problems of identification of the porous me-
dia characteristics of confined aquifers. The
model has also an initial condition and the
Dirichlet or Neuman boundary conditions. As
a rule, the statements of the corresponding
inverse problems lead to nonlinear extremum
problems [1], [2], [3]. We use another Lo-
cal Approach, proposed in [4], [5], where for
T = —1 the reconstruction of the coefficient
P, depending only on time, was considered. In
[5], [6], some results of the reconstruction of
the coefficient T for given P, are presented
with the detailed error analysis. We consider
here Inverse Problems of the reconstruction
of coefficients T and P in equation (1), us-
ing measurements of the solution of the equa-
tion and of the source term as the input data.
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Concretely, the next problems are considered:
1) simultaneous reconstruction of coefficients
T and P depending only on space variables
(z,v); 2) reconstruction of the coefficient T' in
the stationary case. The input data are given
in discrete and noised form, that makes the
considered problems ill-posed. The regulariza-
tion based on the Full Spline Approximation
Method (F.S.A.M.) is proposed. It consists of
five steps: 1) recalculation data to the regu-
lar net; 2) recursive pre-smoothing of the re-
calculated input data; 3) checking up the stop
rule in the recursive pre-smoothing process; 4)
pre-reconstruction, i.e. solving, possibly with
the precondition, a system of the linear al-
gebraic equations with respect to reconstruct-
ing coefficients; 5) post-smoothing of the pre-
reconstructed coefficients. The F.S.A.M. dif-
fers from the previously proposed and justified
by the author Spline Approximation Method
(S.A.M.) [8], [9] by the presence of the pre-
condition and the post-smoothing. Pre- and
post-smoothing are realized by explicit spline
approximation formulas [7]. The precondition
is realized here by the Tikhonov regulariza-
tion. We consider here the number of the recur-
sions (number of the smoothings) and parame-
ter in the Tikhonov regularization as two inde-
pendent regularization parameters. Since the
problems under consideration have the charac-
ter of instability as a problem of second degree
numerical differentiation of functions, we use
here the F.S.A.M. with cubic splines [7]. Fur-
ther we suppose that the exact input data, the
initial and boundary conditions guarantee the
existence and the uniqueness of the solutions
for the considered Inverse Problems.

INVERSE PROBLEMS FOR THE
TWO-DIMENSIONAL PARABOLIC
DIFFERENTIAL EQUATIONS

Let us consider the problem of restoring the
coefficients of an equation (1) of the parabolic
type, when (z,y) € Q, t € [0,%], the func-
tions T'(z,y) and P(z,y) characterize the prop-
erties of a media, Q(z,y,t) is the source term.
We consider an initial condition and Dirich-
let or Neumann boundary conditions as zeros
for simplicity. This equation corresponds to
the applied problems of heat-conduction [1],
[2], as well as of identifying the characteris-
tics of the porous media of confined aquifers

[13]. Local Approach here consists in the use
of equation (1) in four moments of time, which
gives principal possibility to determine func-
tions T'(z,y), P(x,y).

Let us formulate the inverse problems for
the exact data and for the noised discrete data
in equation (1).

Problem 1 (Inverse Problem for the ex-
act data). Let the exact functions Q(z,y,t),
a(@,y,1), @(x,9,1), q,(z,9,1), Agz,y,t),
¢,(z,y,t) be given in four moments of time
t = t,l = h,l,I3,040 < I; < nti =
1,...,4;nt > 6. It is necessary to reconstruct
functions T'(z,v), P(z,y).

We introduce the matrix A = {a;},
a = Ty ty), ae = Q;($7y7tlk)a
Qg3 = Aq(mayatlk); Qr4 = q;(mayatlk)a k =
1,...,4; and the vector functions T'(z,y) =
(T;(.T,y),T;(.T,y),T(.’E,y),P(.Z‘,y))T, QO =
(Q(-T7y’th):Q(-T7y’tlz)aQ(-T7y’tl3)’Q(m’y7tl4))T'
Solution of Problem 1 can be obtained from the
linear algebraic system

AT = —Q,. (2)

In practice the input data as a rule are
discrete and noisy. So we consider below an-
other posing of the Inverse Problem. We
suppose that the functions ¢(z,y,t), Q(z,y,t)
are given by discrete and noisy values ¢;,; =
q(pi, t1) + 5;{,,@1-,1 = Q(pi,t1) + 63, in mo-
ments of time ¢t = #,l = 1,..,nt, in the
points p; = (mi,yi) ,8 = 1,..., N, of the irreg-

ular net. Errors 52%, 67, satisfy the estima-

tions max;  {[87,]} < 69, max;{|67]} < 69,
8 = max{§?,69}.

Problem 2 (Inverse Problem for the dis-
crete noisy data). Let functions Q(z,y,t),
q(z,y,t) be given by discrete and noisy data
{gi1}, {Qi1} described above. It is neces-
sary to reconstruct approximately functions
T(z,y), P(z,y).

To formulate the method for solving Prob-
lem 2 we suppose that points p; are the same
for both functions and all moments of the time
t; ,l = 0,1,...,nt. We will consider the re-
gion  C Qo = [0,1] x [0,1], and introduce

the grids: {x;} : ; = (i — 1) X hy, h, =
1/(ny — 1), 1 = =1,..,ne + 25 {yi} : ¥ =
(i—=1)xhy, hy =1/(ny—1), i =—1,...,ny+2.

We suppose that the grid {t¢,,} is the uniform
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grid: t,, = (m — 1) X hy, hy = 1/(ny — 1),
m =1, ...,ns. We use for recalculation of given
values of functions g(z,y,t) , Q(z,y,t) to the
regular net {z;,y;} the irrational recuperation,
that can be written for some function f(z,y, )
in fixed moment ¢; of time by formulas:

Zilil di(z,y) f(pi, t1)
Eij\il dl(x’ y)

IRi(z,y, f) = (3

where
) o\ —2
di(z,y) = ((w — ')’ + (y - y’)2) ,
1=1,..., N. We designate

d(N) = max m1n||p1

1<i<N j Pillg, »

where R, is two-dimensional Euclidean space.
We shall use also formulas of the Recursive
Smoothing spline-method [8], [9] for the case
of two variables functions for fixed moments ¢;
of time:

Sk(l’,y,tl,f) = (4)
izSk—l(ﬂfnijtlaf)si(x)sg'(y),
=1 j=1

where k > 1; So(zi,y;,t, f) = IRi(zs, 95, f),
si(u) are local basic cubic splines [10], con-
structed on the units w;_g,...,Uip2; & =
0,....,nu+ 1; w is z, or uw is y. We introduce
the discrepancy (residual) function

1/2
or(f) = ZZA 1,3 )
nzny =1 j=1
where
A’L,_’I(f) = |Sk(xi7yj7tl7f) - IRl(xhyj:f)P'

We propose for the numerical solution
of Problem 2 the Full Spline Approxima-
tion Method, which consists in calcu-
lating reconstruction splines 7,,P,, ¢ =
max{hi, bz, hy,8,d(N)}, with the next steps:

1) recalculation data to the regular net by
formulas (3) for f = q,Q;

2) recursive by kf = 1,... pre-smoothing of
the recalculated input data by formula (4) for
f=4a0;

3) stop rule comparing: if the discrepancy
function g, (f) for f = ¢, Q satisfy the esti-
mation g, (f) < ¢, then ky := ky + 1, go to

the item 2); if ok, (f) > ¢67, then Ky = ky ;
c=const > 1;

4)  pre-reconstruction, i.e. calculating
”smoothed” matrix A, and the right-hand side

Q. for the system (2) by formulas: A, = {a; ;},

0Skq(zy:ta)  ~ 0S5k, (z,y,t1,9)
a1 = QT, a2 = —5,

0SKk, (z,y,tz,Q)

ar3 = ASk, (z,y,t1,q), a14 =
Qo = (SKQ(mayatluQ)) SKQ(-T yytlzaQ)
SKQ(x;yatl:nQ)a SKQ (IayatluQ)) and solv-
ing a preconditioned by the Tikhonov regular-
ization system

(A A, + aE)T} = —A*Q.,, (5)
where A% is the matrix conjugate to A,, @ =
max{,/,V/8} is the regularization parameter,
¢ is the estimation of the round-up;

5) post-smoothing, i.e. calculation of recon-
structions 7, and P, by application of formu-
las (4) with the given number k = K times to
the pre-reconstructed at the 4-th step functions
T, and P, (the third and fourth components of
the vector T1); stop.

We suppose that in Problem 1 indexes [; are
chosen as maximal distant one from another,
such as 2 <l; <y <3 < ly < nt.

Theorem. We suppose:

1) the set {p;} is dense in 2 and the condi-
tion holds: d(N) — 0, N — oc;

2) the function ¢(z,y,t) has continuous
derivatives of fourth order on z,y and of sec-
ond order on t ;

3) the Problem 1 has unique solution
T (z,y).

Then for sufficient small ¢ the system (5)
also has the unique solution 7' 1 (z,y) that con-
verges uniformly to T, i.e.,

max_|T}(z,y) — T"(z,y)| = 0,0 — 0.

(z,y)EQ

Proof. At first we note that the function
IRi(x,y, f) interpolates the values f(p;,t;) in
points p; and this function is exact on con-
stant functions. Hence, IR;(z,y, f) has ap-
proximating properties. Then, if |[f|og <
M = const, then |IRi(z,y, f)llcjg < M, that
guarantees a lack of increasing of the uniform
error in the input data at irrational approx-
imation for sufficiently small d(N). To say
strongly, in the inequality of the discrepancy
principle it is necessary to use points (zi,yi)
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instead (z;,y;), and put ¢ = 1. But men-
tioned above approximating properties of the
function IR;(z,y, f) give us the possibility to
compensate this change for small d(N) by us-
ing ¢ > 1. The regularizing properties of the
Recursive Smoothing spline-method have been
justified for the problem of numerical differ-
entiation in [8], [9], [11] for the choice the
number of smoothing as the regularization pa-
rameter from the discrepancy (residual) prin-
ciple. Thus, using assumption 2) we obtain
the uniform convergence of the corresponding
first and second partial derivatives to the ex-
act ones. This means that a matrix A, in the
system (5), and the vector —@Q), in it’s right-
hand side converge to the exact matrix and
the right-hand side of the system (2) accord-
ingly, when ¢ — 0. Then from the assump-
tion 3) and observed convergence of the ma-
trix A, it follows, that for sufficiently small o
the inverse matrix A;! exists. The system
(2), as a rule, is ill-conditioned, that is why
we resolve not the system AUT:} = —@Q,, but
the preconditioned system (5). Well known
properties of the Tikhonov regularization [12]
together with the obtained above convergence
A, and Q, give us the convergence T to 7.
The post-smoothing with fixed number of iter-
ations K (usually K = 2 or 3) does not play
the main part in this convergence, but, as a
rule, make better the geometric characteristics
of the pre-recuperated solution of inverse prob-
lems. These arguments complete the proof.

Constructed algorithm is realized as a com-
plex of MATLAB programs. The input data in
numerical example below have been formed as
noised data of the exact solution g(z,y,t) =
sin(#*y + z) of equation (1) on an irregular
grid with the number of knots N = 51 in
Q = [0,1] x [0,1]. The function Q(z,y,t)
was calculated by using the exact T'(z,y) =
exp(sin(nz)), P(z,y) = sin(rzy), q(z,y,1) and
then have been noised with additional random
errors. We have used in 2y the regular net
with n, = n, = 11, n, = 6, t, = 0.5 for
the F.S.A.M. The estimation § of a noise is
over 1%. We present results of the P(z,y)
reconstruction. On the graphs of Fig. 1 we
can see: 1) isolines of exact ¢(z, y,t) and points
of measurements marked by ”stars”; 2) exact
P; 3) P reconstructed without any regulariza-

tion; 4) P reconstructed with the Tikhonov
regularization only; 5) P reconstructed with
pre-smoothing only; 6) P reconstructed by
the F.S.A.M. We can see at graphs that the
F.S.A.M. gives the best result.

Izolines of exact input data exact P No regularised P

P / V
08 * e
* o * X
o6t * **ﬂ
* l K
0.4 N **‘*
0.2 ‘1; ‘* .
e ¥ 0.5 -

)
)
2
-

0o
Reg. Smoothed P

o
(SRS

Figure 1: Regularization effect at the recon-
struction of a coefficient P of the parabolic dif-
ferential equation.

RECONSTRUCTION OF COEFFICI-
ENT FOR SOME ELLIPTIC DIFFER-
ENTIAL EQUATIONS
In the stationary case we have the simpli-
fied kind of the equation (1) with ¢, = 0. The
problem under consideration consists in recon-
struction of the coefficient T' only. We shall
suppose that the domain €2 is a unit circle and
present in the polar coordinate system (y,r)
the corresponding Laplace equation:
o 1 ’ ! " 1 ! 1 "
Trur+T—2T¢u¢+T(uM+;uT+T—2u¢¢) =0 (6)
with the boundary condition u(p,1) = f(¢). If
the solution w is known and initial conditions
for T' are given, then in principle it is possible
to solve the partial differential equation of the
first order concerning 7' by the characteristics
method [14]. The local approach for this type
of the equations on the basis of the local spline
approximation formulas was proposed in [15],
[16]. If the input data are given as noised val-
ues of the function u(p,r) on some sufficiently
thick net, it is possible to realize local approach
with the F.S.A.M. This scheme can appear in
the component quantification problem for the
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fluids of complex mixture (for example, mix-
ture of gas, oil and water). To obtain necessary
measurements it is possible to introduce into
the tube a set of the cylindrical electrodes.

To demonstrate the possibility of the local
approach and the regularization properties of
the F.S.A.M. we consider here the most simple
case of the radial symmetric solution w such
that w = u(r) does not depend on the angle ¢.
Equation (1) transforms into the equation

1

~(Tru, (), =0,

T

that leads to the relation

T(1)u,(1)

T = =

We suppose that the input data present the
noised values of the solution #; = u(r;) + &;, in
the n points r; = th, h = 1/n, |&| < 6, i =
1,...,n; and also the exact values u,.(1), T'(1)
that we put equal to 1 for simplicity. We use
the adopted for this case F.S.A.M., that in-
cludes three recursion steps: 1) pre-smoothing
the input data by explicit approximation cu-
bic splines Si; 2) stop rule in the form of the
residual principle; 3) post-smoothing K times
the calculated pre-reconstruction. The theo-
retical justification of the regularization prop-
erties of this algorithm for sufficiently smooth
4 and T is similar to the one, presented above
in the theorem, with the corresponding modifi-
cations. But, as a rule, T' presents some piece-
wise constant function, corresponding to the
electric properties of the mixture components.
However, the proposed algorithm gives good re-
sults of the reconstruction of the coefficient T
in this case too. Moreover, if the values of this
constants {7;} are known a priori, we include
this information into the algorithm as the last
post-processing step, that consists in the pro-
jection of the post-smoothed result on the set
{T;}. This projection can be realized with re-
spect to the absolute or the relative criteria. If
the values {T;} have not very different scale,
the absolute criterion gives good results, oth-
erwise we need to use the relative criterion.
Let us present outcomes of some model nu-
merical experiments. For the exact T'(r) =
T, =05,7€[0,03];T(r)=Ty =2, 7 €[0.3,
0.7; T(r) =T3 =1, r € [0.7, 1]; we calculated

the exact u(r) = 2lnr —1.51n(0.3) +0.51n(0.7)
+1,7 €0, 0.3]; u(r) =0.51lnr +0.51n(0.7) + 1,
r €[0.3,0.7;u(r) =Inr+1, r € [0.7, 1]. We
used the values u(r;) with the additional ran-
dom errors as the input data. In Fig. 2 the
results of the coefficient 7' reconstruction for
n = 51, § = 0.05 are presented. At all graphs
the exact T" is marked by the solid line. Graph
(a): dotted line - reconstruction without regu-
larization; graph (b): dotted line - reconstruc-
tion with the pre-smoothing only; graph (c):
”4” line - F.S.A.M. reconstruction; graph (d):
”stars” line - F.S.A.M. reconstruction with the
post-processing (absolute criterion).

()
1

15

T 1

0.5

Figure 2: Regularization effect at the coeffi-
cient T reconstruction in the elliptic differential
equation at the radial symmetry.

Now we consider the case of the angle sym-
metry, when the solution u and the coefficient
T depend on the variable ¢ only. The equation
(1) becomes the following one (Tu:p(go));J =0,
that leads to the relation

In the model numerical experiments we used
the exact T(p) = T3 = 20, ¢ € [0, 7/2];
T(p) =T, =1, ¢ € [7/2,2r]. We calculated
the exact u(p) = 0.05¢, ¢ € [0, 7/2]; u(p) =
1, € [7/2,27]. The input data present the
noised values of the solution &; = u(p;)+&;, in
the n points ¢; = (i—1)h, h = 27/(n—1), |&| <
8, i =1,...,n; and also the exact value u,(0) =
0.05. We use the F.S.A.M. algorithm with the
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relative criterion in the post-processing. In Fig.
3 the results of the coefficient T' reconstruction
for n = 51, § = 0.05 are presented. At all
graphs the exact T is marked by the solid line.
Graph (a): dotted line - reconstruction without
regularization; graph (b): dotted line - recon-
struction with the pre-smoothing only; graph
(¢): 7+ line - F.S.A.M. reconstruction; graph
(d): ”stars” line - F.S.A.M. reconstruction with
the post-processing (relative criterion).

(b)

T(f) ()

20

151+

T(f) 10 T(f)

0 2 4 6
fi

Figure 3: Regularization effect at the coeffi-
cient T reconstruction in the elliptic differential
equation at the angle symmetry.

Let us consider the Electrical Tomogra-
phy scheme, when the external electromag-
netic field initiate some distribution of the
potential inside the domain . We introduce
the g—function, that characterize the deriva-
tive of the produced potential u;(m,y) along
the straight line I, connecting two boundary
points P, = (z',y') and Py = (2°,9°). The
line [ has the parametric presentation p =
xcosp + ysin g, where |p| is a length of the
perpendicular, passed from the center of coor-
dinates to the line I, ¢ is the angle between
the axis z and this perpendicular. We suppose
that we can make measurements of the differ-
ence v(p, ) = u(xt, y')—u(x?,y°) of potentials
in the boundary points. In this case, using the
traditional scheme of the Radon transforma-
tion [17], we can obtain the corresponding in-
tegral equation of the first kind concerning the
introduced g—function, that is related with the
coefficient T'. Let us consider 2 as the unit cir-
cle and the radial symmetric case, for which

the function v(p, ¢) depends only on the vari-
able p. Then the mentioned integral equation
is Abel’s equation:

9Ot _ ), pel0,1). (7)

Ve
p

g—function has here the explicit relation with
T(p) by the formula g(p) = ¢/pT(p),
¢ = const. Hence, the reconstruction of the
g—function (we will call it Eg— Tomography)
give us the possibility to reconstruct 7'(p). The
Local Approach consists here in the application
of the inverse Radon transformation:

1
1 d [ o(t)tdt

9gp)=———+ | —,
(v) mpdp J \/t2 — p2
P

and using as the input data the measured val-
ues of the difference of potentials v; = v(p;)+&;,
in the boundary points of the n parallel lines,
corresponding to p; = (i + 1/2)h, h = 1/n,
& < 6, i =0,1,...,n — 1. The approximate
formula for calculation of the g—function is the
following:

pe[0,1], (8)

gp) = T;—kd(pk+1,p)+
n—1 ~
> Ldlpis,p) - (i),
i=k+1
d(t,p) = 1/Vt*—p?
p € [pk,pk+1),k:0,1,...,n—1.

We applied the described above in this section
F.S.A.M. algorithm to reconstruct numerically
g—function and then function T'(p). We under-
line, that in this scheme we use as the input
data the values of the simulated potential on
the boundary only, not inside the circle. Let
us present some results for the same model ex-
ample, that we calculated above for the radial
symmetric case.

The first kind of simulation of the function
v(p) have been realized for the known g(p), cal-
culating v(p) by formula (7) and the approx-
imation of the integral with the rectangular
formula. The results for n = 51, 6 = 0.05
are demonstrated in Fig. 4 the quality of the
proposed algorithm as the regularization pro-
cedure, realizing the inverse Radon transforma-
tion (8). At all graphs the exact T is marked
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by the solid line. Graph (a): dotted line - re-
construction on the no noised simulated data
{v(p;)} without regularization; graph (b): dot-
ted line - reconstruction on noised simulated
data without regularization; graph (c): ”+4”
line - F.S.A.M. reconstruction on noised sim-
ulated data; graph (d): ”stars” line - F.S.A.M.
reconstruction on noised simulated data with
the post-processing (absolute criterion).

T M

15

T ™ 1

0.5 [Hekkebe

0 0.2 0.4

06 (08 1 0 0.2 0.4 0.6 0.8 1

Figure 4: Regularization effect at the coeffi-
cient T reconstruction with the inverse Radon
transformation at the radial symmetry.

The second kind of simulation consists in
the construction of the model potential distri-
bution in the domain Q for the known T'(p)
under the influence of the known external elec-
tric field. We considered the plane vector
field Y_/)(m) parallel to axis z independent on
y. The simulated relative exact values of the
function v(p) can be calculated by formulas:
v(p) = 2[((1/T> — 1/T3)y +(1/Tv — 1/T>)z
+Z/T5], p € [0, 0.3]; v(p) = 2[(1/T> — 1/T3)y
+Z/T5], p € 0.3, 0.7); v(p) = 22/T5, p € 0.7,
1], where 7 = (1 — p*)'/2, 7 = (0.72 — p*)'/2,
Z = (0.32 — p?)'/2. In Fig. 5 the results of
the coefficient 7' reconstruction for n = 21,
6 = 0.05 are presented as maps of isolines.
Graph (a): the exact T'(x,y); graph (b): recon-
struction on noised simulated data without reg-
ularization; graph (c¢): S.A.M. reconstruction
on noised simulated data; graph (d): F.S.A.M.
reconstruction on noised simulated data with
the post-processing (absolute criterion).

We considered also scanning by the rotat-
ing field 1_/')(1‘) of structures without the radial

15

05

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 5: Regularization effect at the coeffi-
cient T' reconstruction by Eg-Tomography in
the radial symmetric case.

symmetry, for which the coefficient T'(z,y) =
Tla(xay) € Qz C Q,’L = 15"'5m; T(J?,y) =
Ty, (z,y) € Q/(U™, Q). Here Ty, T, are known
constants. The input data for every fixed an-
gle of scanning are values of potentials in NV
boundary points of the domain Q2. On the ba-
sis of the conception of the Eg— Tomography
scheme and the ray character of the considered
field ‘_/J(m) we developed algorithm for the re-
construction of such coefficients T'(z,y). Let us
present the results of the model numerical ex-
periments for exact simulated input data with
T, =2,T, =1, N = 61 and different numbers
M = 6,12, 36 of scanning angles. In Fig. 6 we
can see: graph (a) - the exact T'(z,y); graph
(b), (c), (d) - reconstructed T for M = 6,12,36
correspondingly. We can see from the graphs
of Fig. 2 -6 that proposed algorithms give the
possibility to reconstruct desired coefficients of
considered elliptic equations with good quality.
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ABSTRACT

In this paper a new stochastic algorithm for function
optimization is presented. Called Generalized Extremal
Optimization, it was inspired by the theory of Self-
Organized Criticality and is intended to be used in
complex inverse design problems, where traditional
gradient based optimization methods may become
inefficient. Preliminary results from a set of test
functions show that this algorithm can be competitive to
other stochastic methods such as the genetic algorithms.

NOMENCLATURE

k  Index of bit rank.

L  Length of binary string that encodes the design
variables.

1 Length of binary string for one design variable.

N  Number of design variables.

V  Value of the objective function for a given binary
string.

x  Design variable.

AV Bit fitness.

T Free adjustable parameter of the optimization
algorithm.
INTRODUCTION

Stochastic algorithms inspired by nature have been
successfully used for tackling optimization problems in
engineering and science. Simulated Annealing (SA)!
and Genetic Algorithms (GAs)"? are probably the two
methods most used. Their robustness and ability to be
easily implemented to a broad class of problems,
regardless of such difficulties as the presence of multiple
local minima in the design space and the mixing of
continuous and discrete variables, has made them good
tools to tackle complex problems, for example, in the
aerospace field®”. The main disadvantage of these
methods is that they usually need a great number of
objective function evaluations to be effective. Hence, in
problems where the calculation of the objective function
is very time consuming, these methods may become
impracticable. Nevertheless, the availability of fast
computing resources or the use of hybrid techniques!™"'"!
has made the power of those algorithms available even to

Fernando Manuel Ramos
INPE-LAC
Av. dos Astronautas, 1758
S.J.Campos, 12227-010, Brazil
Email: fernando@lac.inpe.br

that kind of problems. There are today many derivatives
of the SA and GAs methods, created to give more
efficiency to the proposed original algorithms, but that
keep essentially their same principles.

Recently, Boettcher and Percus!'!! have proposed a
new optimization method based on a simplified model of
biological evolution developed to show the emergence of
Self-Organized Criticality (SOC) in ecosystems.!'”)
Called Extremal Optimization (EO), it has been
successfully applied to tackle hard problems in
combinatorial optimization.

Although algorithms such as SA, GAs and the EO are
inspired by natural processes, their practical
implementation to optimization problems shares a
common feature: the search for the optimal is done
through a stochastic process that is “guided” by the
setting of adjustable parameters. Since the proper setting
of these parameters are very important to the
performance of the algorithms, it is highly desirable that
they have few of such parameters, so that the cost of
finding the best set to a given optimization problem does
not become a costly task in itself. The EO algorithm has
only one adjustable parameter. This may be an “a priori”
advantage over the SA and GA algorithms, since they
use more than one.

In this paper the Generalized Extremal Optimization
(GEO) algorithm is presented. The GEO algorithm is
built over the EO method, but the way it is implemented
allows it to be readily applied to a broad class of
engineering problems. The algorithm is of easy
implementation, does not make use of derivatives and
can be applied to nonconvex or disjoint problems. It can
also deal in principle with any kind of variable, either
continuous, discrete or integer. All these features make it
suitable to be used in complex inverse design problems,
where traditional gradient methods could not be applied
properly due to, for example, the presence of multiple
local minima or use of mixed types of design variables.
In this work the performance of the GEO algorithm is
tested in a set of non-linear multimodal functions used
commonly to test GAs. The performance of the GEO
algorithm  for these functions is compared with the
ones for a standard GA and the Cooperative Co-
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evolutionary GA (CCGA) proposed by Potter and De
Jong.m]

THE EXTREMAL OPTIMIZATION ALGORITHM

Self-organized criticality has been used to explain the
behavior of complex systems in such different areas as
geology, economy and biology.!"" The theory of SOC
states that large interactive systems evolves naturally to a
critical state where a single change in one of its elements
generates “avalanches” that can reach any number of
elements on the system. The probability distribution of
the sizes “s” of these avalanches is described by a power
law in the form P(s) ~ s7 , where y is a positive
parameter. That is, smaller avalanches are more likely to
occur than big ones, but even avalanches as big as the
whole system may occur with a non-negligible
probability. To show that SOC could explain features of
systems like the natural evolution, Bak and Sneepen!'?!
developed a simplified model of an ecosystem in which
species are placed side by side on a line with periodic
boundary conditions. To each species, a fitness number
is assigned randomly, with uniform distribution, in the
range [0,1]. The least adapted species, the one with the
least fitness, is then forced to mutate, and a new random
number assigned to it. The change in the fitness of the
least adapted species alters the fitness landscape of their
neighbors, and to cope with that new random numbers
are also assigned to them, even if they are well adapted.
After some iterations, the system evolves to a critical
state where all species have fitness above a critical
threshold. However, the dynamics of the system
eventually causes a number of species to fall below the
critical threshold in avalanches that can be as big as the
whole system.

An optimization heuristic based on a dynamic search
that embodies SOC would evolve solutions quickly,
systematically mutating the worst individuals. At the
same time this approach would preserve throughout the
search process, the possibility of probing different
regions of the design space (via avalanches), enabling the
algorithm to escape local optima. Inspired by the SOC
theory, the basic EO algorithm was proposed as
follows:!""

1.Initialize configuration C of design variables x; at
will; set Cyes = C.

2. For the current configuration C,
a) set a fitness F; to each variable x;,
b) find j satisfying F; <F; for all i,
c) choose C’ in a neighborhood N(C) of C so that x;
must change,
d) accept C = C’ unconditionally,
e) if F(C) < F(Cpeg) then set Cpee = C.

3. Repeat step (2) as long as desired.

4. Return Cyeg and F(Chegy).

The above algorithm shows good performance on
problems, such as graph partitioning, where it can choose
new configurations randomly among neighborhoods of
C, while satisfying step 2c. But when applied to other
types of problems, it can lead to a deterministic
search.'"! To overcome this, the algorithm was modified
as follows: in step 2b the N variables x; are ranked so
that to the variable with the least fitness is assigned rank
1, and to the one with the best fitness rank N. Each time
the algorithm passes through step 2c a variable is chosen
to be mutated according to a probability distribution of
the k ranks, given by:

Pk)=k ', 1<k<N, (1)

where 7 is a positive adjustable parameter. For T — 0, the
algorithm becomes a random walk, while for 1 — o, we
have a deterministic search. The introduction of the
parameter T, allows the algorithm to choose any variable
to mutate, but privileging the ones with low fitness. This
implementation of the EO method received the name t-
EO algorithm!""), and showed superior performance to
the standard implementation even in cases where the
basic EO algorithm would not lead to local minima.

As pointed out by Boettcher and Percus,''! “a
drawback of the EO method is that a general definition
of fitness for the individual variables may prove
ambiguous or even impossible”. What means that for
each new optimization problem assessed, a new way to
assign the fitness to the design variables may have to be
created. Moreover, to our knowledge it has been applied
so far to combinatorial problems with no implementation
to continuos functions. In order to make the EO method
applicable to a broad class of design optimization
problems, without concern to how the fitness of the
design variables would be assigned and capable to tackle
either continuos, discrete or integer variables, a
generalization of the EO, called Generalized Extremal
Optimization, was devised. In this new algorithm, the
fitness assignment is not done directly to the design
variables, but to a “population of species” that encodes
the variables. Each species receives its fitness, and
eventually mutates, following general rules. The GEO
algorithm is described in the next Section.

THE GENERALIZED EXTREMAL OPTIMIZATION
ALGORITHM

We devised the GEO algorithm using the same logic
of the evolutionary model of Bak and Sneppen,!'” but
applying the t-EO approach to choose the species that
will mutate. Following Bak and Sneppen,''” L species
are aligned and for each species is assigned a fitness
value that will determine the species that are more prone
to mutate. We can think of these species as bits that can
assume the values of 0 or 1. Hence, the entire population
would consist of a single binary string. The design
variables of the optimization problem are encoded in this
string that would be similar to a chromosome in a
canonical GA, but with each bit considered as a species
or individual, as shown in Figure 1.
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X X

1 N
- -

[1[1]ofo[r]o[1]o+ « -1]o[1]o[o[1]0]1]

Each bit represents one species

Figure 1 — Encoding of N design variables. In this
example each design variable is represented by 6 bits.

To each species (bit) is assigned a fitness number that
is proportional to the gain (or loss) the objective function
value has in mutating (flipping) the bit. All bits are then
ranked from rank 1, for the least adapted bit, to N for the
best adapted. A bit is then chosen to mutate (flip)
according to the probability distribution (1). This process
is repeated until a given stopping criteria is reached and
the best configuration of bits (the one that gives the best
value for the objective function) found through the
process is returned. In Figure 1

The practical implementation of the GEO algorithm
to a function optimization problem is as follows:

1. Initialize randomly a binary string of length L
that encodes N design variables of bit length I; j = 1,
N). For the initial configuration C of bits, calculate
the objective function value V and set Cps, = C and
Vbest =V.

2. For each bit 1 of the string, at a given iteration:
a) flip the bit (from 0 to 1 or 1 to 0) and
calculate the objective function value V; of the
string configuration C;,

b) set the bit fitness as AV; = (V; - Vies). It
indicates the relative gain (or loss) that one has
in mutating the bit, compared to the best
objective function value found so far.

¢) return the bit to its original value.

3. Rank the bits according to their fitness values,
from k = 1 for the least adapted bit to k = L for the
best adapted. In a minimization problem, higher
values of AV; will have higher ranking, and otherwise
for maximization problems. If two or more bits have
the same fitness, rank them randomly.

4. Choose with equal probability a candidate bit i
to mutate. Generate a random number RAN with
uniform distribution in the range [0,1]. If the
mutating probability Pi(k) of the chosen bit is equal
or greater than RAN the bit is confirmed to mutate.
Otherwise, the process is repeated until a bit is
confirmed to mutate.

5. For the bit 1 chosen to mutate set C=C;and V =
V..

6. If V < Vi (V > Vi, for a maximization
problem) then set Vi, = V and Cpe = C.

7. Repeat steps 2 to 6 until a given stopping
criteria is reached.

8. Return Gy and V.

Equality and inequality constraints can be easily
incorporated to the algorithm simply setting a high (for a
minimization problem) or low (for a maximization
problem) fitness value to the bit that, when flipped, leads
the configuration to an unfeasible region of the design
space. Side constraints are directly applied through the
encoding of the design variables. Note that the move to
an infeasible region is not prohibited, since any bit has a
chance to mutate according to the P(k) distribution.
Moreover, no special condition is posed for the
beginning of the search process, which can even start
from an infeasible region.

A slightly different implementation of the GEO
algorithm can be obtained, changing the way the bits are
ranked and mutated. Instead of ranking all the bits
according to steps 2-3, we can rank them separately for
each variable. In this way the bits of each variable will
have a rank ranging from 1 to l;. In step 4 one bit of each
variable is chosen to be flipped according to the
probability distribution P(k). We will call this
implementation hereinafter GEO,,. In the following
Section the performance of the GEO algorithm is
verified against a set of test functions.

RESULTS

The GEO algorithm and its variation GEO,,, were
applied to a set of test functions described in [13]. They
are nonlinear, multimodal, multidimensional functions
with variables bounded by side constraints. As in the
GAs used in [13], each variable is encoded in 16 bits. All
functions have one global optimum, where the value of
the objective function is zero. As with any stochastic
algorithm, the performance of GEO is influenced by its
control parameter. In order to find the “best” value of ©
applicable for each test function, we varied t in the range
[0.25,3.0] with steps of 0.25. For a given test function,
the best value of T was the one that lead to the best
(minimal) value for the objective function, after a given
number of function evaluations (NFE).

In Figures 2 to 6, the performance of the GEO
algorithms for the set of test functions is shown together
with the results for the GAs. All data points on the
graphs below represent an average of 50 independent
runs. The best objective function value found through the
search is shown against the number of function
evaluations.
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Figure 6 — Results for the Ackley function.
*From [13].

From the results shown throughout this Section, it can
be seen that the GEO,,, performed equally or better than
the GEO for all functions. This indicates that, at each
iteration, mutating one bit per variable may be
advantageous compared to mutating only one bit for the
whole string.

It can be also observed that, for a given test function,
the value of t that gave the best results was always lesser
in the GEO algorithm than in the GEO,,,. It must be also
remarked, that the range where the “best” t was found
for both GEOs is not large, what means that the
computational effort to “fine tune” t is not really a
burden for the method.

Finally, the results shown above indicate that the
GEO can work successfully. Although it performed very
poorly for the Schwefel function, when compared to the
GAs, it was quite competitive for the other test functions,
mainly when the variables were tackled simultaneously
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(GEOy,). In fact, it must be remembered that does not
exists a “best of all” optimization algorithm,"* and it is
not expected that the GEO algorithm would outperform
all the other kinds of stochastic algorithms in all cases.

CONCLUSIONS

In this paper the Generalized Extremal Optimization
algorithm was presented. Inspired by the theory of Self-
Organized Criticality, it is an stochastic algorithm
devised to tackle complex design optimization problems
that presents such features as nonconvex design spaces
or presence of different kinds of design variables. As an
“a priori” advantage over other popular stochastic
algorithms, it has only one adjustable parameter, and can
be easily fine tuned to give its best performance on a
given problem. Tested in a set of nonlinear, multimodal
functions commonly used to assess the performance of
stochastic algorithms, it showed to be a potential
candidate to be incorporated into the designer’s tool
suitcase. Ongoing research is aimed at the study of the
implementation of the GEO algorithm to constrained
function optimization and its application to real inverse
design problems.
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ABSTRACT

In the formulation of the Cauchy problem in lin-
ear elasticity the Lamé system of equations has
to be solved subject to overspecified boundary
conditions on both the displacement and trac-
tion vectors over a portion of the boundary of
the solution domain, with the remaining por-
tion of the boundary being underspecified. This
classical Cauchy problem is ill-posed and direct
inversion numerical techniques fail to produce a
stable solution. Therefore, in this paper several
boundary element regularization methods, such
as iterative, conjugate gradient, Tikhonov regu-
larization and singular value decomposition are
developed and compared.

NOMENCLATURE

G shear modulus

N, N1, Ny numbers of boundary elements
percentage of noise

traction vector

specified boundary traction
displacement vector

specified boundary displacement
| - the Euclidean norm

| |lz2 the norm of the space L2

Greek Symbols

e eI

V)

€ij components of the strain tensor
r the boundary of the domain Q
ry, T, parts of the boundary T'

A regularisation parameter

v Poisson ratio

v equivalent Poisson ratio for plain

strain/stress state

Q solution domain

o standard deviation

Oi; components of the stress tensor
6 angular polar coordinate

& singular values
Superscripts

(an)
(k)

(num)

1 INTRODUCTION

analytical value
quantity at the k*”? iteration
numerical value

The Cauchy problem in elasticity has been stud-
ied by Yeih et al. [1] and Koya et al. [2], who
have analysed its existence, uniqueness and con-
tinuous dependence on the data and have pro-
posed a regularisation procedure, namely the fic-
titious boundary indirect method, based on the
simple or double layer potential theory. Further,
Marin et al. [3] have developed an alternating it-
erative algorithm which reduced the problem to
solving a sequence of well-posed boundary value
problems which were solved using the boundary
element method (BEM), whilst [4-6] have used
both the conjugate gradient method (CGM) and
the Tikhonov regularisation method combined
with the BEM.

The purpose of this paper is to describe and
compare several boundary element regularisa-
tion methods, such as iterative, conjugate gradi-
ent, Tikhonov regularisation and singular value
decomposition methods, for solving the Cauchy
problem in isotropic linear elasticity. The regu-
larisation is obtained by matching the number of
iterations performed, the choice of the regular-
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isation parameter, or the choice of the optimal
truncation number to the level of the noise in
the input data.

2 CAUCHY PROBLEM

Consider an isotropic linear elastic material
which occupies a bounded domain Q C R¢ with
piecewise smooth boundary I'. In the absence
of body forces, the equilibrium equations for the
displacement u are given by, [7],

zeQ, i=1d (1)
where o;; is the stress tensor, and the strain ten-
sor &;; is given by

5 (@) = 0,

1

cis(u(@)) = 5 (a‘“(“})

(91:]'

i, =1,4d.

(2)

These tensors are related by the constitutive law
oij(u(z)) = 2Geij(u(z))
exk(u(x))bij,

Ou; (@)
+ a:cl )’

2Gv

+1—2V

1,7 =1,d, (3)
with G and v the shear modulus and Poisson
ratio, respectively, and &;; the Kronecker delta
tensor. We now let n() be the outward normal
vector at I' and #(x) be the traction vector at a
point & € T' whose components are defined by

ti(®) = oy5(x) n;(x),

In the direct problem formulation, the knowl-
edge of either the displacement or traction vec-
tors on the whole boundary I’ gives the corre-
sponding Dirichlet, Neumann, or mixed bound-
ary conditions which enables us to determine the
displacement vector in the domain 2. Then, the
strain tensor ¢;; can be calculated from (2) and
the stress tensor is determined using (3). In con-
trast, in the inverse problem formulation both
the displacement and traction vectors are speci-
fied on a part of the boundary T, say I';, namely,

zcl, i=1,d. (4)

ui(®) = wi(e), ti(z) = E(az), zcly, i=1,d,
- (5)
where u and t are prescribed vector valued func-
tions. In the above formulation of the boundary
conditions (5), it can be seen that the boundary
T is overspecified by prescribing both the dis-
placement wp, = u and the traction fjp, = 1

vectors, whilst the boundary 'y = T — Ty is
underspecified since both the displacement ur,
and the traction #p, vectors are unknown and
have to be determined. The problem given by
equations (1) and (5), called the Cauchy prob-
lem, is much more difficult to solve both ana-
lytically and numerically than the direct prob-
lem, since the solution does not satisfy the gen-
eral conditions of well-posedness. Although the
problem may have a unique solution, it is well
known that this solution is unstable with respect
to small perturbations in the data on I's and
therefore regularisation methods are required.

3 BEM

The Lamé system (1) in the two-dimensional
case, 1.e. d = 2, can be formulated in integral
form, [8], namely,

Cij () () + ][ T (y, 2)u; (y) dT

= /FUij(y, z)t;(y) dT (6)
fori,j = 1,2, € Q = QUT', where the first inte-
gral is taken in the sense of the Cauchy principal
value, Cjj(2) = 1 for ® € Q and Cj;(e) = 1/2
for # € T, and U;; and Tj; are the funda-
mental displacements and tractions for the two-
dimensional isotropic linear elasticity given by

Usj(y,®) = C1C26; Inr(y, )
or(y,z) Or(y, =)
0y; Oy;

C
Tij(y,®) = m [<C46ij

Or(y,z) Or(y, =)\ Or(y, ®)
2w oy )an(y)

Here r(y, @) represents the distance between the
node/collocation point # and the field point y

—C

and the constants C1, - -, C4 are given by
C,=-1/[87G(1-7D)], C;=3—4p,
Cs=-1/[4n(1-7)], Ca=1-27, (8)

where v = v for the plane strain state and
7 =v/(1+ v) for the plane stress state.
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A BEM with continuous linear boundary ele-
ments, [8], is employed in order to solve the
Cauchy problem in linear elasticity by using the
regularisation methods described in the next sec-
tion. If the boundaries I'; and I'y are discretised
into N; and N, continuous linear boundary el-
ements, respectively, such that N = N; + Nj,
then on applying the boundary integral equa-
tion (6) and the boundary conditions (5) at each
node z € T', we arrive at a system of 2N linear
algebraic equations with 4N; unknowns which
can be generically written as

CX =F (9)
where the vector F' is computed using the
boundary conditions (5), the matrix C depends
only on the material properties and the geome-
try of the boundary I" and the vector X contains
the unknown values of the displacements and the
tractions on the boundary I';.

4 REGULARISATION

4.1 Singular value decomposition

Consider the ill-conditioned system of linear al-
gebraic equations (9), where C € RZVx4Ni
X € R*M: F € R?Y and assume for the mo-
ment that N > 2N;. Then the singular value
decomposition (SVD) of the matrix C is a de-
composition of the form

4N,

C=wWxv? = 3 wigol (10)
i=1

where W = (wy, -, wap, ) € RZV*4N1 and V =
(v1,- -, van,) € R¥1X4N1 are matrices with or-
thonormal columns, i.e. WIW = VIV = Iy,
and X = diag(¢1, - -, an, ) is a diagonal matrix
with nonnegative diagonal elements appearing
in the order

§12& 2> >&n, 20 (11)
The numbers &; are called the singular values
of the matrix C, whilst the vectors w; and wv;
are the left and the right singular vectors of the
matrix C, respectively. The SVD (10) can be
defined for any N; and N, since, if Ny < Ny, we
can simply apply the SVD (10) to the matrix
CT . In the ideal setting, without perturbations

and rounding errrors, the treatment of the ill-
conditioned system of equations (9) is straight-
forward, namely we simply ignore the SVD com-
ponents associated with the zero singular values
and compute the solution

rank(C)

x — wl F

&

v;. (12)

i=1

In practice, C is never exactly mathematically
rank deficient, but instead numerically rank de-
ficient, i.e. it has one or more small nonzero
singular values &; for some i greater than some
re < rank(C) = 4N;. The small singular values
inevitably give rise to difficulties and the solu-
tion X is dominated by the last (4N; —r.) com-
ponents of equation (12).

The most common approach to regularise nu-
merically rank deficient problems is to consider
the given matrix C as a noisy representation of a
mathematically rank deficient matrix and to re-
place C by a matrix that is close to C and math-
ematically rank deficient. The standard choice
1s the rank-n matrix C,, defined as

(O Zwifi”g‘ (13)
i=1

1.e. we replace the small nonzero singular val-
ues €ny1, -+, Ean, With exact zeros and it is re-
ferred to as the truncated SVD (TSVD) solu-
tion. The optimal truncation number n is cho-

sen according to the discrepancy principle, [9],
1.e. we choose the first n such that

IC.X — Fll2 < e (14)

where ¢ is a measure of the perturbations in the
matrix C and in the Cauchy data (@, t) on the
boundary I'; and of the incompatibility of the

exact solution of the system of equations (9).

4.2 Tikhonov regularisation

Consider again the ill-conditioned system of lin-
ear algebraic equations (9) whose Tikhonov reg-
ularised solution of zeroth-order is given by

X)\ ZT)\(X)\)I min T}\(X)

XER‘lNl

(15)
where T, represents the Tikhonov functional
given by

TA(X) = [|ICX — Fl; + M| X]; (16)
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where A > 0 the regularisation parameter to be
chosen. Formally, the Tikhonov regularised so-
lution X of the problem (15) is given as the
solution of the regularised equation

(ccT@: + AH)XA =CTF. (17)

Regularisation is necessary when solving inverse
problems because the simple least squares solu-
tion, i.e. A = 0, is dominated by contributions
from data errors and computer rounding errors.
By adding regularisation we are able to damp
out these contributions and maintain the norm
[| X ||, to be of reasonable size. If too much reg-
ularisation, or damping, i.e. A is large, is im-
posed on the solution then it will not fit the
given data F' properly and the residual norm
[|[CX — F||, will be too large. If too little reg-
ularisation is imposed on the solution, i.e. A is
small, then the fit will be good, but the solution
will be dominated by the contributions from the
data errors, and hence || X ||, will be too large.
It i1s quite natural to plot the norm of the so-
lution as a function of the norm of the residual,
ie. (||ICX s — F||,,||Xxll,), parametrised by the
regularisation parameter A. This plot results
in general in an L-curve graph which is really
a trade-off curve between two quantities that
both should be controlled. The optimal value
of the regularisation parameter A is obtained as
the maximum point of the curvature of the L-
curve, [10].

As with every practical method, the L-curve has
its advantages and disadvantages. There are two
main disadvantages or limitations of the L-curve
criterion. The first disadvantage is concerned
with the reconstruction of very smooth exact so-
lutions, [11, pp.193-197,12]. For such solutions,
[13] showed that the L-curve criterion will fail,
and the smoother the solution, the worse the
regularisation parameter A computed by the L-
curve criterion. However, it is not clear how of-
ten very smooth solutions arise in applications.
The second limitation of the L-curve criterion
1s related to its asymptotic behaviour as the
problem size 4N; increases. As pointed out in
[14], the regularisation parameter A computed
by the L-curve criterion may not behave consis-
tently with the optimal parameter A,,; as 4N,
increases. However, this ideal situation in which
the same problem is discretised for increasing
4N; may not arise so often in practice. Often

the problem size 4N is fixed by the particular
measurement setup, and if a larger 4N; is re-
quired then a new experiment must be made.
Apart from these two limitations, the advan-
tages of the L-curve criterion are its robustness
and ability to treat perturbations consisting of
correlated noise, [10]. However, as commented
by the referee, the so called “L-curve method” is
not a regularizing algorithm and cannot be used
for the solution of ill-posed continuous problems,
but it can be used for numerical experiments
dealing with discrete ill-conditioned systems of
linear equations such as (17).

4.3 Conjugate gradient method

Since the boundary conditions on the boundary
T'; are to be determined, we consider the bound-
ary displacement on the underspecified bound-
ary I'; as a control v € L%(T'1) x L?(T) in a di-
rect problem formulation to fit the Cauchy data
u € L?(T'3) x L*(T3) on the overspecified bound-
ary I'y. Thus we consider the direct problem

sy (u(x) = 0, z€Q
ui(®) = vi (@), 5 zecl (18)
oij(u(®))n;(=) = ti(z), z el

with t € L?%(T3) x L?%(T3). Assuming that
' is a smooth boundary consisting of two
non-intersecting closed curves I'; and Ty, we

note that there is a unique solution u(v,t) €
HY2(Q) x HY?(Q) of the direct problem (18),
[15]. Then we aim to find v such that

Av = u(v, t)|F2 —u.

(19)

To do so, we minimise the functional

1 ~
J(v) = 5ll4v — 8| pa(r,)x L2 (20)

with respect to v € L?(T'1) x L?(T1). The func-
tional (20) is twice Fréchet differentiable and its
first gradient has the form, [5],

J'(v) = = (o ($(@)nj(=))p,  (21)

where 1 is the solution of the adjoint problem

%Uw(’lﬁ(m)) =0, 2zcQ
/l)bl(m) = 0) ® C Pl
_ i ((z))n; ()

=u;(v,t)(2) — u(x), = € Ts. (22)
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Thus the CGM applied to our problem has the
form of the following algorithm:

Step 1. Set k = 0. Choose u(®) € L?(T3) x
L%(Ty).

Step 2. Solve the direct problem

® €

zely (23)

iBEFg

to determine the residual »(*)
r®) = Au®) — g = u(u® ), —a.  (24)
Step 3. Solve the adjoint problem

%Uz](ib(m)) =0,z
¢’L(w) = 07 x c I‘l

oij((x))n;(2) = rP(x), x €T5,  (25)

to determine the gradient g(*)
k
0 (@) = 033 ((0, P ) (@))mj (), - (26)
Calculate 8y and d™®) as follows:

/Bk:()y

2
||g(k)”L2(1"1)><L2(1"1)

k=0: d(k) — _g(k)

k Z 1: ﬁk = P)
||g(k_1)||L2(1"1)><L2(1"1)

d®) = —g*) 4 g, d*+-1),

bl

Step 4. Solve the direct problem

L) =0, =e9
ui(z) = d* (=),

oij(u(z))n;(z) =0,

CI)EI‘l
CI)EI‘Q

to determine Agd*) given by
Aod™® = w(d®, 0)r,. (29)

Compute oy and u(*+1) ag

2
||g(k)||L2(1"1)><L2(1"1)

= i ,
||A0d(k)||L2(r2)xL2(r2)

w1 = 4 () 4 qp d®), (30)

Step 5. Set £ = k£ + 1. Repeat from Step 2
until a stopping criterion is prescribed.

As a stopping criterion we choose the one sug-
gested by Nemirovskii [16], namely we choose
the first £ € N such that

(31)

where ¢ is a measure of the errors of the Cauchy
data on I'y and § > 1 is a constant which can
be taken heuristically to be 1.1, as suggested by
Hanke and Hansen [17].

Hr(k)HLZ(Fz)xLZ(Fz) < be

4.4 Alternating iterative method

The alternating iterative algorithm, which was
proposed by Kozlov et al. [18], consists of the
following steps:

Step 1. Specify an initial approximation
t(o)(w) = (tgo)(w),tgo)(az)) for the tractions on
I'; and solve the well-posed mixed boundary
value problem

0
- (2(0) —
32, oij(u(2)) =0, z €Q

(32)

in order to determine u(®)(x) for # € Q and
u(o)(w) forez € T;.

Step 2. Having constructed the approximation
u(®*) k > 0, the well-posed mixed boundary
value problem

%Wa’(u(”*”(w)) =0, 2€Q
3
u§2k+1)(m) = ul(»%)(m), zel

05w (@) nj(z) = ti(x), €T (33)

is solved to determine u(**+1)(z) for ® € Q and
t(2k+1)(az) = Uij(u(2k+1)(m)) nj(x) for @ € T';.
Step 3. Having constructed the vector-valued
function w(®**+1) &k > 0, the well-posed mixed
boundary value problem

ai:cjaij(u(2k+2)(w)) =0,2€Q
o (u? (@) mj(2) = (@), 2 € T,

uP (@) = U(), = € T, (34)
is solved in order to determine u(2k+2)(w) for

z €Q and u(2k+2)(m) for® € T';.
Step 4. Repeat from Step 2 until a prescribed
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stopping criterion is satisfied.
Kozlov et al (18] showed that if T is
smooth, u € H1/2(I‘2) X H1/2(I‘2) and t €

<H1/2(F2)x H1/2(F2)> , then the alternating

algorithm based on steps 1 — 4 produces two se-
quences of approximate solutions {u(2k)(w)}k>0

and {u(®*+1)(z)} _ which both converge in
HY(Q) x HY(Q) to the solution u(x) of the
problem (1) and (5) for any initial guess 1 ¢

<H1/2(r1)>< H1/2(r1))

As a stopping criterion we use again the discrep-
ancy principle which ceases the iterative proce-
dure as in (14).

5 COMPARISON OF THE
METHODS

It is the purpose of this section to present and
compare the numerical results for the Cauchy
problem considered in this study which have
been obtained using the four regularisation
methods described in Section 4. In order to
present the performances of the numerical meth-
ods proposed, we solve the Cauchy problem for
a typical benchmark test example in a two-
dimensional smooth geometry, namely the unit
disc Q = {& = (z1,2z2) | 23 + 23 < 1}. We
assume that the boundary T' of the solution do-
main is divided into two parts, namely I'; =
{z = (z1,22) | ® €T, a1 < 8(2) < a2} and
I'n = {2 = (#1,22) |z € T, 0 < f(z) <
ar}U{e = (z1,22) | ® €T, az < 8(z) < 27},
where 6(x) is the angular polar coordinate of
z and a; = 7/4 and ay; = 3w/4. We con-
sider an isotropic linear elastic medium charac-
terized by the material constants G = 3.35x 101°
N/m? and v = 0.34 corresponding to a copper
alloy. The following analytical solution for the
displacement and stress

B 1—v
- 2G(1+v)

o™

Ul('an)(il?l,h) 0o &4,

(35)

(z1,22) = 00 b

is considered in the domain €2, where oq =
1.5 x 1019 N/m?2.

In order to investigate the stability and the reg-
ularisation properties of the numerical methods
considered, the boundary data up, has been

perturbed as % |r, = %;|r, + 6u;, where 6%; is a
Gaussian random variable with mean zero and
standard deviation o; = maxr, |%;| p/100, and
p is the percentage of additive noise included
in the input data wr, in order to simulate the
inherent measurements errors. The numerical
results presented in this section have been ob-
tained using N = 80 and N, = 3N; = 60 con-
tinuous linear boundary elements. These values
were found to be sufficiently large such that any
further refinement of the mesh size did not sig-
nificantly improve the accuracy of the results.
As a stopping criterion we have used the discrep-
ancy principle (14) for the SVD and the L-curve
method for the Tikhonov regularisation.

For the alternating iterative algorithm, a vari-
able relaxation factor, with respect to the angu-
lar polar coordinate 8(z) given by, [3],

_ . f(z) — g

p(b(=)) = asm7r< p— ) (36)
where a € (0,2], when passing from the step 2
to the step 3, is employed in order to improve
its rate of convergence. As a stopping criterion
we have used the discrepancy principle for the
alternating iterative method and the stopping
rule (31) for the CGM.
In order to compare the four regularisation
methods considered, Figures 1(a) and (b)
present on the same figures the numerical so-
lution for the z5 component of the displacement
and the traction vectors, respectively, on the
boundary T'; obtained with each of these meth-
ods for p = 2% noise added into the displace-
ment data ur,. It can be seen from these figures
that the most accurate solution is the one given
by the alternating iterative algorithm. Both the
SVD and the Tikhonov regularisation methods
give reasonably good approximations for the dis-
placement and the traction vectors on the under-
specified boundary I';, with the mention that
the SVD solutions are more accurate. The nu-
merical solution obtained by the CGM is poor
in comparison with the numerical solutions ob-
tained by the other methods described in this
paper. However, for less severe examples and
for which we have a better initial guess, it was
found that the CGM also produces numerical so-
lutions almost as accurate as the numerical so-
lutions obtained by the Tikhonov regularisation
method. The differences between the regularisa-
tion methods considered are even larger in the
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case of the numerical solution for the traction
vector, as can be seen from Figure 1(b). In Ta-
ble 1 we present the accuracy errors

(rum) — (@™ pary )% £2(Dy)s
er = |[tPem) —

ew = ||u

)| Laryyxary) (37)
where u(®®) and #(*®) are the analytical dis-
placement and traction vectors and w(**™) and
t("¥™) are the numerical displacement and trac-
tion vectors, respectively, obtained using the
regularisation methods presented in Section 4
on the underspecified boundary I'; for different
levels of noise added into the input data. From
this table it can be seen that the alternating it-
erative algorithm is the regularisation method
which provides the most accurate numerical re-
sults, the SVD and the Tikhonov regularisation
method produce reasonably good numerical ap-
proximation for both the displacements and the
tractions, whilst the CGM produces less accu-
rate numerical results.

Table 1: The accuracy errors e, and e; given
by equation (37), obtained using the four reg-
ularisation methods described in Section 4 for
various levels of noise added into the input data
w(®)|r. namely p € {0, 1,2}.

I [0% [ 1% | 2% |

e.(CGM) x 10° 5.25 | 6.13 | 7.53
e (Tikhonov) x 10° 0.82 | 5.55 | 7.39
ew(SVD) x 10° 0.73 | 3.81 | 3.96
ew(Kozlov et al.) x 10° | 0.57 | 1.95 | 3.02
e:(CGM) x 10 0.93 [ 1.27 | 1.46
et(Tikhonov) x 10 0.21 | 1.15 | 1.38
e:(SVD) x 10 0.20 | 0.98 | 0.99
et(Kozlov et al.) x 10 0.19 | 0.45 | 0.64

6 CONCLUSIONS

In this paper four regularisation methods for
the Cauchy problem in isotropic linear elasticity
have been investigated. Three of the methods
are general regularisation methods, whilst the
fourth one is an alternating iterative algorithm
developed for Cauchy problems for self-adjoint
and positive-definite operators. It was found
that the Cauchy problem in linear elasticity
can be regularised by any of the methods
considered since all of them produced a stable

0.11

0.1

0.09—

uZ

0.08—

0.07

0.06 T T T T T ]
0.1 0.15 0.2 0.25 0.3 0.35 0.4
ar2m

1.0+

0.9+

0.8 T T T T T ]
0.1 0.15 0.2 0.25 0.3 0.35 0.4
a2t

(b)

Figure 1. (a) The analytical ug‘m) (—) and
the numerical ugnum) displacements, and (b) the
analytical tgan) (—) and the numerical tgnum)
tractions, retrieved on the underspecified bound-
ary I'1 by using various regularisation meth-
ods, namely, the alternating iterative algorithm
(o), the SVD (M), the Tikhonov regularisation

method (¥) and the CGM (o), for p = 2% noise.
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numerical solution. However, the numerical
solutions obtained by these methods differ in
terms of accuracy. It has been found that
the SVD method outperforms the Tikhonov
regularisation method, whilst the latter method
outperforms the CGM. However, all these
three methods are second best compared to
the alternating iterative algorithm. We note
that the CGM is less accurate than the other
methods considered. A possible reason for this
is that in the CGM, the boundaries I'; and
s should be disjoint non-intersecting closed
curves and this is not the case for our test
example. Overall, it can be concluded that the
Cauchy problem in isotropic linear elasticity
can be regularised by various methods, such
as the regularisation methods presented in this
paper, but more accurate results are obtained
by particular methods which take into account
the particular structure of the problem, such as
the alternating iterative algorithm.
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ABSTRACT

The estimation of some unknown parametersis
carried out by using least sguare methods
requiring the computation of a gradient. We
present a method for the derivation of second
order quantities especialy the products of the
hessian with a vector. We will see how this
information can be used for the estimation of
the condition number of the Hessian and for
sensitivity analysis.

SECOND ORDER ANALYSIS

Let us consider a model describing the
evolution of fluid, we will assume that the
model has been discretized with respect to time,
it writes:

X isthe state variable describing the medium, K
is some unknown parameter and U the initia
condition which is aso unknown. We assume
that the medium has been observed between
times 0 and T and we have an observation Xobs
. Cis an operator from the state space toward
the space of observation. K and U are estimated
by the minimization of the cost function J
defined by :

.
J(U,K) =%c‘j|c.x - Xgeel[
0

This is the simplest form for the cost function.
In practice it should contains some
regularization term
The optimal values of U and K are solutions of
the optimality system:
iN,J=0
| ~
TN J =0
The gradients are evaluated by introducing the
adjoint model, P being the adjoint variable of
the same dimensionality as X, defined by:
TdP  éfFu
) ! (CX - Xy
idt EIXH
1 —
iP(T)=0
Then it comes:

N3 =-P(0)
The compution of the gradient, by a backward
integration of the adjoint model, permits to
carry out some descent type method to compute
U and K
To compute H, the hessain matrix of J:

o Hy « 6

H(U,K)=g uu u,|<+

eHu,K HK,K [
weintroduce Q and R. If we consider the sytem
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Id &TF U eﬂzF u .
:d? U o R
%dR eﬂFu ~o

 dt g

1Q(T)=0

fR(0) =V

If thisis integrated, then it can be shown [1],
that we have :

Hy,V =Q(0)
F
oy V= EEKE

In the same way, we will consider

'dQ &TF U eT’F i
R;; P=C'CR
:dt TexH Cxz u
LdR_&TF 0
pdt BnxH
.:.Q(T)=
fR(0)=0
Then we will have :
&F 0
Hy V= a0
vy SﬂKHQ

Thus it is possible to compute the product of
the Hessian by a vector. The systems differ by
the forcing terms and the initia or final
conditions. The first equation can be deduced
from the adjoint model by changing the right
hand side, the second equation is obtained by a
linearization of the model.

Of course the full Hessian can computed if we
take for U and V the vectors of the canonica
base. But the Hessian is by itsdf of little
interest, what could be important isto access its
spectral properties : largest and smallest

eigenvalues, eigenvectors. These quantities can
be computed without an explicit computation of
the Hessian.
APPLICATION TO AN INFILTRATION
MODEL

Identification

As an application we will consider a 1-D model
of infiltration in an unsaturated ground. The
state variable is (h) : water pressure., in a
domain between the surface at z=0 and the
bottom at z=Z.

.. & (eth_ @
T zE

C(h) and K(h) are given by:

ERLN
N

’

<
i

'Q> D~

o o
=8

q,(2- n) &h

Tn, &h

- O

+

Q- o
Oy

C(h)=

w

S
o
> oM

i
|
!
[
I
f

R
alfo

Rk
&,

KS

K (h) =K co <0

('D('D>'Q> D~

S5 ®Ho
w CONC O

0

—_—

There are five parameters (Ks,hg,qs,h,n)

and the threeinitial and boundary conditions to
be identified.

If all the parameters of the model are known,
then its is possible to compute a cumulated
infiltration given by

cum dq t Z = Oini )dZ

where q isthe water content of the ground.

=
A
o
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The observation bear on the cumulted
( ) .Therefore the problemisto

U = (qinilqsurf !qbot) and
=(Ks,hg,qs,h,n) minimizing the cost
function J defined by :

infiltration |

determine

3 el
Dt ¥ ?
+? é.(lcum(tj)_ lobs(tj))
j=0
Remarks:

1- the dependance with respect to the
parametersis highly non linear.
2- The first two terms are used as

regularization terms, U, and

L, are a priori estimations of U

and L

3- The moded has been discretized.
with a finite difference scheme in
space with Z =1m, the grid size
was 1cm. The temporal scheme
was an implicit Euler scheme with
T=2h and atime step of 1s.

P being the adjoint variable, the adjoint model
is defined by:
1 éfiCua, éfhuo
- Lcp)+§U & €INUO
g (C) BThHE 81t Hp
SPu, efkaaP efh u6_
128 B A B

(lcum_ lobs)ﬂlcumd(t t)

From the backward integration of the adjoint
system we deduce the gradient:

”a@ﬂ adlh 660
ooeSﬂLHS &1t oy

K 0P o 100y,

SR EZ o

M Z N

9 lem U
+ | - cum

ia:E) gi cum obs)g 1-“_ H

N (U,L)=

\

z

(U L)= C CP) B ( cm © Iobs)d(t_ ti)dz

(- a5)
N (u¢)=@§?<%2 dt+1 (e - 65

Olpot
0 =Z

It is well known that there is no commutativity
between discretization and the derivation of the
adjoint, therefore al the former calculations
should a'so be carried out on the discrete model.
A numerical experiment has been realized on a
material known as Grenoble sand.

The method of optimization was a conjugate
gradient method written in the code M1GC3 [2]

Experimental values | Identified
K |4.528(10-3) 1.7793 (10-3)
S
hg -16.40 -15.90
q 0.312 0.2879
S
h 6.73 4.97
n 2.79 2.34
Q. 8.166 (10-2) 7.49(10-2)
ni
Ot 0.312 0.29
ot 8.16 (10-2) 0.3

d(t-t)dz+l,(L- L)
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Fig 1. Adjustment of the optimal cumulated
infiltration to the observations.

The numerical results show that if some
parameters are correctly identified some others
are more difficult to adjust. It is clear that the
cost function is not convex with respect to the
parameters to be identified.

Computation of the condition number of
the Hessian

The convergence properties of the optimization
algorithm are linked to the condition number of
the Hessian, the condition number is the ratio (
in module) of the largest eigenvalue to the
smallest one, therefore the condition number is
always greater or equal to 1 ( the hessian being
symetric its eigenvalues are rea ). A large
condition number means that the problem isill-
conditionned.

The largest eigenvalue can be computed by
iterated power method : if the largest eigenvalue
is simple then the sequence defined by:

- Vpisgiven
-V, ,,is defined by

}Ukﬂ =HV,
i U
'V+ - k+1
AV
|

then |, ® |

when K® ¥ . Therefore to compute the
spectral radius it is sufficient to be able to
compute the product of the Hessian by a vector.
To compute the smallest eigenvalue it is enough
to point out that ( in module) the smallest
eigenvalue of a matrix is the largest of the
inverse matrix. Therefore at each step of the
former algorithm a linear system has to be
solved. To solve a linear system does not
require to know explicitly the matrix of the
system with, for instance, a conjugate gradient
method, it is enough to be able to compute the
product hessian.vector.

For different vaues of the number of
observations the condition number has been
computed. Fig. 2 display the spectral radius of
the Hessian, Fig. 3 the smallest eigenvalue and
Fig. 4. the condition number. Even if the
behaviour is not monotonic, the condition
number increases when there is less
observations.

the spectral radius of H,

max !

1 1 2 i 1 «
L 920 120 150 180 210 240 270 300 330

Fig 2: Largest eigenvalue as a function of the
number of observations

380



4™ |nternational Conference on Inverse Problemsin Engineering

Rio de Janeiro, Brazil, 2002

Fig 3: Smallest eigenvalue as a function of the
number of observations

! : L n s s ' L 1 ' I
[ 30 80 0 120 150 180 210 240 270 300 330 380

Fig4: Condition number as a function of the
number of observations

SENSITIVITY STUDY

General sensitivity study

Let us consider ageneral model written :

M (X,z)=0.
X isthe state variable of the model and Z some
parameters;, We assume that Z being given then
the model has a unique solution X(Z).
A sensitivity study is defined by a so-called
response function G(X,2), area vaue function,
X is the solution of the model associated to Z .
Therefore this function is totally defined when
has been fixed.. By definition the sensitivity is
the gradient of G.

In many physical application the sensitivity is
computed by finite difference : if
Z =(zi) i =1,...,N , then the sensitivity is
estimated by :
~ GO
NG :a[_+D

eﬂzi (4]

& (X (z +ae,),z +ae,)- 6 (x(2).2)

¢ a

e, being the vectors of the canonical base. This

method has several inconvenients:

- it requires N integrations of the
model. In many geophysica
applications M may be very large.

- thevdueof a isarbitrary. To get
the correct value, the result should

be independent of a , therefore

several attempt may be necessary

before getting the right value.
Introducing an adjoint model permits to
compute the exact sensitivity in only one run of
the adjoint model. To derive this sensitivity , let
us introduce some perturbation h on Z, the
Gateaux derivative are defined by:

Q- O:

X (z +ah)- x (2)

a
Deriving the model and the response function
gives:

X(h) =lim g,

M - M
Mg+ M=o

1x 1z

G . o
g=Jeg, Te,

X 9z
We will get the gradient of G by exhibiting the

linear dependance of G with respect to h.

To do so we introduce Q the adjoint variable,
with the same dimensionality as the state
variable, then we take the inner product of the
Gateaux derivative of the model with Q. It
comes:

gt 0.
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It is clear that if the adjoint model is defined as
the solution of:

fim
X

TG
Q K

@D> (D
[woxy el

Then we will obtain
c_@eMy e O
Q+— ,h=
9 gﬂz H 1z 17

and :
& S|V TG
NG =- ? - +—
gz 8% 1z

Therefore the sensitivity is obtained in only one
run of the adjoint model. The price to be paid is
to write the adjoint code, with a complicated
model it could be a tremendous task.
Nevertheless some tools of automatic
diifferentiation may be helpful.

Sensitivity in  the
observations.

presence  of

In many cases the input of a model are
observations. If we are looking for the
sensitivity with repect to these observations a
difficulty comes from the fact that they does not
appear explicitly in the model. The observations
are included only in the optiamlity system.
Therefore this last one should be considered as
a generalzed model and the general sensitivity
analysis should be carried out on the optimality
system. Because O.S. will be derived we will
introduce second derivatives in the sensitivity
analysis.

Example
If the modedl is:
dX
—=F(X,K
=P (XK
TX(O)—U

Where theinitial condition has been choosen by
the minimization of a cost function:

|dit

1T
J(U) == CX - Xos
2 0
The adjoint model is:
| dpP eﬂF M
| dt S‘ITXH

Ip(T)=0

P=C'(CX- X_.)

The optimality condition is:
NJ(U)=-P(0)=0.

If the response function has the form:
T

W(K)= g3 (X)dt
0
Then the general sensitivity analysisis carried
out on the optimality system.
Q and R two adjoints variables are introduced
as the solution of the system:

ET2F d
Sx? 4

.'dQ ‘HFu

;| at  B1xH

|

i t éIGu

-C'CR=z—
g1x H

\

Q+ R

Then the sensitivity is given by:
T L6 TF L‘f 0
RIF 1°F Ry P
C§8ﬂKH EIXTK 1 2

We obtain a non standard system because one
of the equation has two boundary condition and
the second one, no boundary condition. It is
possible to transform this problem into a
problem of optimization for which a conjugate
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gradient method can be use [2]. An iterative
method has to be used to solve the system.

Therefore we see that in the presence of
observartions requires to use second order
information.

The equation which are used for computing the
sensitivity are the close ( from the coding point
of view) ofthose used to compute the Hessian.
Example

With the same physicd modd as above we
have considered as response function the
guadratic norm of the hydraulic conductivity.

T Z
EK (hys) = OOK (h)” dzdt

00
The observation being a function of time, its
gradient will be aso a function of time. In
Figure 5 , the norm of the sengtivity is
represented as a function of time, it is assumed
that there is an observation at each time step of
the numerica scheme. The same quantity is
displayed in Figure 6, but with an observation
each minute. Both simulation last one hour.

10’

Fig5. Norm of the sensitivity. One observation
at each time step. Unity of time =40s.

10’

Fig5. Norm of the sensitivity. One observation
each 60s. Unity of time =40s.

It is clear that, in this case, an evaluation of the
sengitivity by finite differences would have
been very costly from the computationa
viewpoint.

CONCLUSION

The access to second order information is
important to improve the numerical algorithms
and to estimate the propagation of uncertainties
in the observations or on some other parameters
of the model. This information is obtained
through the second order adjoint, which can be
considered as an important tool for inverse
problems.
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ABSTRACT

Specification of prior distribution is one of the most
important methodological as well practical problems in
Bayesian inference. Although a number of approaches
have been proposed, none of them is conpletely
satisfactory from both theoretical and practical points of
view. We propose a new method to infer prior distribution
from a priori information which may be available from
observations. The method consists of specifying a
predictive distribution of the value of interest and then
working backwards towards the prior distribution on the
parameters. The method requires the solution of the
Fredholm integral equation of the first kind, which can be
effectively solved wusing Tikhonov regularization.
Numerical examples for two cases of Bayesian inference
are presented.

NOMENCLATURE

L-likelihood function

p(gla)-prior distribution of the parameter
p(g|x,a)-posterior distribution of the parameter
p(z|a)-prior predictive distribution
p(z]x,a)-posterior predictive distribution
g-parameter of binomial distribution

| -regularization parameter
a,b-hyperpameters

N-number of Bernoulli trials

z-random variable

x-random variable

ms2-parameters of normal distribution
B(a,b)-betafunction
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INTRODUCTION

Transferring prior keliefs into an exact mathematical
form has been, and remains one, of the most controversial
and challenging issues of Bayesian inference. The problem
is twofold. The first one is how to specify our knowledge
in the most succinct and tractable form and the second one
is how to transfer prior knowledge of observable variables
onto prior knowledge of parameters which are generally
unobservable. A number of approaches have been
developed, with the most notable ones being: conjugate
priors, Jeffreys noninformative priors and empirical
Bayesian methods [1,3]. Conjugate priors, athough being
widely used, can only be justified if enough information is
available to believe that the true prior distribution belongs
to the specified family; otherwise, the main justification for
using conjugate prior is their mathematical tractability.
Jeffreys noninformative prior uses the Fisher information
matrix to place a maximally noninformative prior on the
parameters, exploiting the fact that the Fisher information
matrix is widely considered to be an indicator of the
accuracy of a parameter estimate. However, this approach
can only be effectively used in one-dimensional cases and
does not satisfy the Likelihood principle [1]. Other
problem with noninformative priorsis that there might be a
number of them for a given problem and there is no clear
cut rule which noninformative prior has to be preferred.
Empirical Bayesian methods use the marginal distribution
of the value of interest to elicit prior distribution on the
parameters. The empirical estimation of the prior is strictly
speaking a violation of Bayes theorem because the same
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data set is used for both: estimation of the likelihood and
inferring the prior distribution. This approach effectively
invalidates Bayes theorem due to the fact that:

o) 214 P I0)

1)

The formula (1) means that once the prior probability is
conditioned on the current data set, the Bayes formulais no
longer valid and we can not formally go ahead with
Bayesian inference. Our approach is based on the
observation that for many practical engineering problems
the range of predicted values is known and hence through
the predictive distribution this knowledge can be
transferred to the prior distribution over parameters by
solving the Fredholm integral equation of the first kind.

BAYESIAN INFERENCE AND BAYESIAN
PREDICTIONS

The core of Bayesian inference is Bayes formula,
which inverts information contained in a data set into an
estimation of a parameter or model,

_ L(xlap@la)
P = e @ [)d
Q

)

where p(q|x,a) is posterior distribution of the parameter g
conditioned on the current data set x and a hyperparameter
a which defines the prior distribution p(gla). L(X|g) isthe
likelihood function which specifies the probability for the
given data set x to occur conditioned on the parameter q.
Bayesian predictions can be based on both posterior and
prior distributions of the parameter. Instrumental to
performing Bayesian prediction is the likelihood of afuture
data set z, which is defined as L(Zq). This likelihood
assesses the plausibility for data z to occur in future
experiments for a given value of the parameter q.
Combining this likelihood with the prior distribution on the
parameters, we get what is called the prior predictive
distribution:

p(zla)=@-(zla)p(@ |a)dq ®)
Q

This reflects a distinct feature of Bayesian inference: it
can produce predictions with no current data at hand,
providing prior information is informative enough.

Combining the future likelihood and the posterior
distribution we get the posterior predictive distribution:

p(z|xa)= d-(zla)p@ [x.a)dq (4)
Q

Equation (4) summarizes our inference about future
values of z after have seen the data x. Integrals (3) and (4)
have been used in Bayesian inference for a long time and
are known under different names. As we already
mentioned, if the likelihood of future data is used in (3)
and (4), they are known as prior and posterior predictive
distributions respectively [2]. If the current data set is used
to estimate the likelihood, then integral (3) is known as the
marginal distribution of x [3] or, in the neural networks
community, as evidence [4]. We shall use the terms prior
predictive distribution and margina  distribution
interchangeably in this paper. There are a number of ways
in which the marginal distribution is used to select a prior
in Bayesian analysis. One of them is the maximum
likelihood 1l approach [4] where the integral in (3) is
maximized over the prior distribution p(gla) for different
values of the hyperparameter a. The moment approach [4]
tries to relate moments of the prior distribution to moments
of the marginal likelihood. The distance approach [4] is
most closely related to the method that we propose. It
prescribes to estimate the empirical margina distribution
from the historical data and then attempts to match the left-
hand side of equitation (3) to this empirical prior using
different priors in the right-hand side. However, this
approach requires a complex optimization. It should be
pointed out that all of the approaches that we mentioned
attempt to restrict the class of priors which can be deduced
from the integral relationship (3). However, they stop short
of directly solving the integral equation (3) using
regularization techniques. Our approach consists of solving
the integral equation (3) using Tikhonov regularization [5]
thus restricting the class of desired priorsto smooth ones.

The focus of our analysis is the prior predictive
distribution (3). Under the assumption that p(zla) and
L(zg) are known, Formula (3) represents a linear
Fredholm integral eguation of the first kind. In this case,
the future likelihood represents the kernel, and the prior
distribution over the parameter is the desired solution. It
should be stressed that the predictive distribution is a
function of an observable variable z, while the prior
distribution is a function of an unobservable variable g.
The integral relationship (3) represents the forward
problem of Bayesian inference, inference of predictive
distribution when prior and likelihood are known. However
to place restrictive informative prior on parameters one
often has to solve equation (3) for prior distribution which
is the inverse problem of Bayesian inference. In many
practical engineering applications, the range of future
observations is known from physical considerations. For
example, the range of temperature, pressure and flow rate
measurements in nuclear power plants is known if plant
operates under normal conditions. Hence, we can place
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rather informative restrictions on the predictive distribution
of future observations. This information can come from
physical and engineering judgments as well as from
historical observations of the variable of interest. Once we
deduce what the possible predictive distribution of future
observations is, we can solve the integral eguation (3) to
get the prior distribution of the parameter g. Doing this we
effectively transform prior information about observable
variables onto prior information about unobservable
parameters.

However, the solution of the integral equation (3) will
require the use of regularization because of the ill-posed
nature of the problem. It should be pointed out that the
predictive distribution of the future observation p(zja) will
aways contain uncertainty or noise because of its
empirical nature. Solving integral equation (3) by
numerical methods will effectively transform ill-
possedeness into ill-conditioning of the matrix L(Zq). We
apply Tikhonov regularization to solve this ill-conditioned
system of equation.

Tikhonov regularization scheme in its general form
can bewritten as:

1
imin&(zla)p(q |a)dq - p (z]a)

il

2 @haa)? ! ©)

ngq ﬂi

Tikhonov  regularization  imposes  smoothness
constrains on the sought solution which is, in our case, the
probability density function. Imposing smoothness
constrains on the probability density function (pdf) is a
very natural restriction because all known and practical
pdfs are smooth and differentiable.

Summarizing our approach we can outline three steps
that should be performed in order to apply it:

1 Using prior information or engineering
judgment, define marginal distribution of the
variable of interest.

2 Define the likelihood of future measurements
of the variable of interest.

3. Solve integra equation (3) for prior
distribution of the parameter.

NUMERICAL EXAMPLES

Inferring the Value of the Parameter for a
Binomial Distribution

We present two numerical examples of backward
specification of prior by solving the integral equation. The
first one deals with the inference of a parameter for a
binomial distribution and the second one deals with the
inference of the standard deviation for a normal

distribution with known average.

The likelihood of a future data set z for a binomial
distribution can be written as:

L(z|q)=CNq #1-q)N-? ()

If the number of trials N isfixed, then the likelihood (6)

represents a function of two variables: z and q. The prior
predictive density of z would be:

1
p(zla,b) =¢ENg 2@2-q)N ?p(qla,b)dg (7)
0

or in terms of the Fredholm integral equation of the first
kind:

1
9(2) = K@, 2 f(@)dq (8)
0

Assuming the beta distribution as a conjugate prior for
binomial likelihood, we get:

1 a-1 b-1
_ 3Nz ZN-207 7(1-q) 9
p(zla,b) gﬁq (1-q) B dg 9

which after simplifications produces:

N
p(zla,b) =C—ZB(z+a,N -z+b) (10
B(a,b)
which is beta binomia distribution. Hence, the integral
eguation (7) has an exact solution in analytical form and
we can estimate how close the regularized solution would
beto the true one.

In order to progress from equation (9) to a system of
linear equations, we use the midpoint rule for
discretization. We discretize the likelihood for N=100,
z=0...100 and p=0...1 with 100 samples. We consider z as
the number of successes in 100 trials. The matrix
representing the likelihood is 100X100. Thus the
discretization leads to a square system of linear equations

b = Aq, AT RlOOXlOO (11)

The condition number of matrix A is 1.1 108, pointing
to severe ill-conditioning. We use Tikhonov regularization
in standard form to solve this ill-conditioned system of
linear equations:
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a =agmin{laq - o +1 [’} 12

The left-hand side p(zla,b) and the exact solution
p(gla,b) of the integral equation (8) are shown in Figs.1
and 2

0.015p

Predictive distribution
o
o
2

0.005p

e r r N N N r r h
0 10 20 30 QO 50 60 70 80 @D B
2z, number of successes in 100 trials

Fig. 1 Predictive distribution p(z)

Prior distribution
2.5

15p

Probability density function

05p

r r r r : r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
teta

Fig.2 Prior distribution on parameter q.

To obtain the predictive distribution in Fig. 1, we
solved the forward problem (11) with prior distribution
depicted in Fig.2 asq.

The ordinary least squares (OLS) solution for the system
(11) ispresented in Fig. 3

x 10° OLS solution
25 T T T T T T T T T

2k

15p

1k

0.5F

0

-0.5p

-1p

Probability density function

-1.5p

2k

25 N N . . . . . . N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

teta

Fig.3 OLS solution.

As we can see, the OL S solution is very oscillatory and
makes no sense. It bears no resemblence to the exact
known solution shown in Fig.2. However, the regularized
solution presented in Fig.4 is very close to the exact onein
Fig.2 and can be used as the prior distribution.

Regularized solution
25

15p

Probability density function

0.5p

0

0 0.1 02 03 04 05 06 07 08 0.9 1
teta

Fig. 4 Regularized solution

We used Morozov's discrepancy principle [6] to select
regularization parameter | =8.5*10°. However, the most
interesting case represents a situation in which the
predictive distribution is estimated from the data or from
the priori knowledge, asin the case shown below.

Suppose we have some statistical data about the
number of successes in 100 tosses in previous trials. We
can use this historical data to estimate what can be called
the empirica predictive distribution or margina
distribution, and using this distribution, we can solve for
prior equation (9). The empirical predictive distribution
being estimated from the data would contain a significant
amount of noise, which would make the OLS solution of
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equation (9) very unstable and irrelevant. An example of
the empirical prior distribution estimated from the data is
shown in Fig. 5.

The kernel density estimator, with a Gaussian kernel
width of 10, was used to estimate this density from some
historical data representing 5 trials of 100 tosses of a fair
coin. The parameter of interest was the number of
successes that was recorded as 61, 51, 60, 47, and 49 in
simulations. As can be seen from Fig. 5, the marginal
distribution of z is a bell shaped curve with mean value
slightly higher than 50.

Marginal distribution
0035 T T T

ool p

Fig. 5 Marginal distribution
Due to the large kernel width used to estimate the
density from the empirical data, the curve has one mode.
Using this empirical density as the left hand side of
equation (9), we can again numerically solve it for the
prior distribution. The unregularized solution is shown in
Fig.6

OLS solution

Probability density function

0.2 03 04 0.5 0.6 0.7 08 0.9 1
==Y

o 0.1

Fig.6 Ordinary least squares solution

As we can see, the solution is still very oscillatory and
does not represent a real probability density function.
However, the regularized solution depicted in Fig.7 looks
like a proper probability density and can be used as a prior
for future inference.

Regularized solution
T T T

IS

Probabilty density function

= N w
- o ~ & © &
T 7

o
2

o

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
teta

Fig.7 Regularized solution

In this case, the most remarkable feature of using
regularization is that it makes the inference about the
possible prior distribution virtually insensitive to the
ambiguous nature of the kernel density estimator. The
problem with empirica density estimators is that their
results are very sensitive to the chosen parameters of the
techniques. For example, the density estimated with kernel
techniques depends very much on the kernel width. Fig. 8
shows the density of the same data set estimated with the
kernel width chosen to be 3.

Marginal distribution
T T

0 10 20 30 40 50 Y] 70 80 D 100
z, number of successes

Fig.8 Marginal probability density function

The estimated density now has two modes which [ooks
quite plausible in the light of the available data. The OLS
and regul arized solutions are shown in Figs 9 and 10.
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x 10 OLS solution
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Fig. 9 OLS solution

Regularized solution

Probability density function
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Fig. 10 Regularized solution

As can be seen from these figures, the OLS solution is
again highly unreasonable and does not represent a real
probability density function; however, the regularized
solution is very close to the one obtained for the kernel
width egqual to 10 and shown in Fig. 7. The discrepancy
principle was again used to choose the regularization
parameters for these cases. It should be mentioned that in
the last example, with the margina distribution obtained
from the data the first order, Tikhonov regularization was
used with a smoothing operator representing an
approximation of thefirst derivative.

Inference of Variance of Normal Distribution with
Known Mean.

The second numerical example to be analyzed is the
inference about the variance of a normal distribution when
the mean value is known. In this case the likelihood of
future data z can be written as:

L(z/s %)=

1 a2
yroetai (ZZST) ) (13)

where mis the known mean value. The corresponding
conjugate prior density for variance is inversegamma and

can be written as:
- (a+1) b
b2 @Y oq- 2

pGs?la,b)= S (19)
b 2Ga)

where a and b are two hyperparameters which define the
shape and scale of prior distribution. Combining the
likelihood and prior distribution we again obtain the prior
predictive distribution:

p(zla,b) = ¢(zls ®)p(s % |a,b)ds 2 (1)

SZ

Now assume that we have a data sample y generated
from N(ms?). We can use this data sample to estimate the
empirical distribution and use it as p(zla,b). Having done
this, we can again solve the integral equation (15) for the
prior distribution p(sz|a,b) using Tikhonov regularization.
Suppose we have a data sample of ten random values
generated from y ~ N(0,1), y=(0.4855;-0.0050;-
0.2762;1.2765;1.8634; -0.5226;0.1034;-0.8076;0.6804; -
2.3646). The probability density function estimated from
thissampleisshownin Fig.11.

Empirical marginal distribution
T T

o o o o

3 o = 2 =

8 2 B = 5
T

1 1 1 1 1

Probability density function

o
8
T
1

-2 -15 -10 -5 0 5 10 15 20
y

Fig. 11 Empirical marginal distribution

This probability density function is the only source of
information about the random variable y that we have. The
probability density function can be used as the empirical
marginal distribution p(z/a,b) in the left-hand side of
equation (15). Because the likelihood for the datais written



4™ I nternational Conference on Inverse Problemsin Engineering

Rio de Janeiro, Brazil, 2002

in @2), we can numerically solve the integral equation
(15). The OLS solution is shown in Fig. 12

OLS solution
T

Probability density function

0 5 10 15 20 25 30 35 40 45 50
sigma®

Fig.12 OL S solution

This solution cannot represent a real density function.
However, the regularized solution is much more plausible
and is very close to the inversegamma distribution. The
regularized solution is shown in Fig.13.

Regularized solution

Probability
~
1

0 5 10 15 20 25 30 35 40 45 5
sigma®

Fig. 13 Regularized solution

CONCLUSIONS

This paper presents a new inverse problem:
inference of the prior distribution from the margina or
predictive distribution. The solution of this inverse
problem requires the solution of the Fredholm integral
equitation of the first kind, which can be effectively solved
using Tikhonov regularization. The assumption about the
smoothness of the sought solution is very legitimate in this
case because the sought solution is a probability density
function, which must be smooth by its nature. Two
numerical examples for the inference of the prior
distribution for the parameter were given: first of a
binomial distribution and then for inference of the variance

of normal distribution with known mean. The described
approach may represent a valuable alternative to the
selection of prior in practical applications and provides
new insight into the nature of prior selection. One
dimensional case is only analysed. In multidimensional
case we would have to obtain prior for each individual
parameter and then form the joint prior as a product of
those individual priors using the argument about
parameters independence.
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Abstract

This paper discusses the implementation of the it-
eration algorithms for solving the general problem
of recovering a complete set of thermal coefficients.
It is well known that in the solution of inverse heat
conduction problems it often becomes necessary to
determine several independent functions or param-
eters at one time. An example of multi-function
estimation is the inverse heat conduction problem,
which uses transient temperature measurements to
estimate the thermal dependent conductivity and
specific heat of a given material. An example of
combined parameter and function estimation is the
determination of a constant heat transfer coefficient
and time-wise varying heat source. Numerical al-
gorithms based on gradient type-methods of min-
imization are often used in the estimation proce-
dure. In such situations, these methods are less
efficient and present low convergence rate. The use
of a common descent parameter (step size) is at the
origin of this problem. An optimal choice of vecto-
rial descent parameter is introduced in this study
and shows a considerable increase in the conver-
gence rate. The developed algorithm was applied
to different inverse heat conduction problems in-
volving parameter and function or multi-function
estimation. This approach appears to be effective
for improving the computational efficiency of iter-
ative algorithms for the two cases.

Nomenclature

B;(t)  trial function,

Cp heat capacity of tissue,

D descent direction vector,

J residual function,

\i residual function gradient vector,

VJ; residual function gradient component,
k thermal conductivity,

K number of time step,

M number of unknown parameters,

N number of sensors,
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qi component of unknown heat flux vector
Q(t) unknown heat flux,

Q1(t) unknown heat flux,

Q2(t) unknown heat flux,

T(xz,t) computed temperature,

T; initial temperature,

t, ty time, final time,

U unknown vector,

V(x,t) variation variable,

x, space, slab thickness

L

(t)  measured temperature,
parameter in descent direction,
integrated measurement error,
small variation,

descent parameter,

vector of descent parameter,
adjoint variable,

density,

standard deviation of measurement,
random variable
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Introduction

The subject of inverse problem has been an active
area of research for the past several decades. This
exciting field has found application in almost all
disciplines of science and technology in general, and
in heat transfer in particular. Different technics
have been used to solve inverse problems including
the conjugate gradient method [1, 2], the sequential
estimation method [3, 4], the mollification method,
and other several methods.

The present work deals with the implementation
of the iteration algorithms for solving the general
problem of recovering a complete set of thermal
coefficients in a quasi-linear parabolic model. It
is well known that in the solution of inverse heat
conduction problems it often becomes necessary to
determine several independent functions or param-
eters at one time. Such multi-parameter estimation
problem arise in the solution of coefficient-type in-
verse problems. In the solution of inverse transfer
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problems with one unknown (function or parame-
ter) it has been found and proved very effective to
use algorithms based on gradient type-methods of
minimization. The use of these methods in a case
when it is necessary to determine several indepen-
dent variables becomes more difficult by the fact
that the descent parameter (descent step) is chosen
to be the same for all components of the direction of
descent. Such a method of choosing a common step
frequently leads to very slow or no convergence at
all of the gradient-type methods. The convergence
may be speeded up considerably by choosing dif-
ferent descent parameters for the different compo-
nents of the gradient of the minimizing functional,
i.e. to determine not only one common step but a
vector of steps (descent parameter) from the condi-
tion that the target functional has a minimum with
respect to this factor at each iteration. The de-
veloped algorithm was applied to different inverse
heat conduction problems involving the estimation
of combined parameter and function or two func-
tions. The first problem deals with the estimation
of constant thermal conductivity or specific heat
and a time dependent heat flux. As second exam-
ple two unknown surface heat fluxes are estimated
simultaneously by utilizing temperature measure-
ments collected inside a one dimensional slab. The
third problem concerns the estimation of two plane
heat sources within a finite wall. A comparison be-
tween the conjugate gradient method using a com-
mon descent step and the same method but with
vectorial descent step in term of the convergence
rate, the estimation error, and the CPU time is pre-
sented for each example. The developed approach
is a modification of conventional optimization tech-
niques of gradient type and appears to be effective
enough for improving the computational efficiency
of iterative algorithms for combined parameter and
function or multi-function estimation problems.
This paper is divided in four major sections. The
mathematical formulation of an inverse heat con-
duction problem and its resolution for estimating
simultaneously one parameter and one function is
shown in section two. The modification of the de-
scent parameter from a common scalar for all pa-
rameters to be recovered to vector form is presented
in section three. Numerical results of a systematic
investigation of the method are given in section four
with several examples. The last section presents
some concluding remarks.

Inverse problem formulation

Generally, inverse heat conduction problems are
solved by minimizing a residual functional J(U)

based on the ordinary least square norm and cou-
pled with some stabilizing technic used in the iter-
ative procedure of the estimation. The sum of the
squared residuals between a given measured data
and the responses of a model simulating the phys-
ical problem under investigation defines the least
square norm. For continuous measured data, the
residual functional is written as follows :

N ty
1) = 3 [ [ sv) = Yo @ )

where T'(x;,¢;U) and Y (x;,t) are respectively the
computed and the measured temperature, at the
location z; and over the time period [0, ¢;] corre-
sponding to the duration of the experiment. Usu-
ally the measured temperatures are not contin-
uous time function but are collected at known
sensor locations and at discrete time steps, i.e.
ty, Kk = 1,...K. In the following sections, the
computed and measured temperature are denoted
TF = T(z;,t;) and Y = Y (2, t;).

The vector U can be a set of parameters and/or
coeflicients of basic functions used to approximate
an unknown or more functions to be recovered by
solving the inverse problem under consideration.
As example let consider the following problem for
estimating simultaneously one parameter and one
function.

A slab of thickness L is initially at zero tem-
perature. For time > 0, the boundary surface at
x = L is kept insulated, while that at x = 0 is
subjected to prescribed heat flux Q(¢). The math-
ematical model for this one-dimensional transient
heat conduction problem, with constant physical
properties, is given as follows

oT o*r

oT

kG- = QW w=0 t>0 (3)
oT

Gy =0 w=L >0 (4)
T(x,0) = 0, 0<z<L (5)

Our objective is to estimate the unknown param-
eter k and the function Q(t) from the transient
temperature histories taken at two or more precise
known sensor locations inside de slab i.e. 0 < x; <
L,i=1,...N, N > 2. For estimating a constant
thermal conductivity k& and a transient heat flux
Q(t), one way to construct U is :

UT = [k7q1aq27"'7qm] (6)
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where the superscript T denotes the transpose and
q; are the coefficients of the following parametric
representation of the unknown heat flux, i.e. :

t) = ZQi B;(t) (7)

The functions B;(¢) are any trial functions (poly-
nomials, B-splines, ...), used to approximate the
unknown function form of the heat flux Q(¢). In
this special case, the total number of parameters
to be recovered by the solution of the inverse prob-
lemis M =1+ m.

As detailed in Ozisik [1], Alifanov [2], and Jarny
[5] the solution of an inverse problem with the con-
jugate gradient method involves the following basic
steps : (a) the solution of the direct problem, (b)
the solution of the adjoint problem, (c) the com-
putation of the gradient equation, (d) the solution
of the variation problem, (e) the choice of stopping
criterion, and (f) the computational algorithm.

The minimization procedure of the functional
(1) by utilizing the conjugate gradient method is
built as follows [6] :

Ut = U* + +° D?, s=1,2,... (8

where the superscript s is the iteration number, v°
is the common descent parameter given by :

N ty
> / [T(xi,t) — Y (i, t)] V(g t)dt
i=1 /0
v = 9)

> v

The variable V' (x,t) is the solution of the variation
problem in the case of estimating a function or the
solution of the sensitivity problem when estimating
a parameter.

l’z, dt

For the problem under consideration, one can
show [1, 2, 5] that the associated variation problem
is given by :

ov 0%V 0T
EASNEY S ANYN 1
P 5 022 T 2N o2 (10)
O0<z<L t>0
oV oT
—k— —AEk— = A 11
PO Ak Sl = aQu) ()
=0 t>0
ov
— = = t 12
5 0, x >0 (12)
V(z,0) = 0, 0<z<L (13)

In equation (8), the coefficient v° determines the
step size in going from U® to U™, It is computed
by minimizing J(U**!) given in equation (1) with
respect to v*

ty
min / [T(U* + 4*D%) — Y)*dt (14)
v 0

Taylor series expansion are employed to develop
an approximative formula to equation (14) and the
obtained result is differentiated with respect to +*
to get the expression (9).

In the step size expression, D® represents the
descent direction vector which is given by :

D* = -VJ* + p* D! (15)
where VJ is the gradient vector of J(U) and the
parameter (3° is given by :

<VJ —-VvJThvIt s
$ = , - = 1
& <VJ*, VJ* > » A7=016)

where <, > is the scalar product defined in the
space of real parameters. The above expression is
known as Polak-Ribiere version of the conjugate
gradient method [6]. Using the parametric form,
the gradient of the residual functional (1) is given
by the vector

VJT = [VJ1, Via,..., V] (17)

For the special case mentioned above, the simul-
taneous estimation of k and Q(¢) and by consider-
ing the parametric representation of Q(t), given in
equation (7), it can be shown that the i** compo-
nent of the vector VJ has the following analytical
expression :

i=1,...m (18)

ty
VdJ;, = / ¥(0,t) B;(t) dt ye
0

It corresponds to the components of the gradient
vector of J(U) with respect to the parametric rep-
resentation of the function Q(t). The first compo-
nent of the vector VJ corresponding to the gradi-
ent of J(U) with respect to thermal conductivity
k is given by :

IT(0, )
i 1/1(0t) oo dudi

/tf/ Wz, t) aQT(“)d dt

where the variable 1 (z, t) is solution of the so called
adjoint problem and for this case, it is given by the
following system :

oy 0%y

AT —kﬁ——&-S(m t) (20)

Vi =
(19)
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O<z<L 0<t <ty

oY

— =0 =0 0<t<t 21
B , <t<ty o (21)
o

— =0 =L 0<t<t 22
o , <t<ty  (22)
Pz, ty) = 0, 0<z<L (23)

where the source term is given by S(z,t) =
2[T(xz;,t) — Y(zi,t)]06(x — x;). d represents the
Dirac function. All the components of the in-
verse problem resolution are obtained. The iter-
ative procedure can be applied to estimate k and
Q(t) following the numerical algorithm presented
in [1, 2, 5].

Stopping criterion : In the absence of noise, the
iterative process, equation (8), is repeated until
each component of the vector U satisfies the fol-
lowing stopping criteria :

s+1 _ s
i Yilce  i=1,..M (24)

s+1
u;

where ¢ is a small number (107% ~ 1075). In
the event that the input temperatures are given
with errors, the iterative process is stopped in ac-
cordance with the residual criterion [2], i.e. upon
fulfillment of the following condition :

JU) < 62 (25)

where 62 is given by

N ty
2 _ o
6% = ; /O (t)dt (26)

It represents the integrated error of the measured
data at location z; and having o;(t) as standard
deviation. Many iterative methods exhibit a self-
regularizing property in the sense that early ter-
mination of the iterative process has a regularizing
effect. In the iterative regularization method, the
iteration index s plays the role of the regularizing
parameter « used in Tikhonov’s method [7], and
the stopping rule (J(U) < §2) plays the role of the
parameter selection method.

Modification of the descent parameter

As reported in [8, 9, 10], the convergence of the
conjugate gradient method may be altered by us-
ing the same descent parameter v in the itera-
tive process (8). Indeed, the preliminary numer-
ical computations have shown that with the con-
ventional choice of a descent parameter common to
all unknown components of vector U, the conver-
gence of the presented method to the true values

of the parameters depends strongly on the initial
guess. Moreover, the convergence rate is strongly
affected by the dependence between the separate
unknowns. This problem is well discussed and
explained in Beck’s book [4] in term of sensitiv-
ity coeflicient analysis. The parameter dependence
which is known as degree of correlation is an inher-
ent characteristic of any considered material and
many parameter estimation technics can fail be-
cause of this characteristic. To overcome this diffi-
culty, we develop in what follows a procedure pre-
sented in reference [2], for selecting the descent pa-
rameter in vector form with as many components
as parameters and function or multi-function to be
estimated. The descent vector will be denoted .

For the test case considered above, the vector v
will contain two components vy, and 7¢ (estimation
of k and Q(t)). The basic idea is built on the lin-
earity of the variation problem. Indeed, the total
variation variable V(z,t) defined in equations (10)-
(13) can be regarded as the sum of two independent
variation variables :

V(z,t) = Vi(z,t) + Va(z,t) (27)

where Vi(z,t) is due to a small change in k, and
Va(x,t) is due to the variation of Q(t). Under this
hypothesis, two “new” variation problems with re-
spect to k and Q(t) are introduced

oV; 0%V,

pep 5 = k 922 + Zi(x,t) (28)
O<z<L, 0<t <ty
Vi
k o (1), r=0 t>0 (29)
ov;
G =0, w=L t>0 (30
Vi(z,0) = 0, 0<z<L (31)

where the two terms Z;(z,t) and X;(t) are given
by :

0T (z,1) o
Zi(z,t) = —g,z Ak fork(i=1)
0. for Q (i = 2)
Xi(t) = %&ﬂmﬁ for k (i =1)
AQ(t)  forQ (i=2)

As presented in references [1, 2] the descent pa-
rameter is obtained from the condition of mini-
mizing the residual functional (1) with respect to
the unknown to be recovered. The same approach
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developed above (see expression (14)) to compute
~® can be applied to calculate the descent vector
components ¥7 = [vx, 7g]. The minimization of
J(U**) with respect to 4* is obtained from :

tf

win / [T(U* + ~° D®) — Y]*dt (32)
0

and by using the linearity of the variation problem,

i.e. the variation variable V;(z,t;+; D;) is a linear

function of 7; which means :

Vi(z,t;v D;) = v Vi(z,t; D), i = 1,2 (33)

Equation (32) is differentiated with respect to each
component of v* and the result is set equal to zero.
Finally the differentiation results are rearranged to
obtain the following set of linear algebraic equa-
tions :

2
Z ajrY; = O0g, where k=1,...2 (34)

j=1

where a; ;, and ¢, are given by :

N ty
Qj e = Z /0 Vie(i, t) V(. t) dt
=1

N ty
Sp = — ; /O [T(zit) — Y (1)) Vi(zs, t)dt

The descent parameter vector components ')/T =
[vk, Y| are obtained from the solution of equation
system (34) by using any classical method of solv-
ing linear algebraic equations. We should mention
here that the minimization algorithm remains the
same except the step (d) (solution of the variation
problem). In fact, instead of solving one variation
problem, defined in equations (10)-(13), one should
solve the “new” two variation problems defined in
equations (28)-(31) to obtain respectively Vi (z,t),
and Va(x,t).

The determination of a vectorial descent param-
eter (step sizes) is the key-point to the inverse so-
lution of simultaneously estimating combined pa-
rameters and functions or many functions because
the rate of convergence can greatly improved in
comparison with “traditional ways” of the conju-
gate gradient method which uses a common descent
parameter to determine many parameters or func-
tions or both.

Results and discussion

The accuracy and efficiency of the inverse analysis
for simultaneously estimating a set of combined pa-
rameters and function or a set of functions is exam-
ined by conducting several test cases. All numeri-
cal simulations are performed for one-dimensional

quasi-linear heat conduction problem in a slab of
thickness L = 1 and over a time interval t; = 2.
Any one of several well-established analytical or nu-
merical approaches can be used to solve the test
cases under investigation. In this work we consider
the finite difference method using an uniform space
grid and a pure implicit time scheme. A mesh grid
with 41 nodes in space and 101 in time is used for all
the results presented below. A dimensionless space
step of Az = 0.025 and time step step At = 0.02
are used in the computations. In the iterative pro-
cess, the maximum allowed number of iterations is
itmax = 500. We prescribe the stopping criterion
of 1075 in expression (24) when the computation
are run with errorless temperatures.

The simulated transient temperature data Y}
containing measurement errors are generated by
adding random errors to the computed exact tem-

koaq -
peratures T;° as :

VP = Tf +owiy (35)
k=1,...K

where o is the standard deviation of measurement
errors which is assumed to be the same for all mea-
surements, N is the number of sensors, and K is the
number of measurements taken with each sensor i.
For normally distributed random errors, there is a
99 % probability of the value of w; ) lying in the
range :

—2.576 < wj i < +2.576 (36)

The values w; , are generated randomly by the IMSL
subroutine DRNNOR [11]. For each considered
case two tests were performed, the first (1) with
simulated measurements with standard deviation
of 0 = 0 (errorless measurements), the second (2)
with o # 0 (noisy data).

Estimation error : To quantify the relative error
of the estimation procedure, the following defini-
tions are introduced :

PPl 100% (37)

=

is the computation error for a given parameter p,
and

/0 ") — far
JREORT
0

is the estimation error for a given function. The
over-bar designates the exact parameter or function
under hand. When the conjugate gradient method

e = x 100%  (38)
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is used with vectorial descent parameter, it is de-
noted VDP and CDP when a common descent pa-
rameter is employed.
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Figure 1: Computed and exact heat flux Q(¢) ob-
tained with noisy data and estimated simultane-
ously with &

Test case 1 : Estimation of one parameter and
one time dependent function. As first test exam-
ple, we present the results obtained with the de-
tailed problem given in the section inverse problem
formulation and which consists in simultaneous es-
timation of k and Q(¢). The unknown heat flux
Q(t) is applied on the surface x = 0. The measure-
ment data are collected by two (2) sensors placed
at distinct locations x1 = 0.20 and x5 = 0.80 inside
the slab. The specific heat is constant and set equal
to 1. We present the inverse problem results for the
following exact thermal conductivity and time-wise
varying heat flux :

(t — ty)sin(—2wt/ty)
Qmam

where Qnar = 10. The unknown heat flux Q(t) is
parameterized according the equation (7) by uti-
lizing cubic splines and taking m = 12 (number of
trial functions).

Qt) = k=1 (39)

The obtained results are summarized in table
(1). The first remak is about the convergence with
the used initial guess. The method using VDP
converges in both cases of the utilized data, i.e.
errorless and noisy. While the method with CDP
doesn’t converge at all. Even with noisy data, the
obtained results with the modified descent param-
eter method are good and in acceptable agreement
with the exact values. The recovered heat flux is
plotted on figure (1). The error estimation is less
than 1% for the shown cases. We should mention
here that the conjugate gradient method with CDP

Test 1
m unknowns — Q(t) k
initial guess 2.0 0.01
meas. error o 0.0
iteration number 283
VvbP CPU time 6.01
results / 0.999982
estimation error 0.00 0.00
initial guess 2.0 0.01
CDP meas. error o 0.0
iteration number no convergence
m unknowns — Q(t) k
initial guess 2.0 0.01
meas. error o 1.0
iteration number 96
VvbP CPU time 2.05
results fig. (1) | 0.997005
estimation error 0.04 0.29
initial guess 2.0 0.01
CDP meas. error o 1.0
iteration number no convergence
m unknowns — Q(t) P Cp
initial guess 2.0 0.01
meas. error o 1.0
iteration number 146
vbP CPU time 2.05
results / 0.993915
estimation error 0.11 0.60
initial guess 2.0 0.01
CDP meas. error o 1.0
iteration number no convergence

Table 1: Results of estimating simultaneously Q(t)
and k and Q(¢) and pc, by utilizing errorless and
noisy data.

converges when a better initial guess is used, for
example ¢? = 10. and k° = 0.1 but with high iter-
ation number (> 500).

With VDP method, the number of iteration
drops to 147 with errorless data, and to 157 with
noisy data when the following sensor locations z; =
0.20 and x5 = 1.00 are considered. While we still
having no convergence with the CDP method. This
observation suggests that an experimental design
investigation should be conducted to optimize the
different factors involving in the estimation proce-
dure : sensor location, experiment duration, opti-
mal boundary condition, ...

On the same table, we show the results of esti-
mating simultaneously the heat flux Q(¢) and pc,
by using noisy data. The presented results are ob-
tained after 146 iterations. With errorless temper-
atures, the exact results are reached after 80 it-
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Test 2 ‘
m unknowns — a1 (t) | g2(t)
initial guess 0.0 0.0
meas. error o 0.0
iteration number 55
vbP CPU time 1.04
results / /
estimation error 0.14 | 0.00
initial guess 0.0 \ 0.0
meas. error 0.0
iteration number 250
DP
¢ CPU time 3.13
results / /
estimation error 0.18 | 0.00
m unknowns — q1(t) | g2(t)
initial guess 0.0 0.0
meas. error o 0.01
iteration number 51
vbP CPU time 2.07
results fig.(2)
estimation error | 0.30 | 0.00
initial guess 0.0 \ 0.0
meas. error o 0.01
iteration number 149
CcbP CPU time 3.05
results / /
estimation error 0.34 | 0.12

Table 2: Results of estimating simultaneously two
heat fluxes ¢; (¢) and ¢o(t) by utilizing errorless and
noisy data.

erations (not shown to alleviate the table). The
“best” sensor locations were found to be 21 = 0.30
and o = 0.60 for the considered heat flux shape
and the utilized initial guess. The estimation error
is of the same order of magnitude as the one ob-
served in the previous case. In the second case, we
have no convergence with or without errors in the
simulated data when the CDP method is employed.

Test case 2 : Estimation of two time depen-
dent heat fluxes. A slab of unit thickness is initially
at zero temperature. For time > 0, the boundary
surfaces at + = 0 and and x = L are subject to
two prescribed heat flux of strength ¢; (¢) and go(t).

The inverse heat conduction problem considered
here is that of estimating simultaneously the two
unknown time dependent surface heat flux ¢ (t)
and ¢o(t) from the transient temperature record-
ings taken at two known sensor locations inside the
considered domain x; = 0.20 and zo = 0.80. The
maximum heat flux value is Qq = 10. The two
heat fluxes ¢ (t) and go(¢) have respectively trian-
gular and rectangular shapes.

15
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Figure 2: Computed and exact heat fluxes ¢ (t)
and ¢o(t) obtained with noisy data

The results of the inverse estimation, with exact
data and without any parametric representation of
the two functions are presented in table (2). The
results underline clearly the advantage of the vecto-
rial descent parameter method when estimating si-
multaneously two time dependent heat fluxes. The
ratio of iteration number between CDP method
and VDP method for errorless data is about 5.
This ratio drops to 3 in the case of noisy data.
The CPU time is more important with the CDP
method. The two estimated heat fluxes ¢ () and
q2(t), with noisy data are plotted on figure (3). A
comparison of the VDP and CDP methods reveals
that accuracy is of the same order of magnitude,
while the CDP method needs more iterations for
convergence which results in an important CPU
time.

Test case 3 : Estimation of two time depen-
dent heat sources. A plate of thickness L initially
at a uniform temperature 7; = 0 contains two
plane heat sources of unknown strengths S (¢) and
So(t) placed at specified locations z; = 0.20 and
x9 = 0.80, respectively, inside the plate. For time
t > 0, heat is generated by the sources at unknown
rates, while the boundaries of the plate are kept in-
sulated. Our goal is to estimate simultaneously the
unknown strengths of the sources Si(t) and Sy(¥)
from transient temperature measurements taken at
both boundaries of the plate + = 0 and =z = L.
More details on the mathematical formulation of
the above inverse problem, analytical derivation
of the gradient, the computational algorithm and
several numerical examples can be found in Silva
Neto et al.[12] and are not repeated here for sake
of brevity. In solving this problem we have used
the same shapes and magnitude of the two sources
presented in the above reference without any para-
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Test 3 ‘
m unknowns — Si(t) | Sa(t)
initial guess 0.0 0.0
meas. error o 0.10
iteration number 34
VDP CPU time 1.88
results / /
estimation error 0.89 | 4.95
initial guess 0.0 \ 0.0
meas. €rror o 0.10
iteration number 89
CbP CPU time 2.44
results fig. (3)
estimation error | 0.93 [ 4.84

Table 3: Results of estimating simultaneously two
heat sources S (t) and Sz (t) with noisy data.

metric form. The two heat sources S (t) and Sa(¢)
have rectangular shapes with a significantly differ-
ent duration of energy releases.

Here again the VDP method was found to be 3
times faster than the CDP method in the case of
noisy data. The agreement between the estimated
and exact source strengths is good. The devel-
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Figure 3: Computed and exact heat sources Si(t)
and S3(t) obtained with noisy data

oped procedure remains valid in the case of multi-
parameter estimation and one can show that it is
reduced to the well known Newton-Gauss method
2, 4].

Conclusion

We have shown in this paper the application of the
conjugate gradient method for estimating a set of
parameters and functions or multi-functions with
two kinds of descent parameter : common param-
eter or vectorial parameter. The obtained results

illustrate the efficiency of the conjugate gradient
method when applied with a vectorial descent pa-
rameter.

A comparison of the two variants of the conju-
gate gradient method (with VDP and with CDP )
reveals that accuracy is of the same order of mag-
nitude for both versions, while the CDP method
needs more iterations for convergence resulting in
more CPU time. An other important result is that
the VDP method converges with wider deviation
in the initial guess.
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ABSTRACT

We consider Nonlinear Least Squares
problems with equality and inequality constraints
and propose a numerical technique that integrates
methods for unconstrained problems, based on
Gauss-Newton algorithm, with FAIPA, the
Feasible Arc Interior Point Algorithm for
constrained optimization. We also present some
numerical results on test problems available in the
literature and compare them with the quasi-
Newton version of FAIPA. We also describe an
application to the identification of mechanical
parameters of composite materials. The present
algorithms are globally convergent, very robust
and efficient.

INTRODUCTION

In this paper we consider Nonlinear Least
Squares Problems with equality and inequality
constraints, when nonlinear smooth functions are
involved. Calling x = [xy, xp, ..., x,] the design
variables, f{x) the objective  function,
g(x) = [2i(x), 2(x). ... gux)] the inequality
constraints and A(x) = [A1(x), ha(x), ..., hy(x)] the
equality constraints, the problem can be denoted
as:

minimize f(x), xOR"
subjectto  g,(x) < 0; i=1,...,m (1)
and h(x) = 0;i=1,..,p

The function f{x) is a sum of squares of the
nonlinear functions r(x);i=1,...,s.

=3 Yl = e @)
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Problems of this type occur when fitting
model functions to experimental data [1, 2]. In
this case r;(x) is called a residual function. It
represents the discrepancy between the true value
and the approximate value, predicted by a
nonlinear model. If the model is to have any

validity, we can expect that || f (x *m will  be

“small”, and that s, the number of data points, will
be much greater than n. We assume that s > n.
Note that, if the set of equality constrains verifies
regularity conditions [3], to have a solution it
must be p < n.

A large number of special purpose algorithms
is available in the unconstrained case, but only
very few methods were developed for the
nonlinearly constrained case [4, 5, 6].

A numerical technique that integrates well-
known methods for unconstrained problems in a
general method for Nonlinear Constrained
Optimization is presented in this paper. This
method is the Feasible Arc Interior Point
Algorithm, “FAIPA”, that makes iterations in the
primal and dual variables of the optimization
problem to solve Karush-Kuhn-Tucker optimality
conditions. Given an initial interior point, FAIPA
defines a sequence of interior points with the
objective reduced at each of the iterations. At
each point, a feasible descent arc is obtained and
an inexact line search is done along this arc. To
compute the feasible arc, FAIPA solves three
linear systems with the same matrix. These
systems include the second derivative of the
Lagrangian function. There is also a quasi-
Newton version of FAIPA. In this one, the
Hessian of the Lagrangian is replaced by a quasi-
Newton approximation.

In the present algorithm, instead of the
Hessian, we employ an approximation based on
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Gauss-Newton method and some of their
modifications. In the following sections we
describe FAIPA, some existing methods for Least
Square and we present the algorithm proposed
here. Finally we describe the numerical results on
some test problems and a practical application in
solid mechanics.

FAIPA, THE FEASIBLE ARC INTERIOR
POINT ALGORITHM

FAIPA, proposed by Herskovits [3, 7, 8], is an
interior point method that solves general problems
of nonlinear optimization. FAIPA makes
interactions in the primal and dual variables of the
optimization problem to solve Karush - Kuhn -
Tucker (KKT) optimality conditions.

KKT conditions corresponding to Problem (1)
can be written as follows:

0f (x) +Og(x)A +Uh(x)u =0 3)
G(x)A=0 Eg
A=

=0 ©)
g(x)<0 7)
h(x) =0, (8)

where AOR"and wOR?
multipliers corresponding to the inequality and

are the Lagrange

the equality constraints respectively, G(x)OR"™"
matrix  such  that
follows we call

denotes a
G,;(x)=g,(x).
A00™" a diagonal matrix with A, = A, .

FAIPA requires a feasible initial point and
defines a sequence of feasible points, with a
monotone reduction of the objective function.

The Feasible Arc Interior Point Algorithm to
solve Problem (1) is described now:

diagonal
In  what

FAIPA ALGORITHM

Parameter. a O (0,1).

Data. x 0Q°, 4> 0, AOR", i >0, uOR",
BOR™ symmetric and positive definite and c
=0,cOR".

Step 1. Computation of a feasible descent

direction.

(i) Solve the linear system in (dy, Ao, Lb):

B Og'x) W dy| [DF ©)
Ag(x)  G(x) 0 A= 0
Uh(x) 0 0 o h(x)
where d,0R", A OR", u,0OR".
if dy = 0, stop.
(ii) Solve the linear system in (d;, Ay, t4):
B Og' On' d
g (x) (x) 1 (10)
Ag(x) G 0 ||A]=-[1
Dh(x) 0 0 H H
where 4, OR", A OR", y OR".

(i) If ¢ <|u]|, make ¢ >12|u,|, for
i=1..,p.

(iv) Let be
@Ax,c) = f(x)+c'|h(x)| (11)

if d/0@x,c) >0, set:

p = inf| [d,|[; L~ D4DAxC) _Z)Ddfxﬁ;’c) (12)
else
p=ld,- ()
(v) Compute d
- (14)

Step 2. Computation of a feasible descent arc.

(i) Let be

w' =g x+d)-g,(0-Og'd (5
where: i =1,...,m;

W,’E :hi(x+d)—hi(x)_|:|hi(x)td (16)

where: i =1,..., p.
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(i1) Solve the linear system in (aNV, ;1, ,Zl ):

B Og'(x) Or'(x)
NAlg(x) G(x) 0 A
Oh(x) 0 0 Y% uw”

QL
(e}

1

(iii) Find a step length ¢ satisfying a given line
search criterion on the auxiliary function ¢(x,c)
such that:

g (x+td +2d)<0 if A; 20, (18)
or
g (x+id +1* d) < g,(x) (19)
otherwise.
Step 3. Updates.
(i) Set
(20)

X =X, +td, +12d?

and define new values for: w> 0, 4> 0, £ >0
and B symmetric and positive definite.

(i1) Go to back to stepl.

The size of linear systems (10) and (11) is
equal to the sum of the number of variables plus
the number of equality and inequality constrains.
In [9] it is provide that (10) and (11) had a unique
solution.

In Figurel the Feasible Arc is represented in
the case when there is an active inequality
constraint, thatis g;(x,) =0 . It is proved that it is

possible to walk from x, along the arc to get a

new feasible point with a lower objective value.
The algorithm has global convergence for any B
symmetric and positive definite. However, taking
B=H(x,A, 1), where

HOoA =010+ Y AT g, 0+ Y 40 @)

is the second derivative of the Lagrangian, a
Newton algorithm is obtained. A very efficient
algorithm, without need of second derivatives
computation, is obtained with B equal to a quasi-
Newton approximation of H(x,A, 4).

gi(x)=0

Feasible arc

Figure 1: Feasible Arc.

ABOUT THE UNCONSTRAINED LEAST
SQUARES PROBLEM

To understand the basic features of the
algorithm present here, we consider the
unconstrained nonlinear least square problem:

min /() = 23 700" (22)

where r(x) represent the residual vector.

The Jacobian Matrix of the residual is

0ri(x) 0ri(x)
dx, ox,
JX)=| o, (23)
or, (x) or,(x)
dx, = ox

and the Hessian matrix of f{x)
O£ (x) = J ()" J (x) + O(x) (24)
Where

0= r (W0 (). )

In the Gauss-Newton method, O(x) is ignored
and the Hessian is simply approximate by



h . . . .
4" International Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazil, 2002

0% (x) = J (%) J (x). (26)

The iterations for Gauss-Newton method are
then

J) ) (X = %) = =S (x) r(x,) @D

Gauss-Newton method is based on Newton’s
method and it can fail for the same reasons as
Newton’s method does. In particular, when

J(x,)'J(x,) is not positive definite or when it is
badly conditioned.

Gauss-Newton method assumes that, near of
the solution, J(x)'J(x) is a good approximation
to 0?f(x), i. e. O(x) can be neglected. This
assumption is not justified for problems with a
large residual. A possible strategy in this case, is
to include a quasi-Newton approximation M of
the unknown second derivative term Q(x) [4].

The search direction with a quasi-Newton
approximation to Q(x), called M, is given by:

[J05) () + M M, = =J(x,) r(x,). (28
Let be
Sp = (X —x5) 29
e = J(xk+1)t (X)) — J(xk)t r(x;) (30)

The following formula for M is based on the
BFGS update [9]:

1 ¢ 1 ¢
My =M, ———Ws;s, W, +——y,», (31)

SeW Sk YViSk
where

W, = J (%) I () + M, (32)

It is proved that if it is ensured that y,'s, >0,
then the updating formula has the property that if
J(x,4) J(x,,,) + M, is a positive-definite matrix,
then so it is J(x,,,)" J(x,,,) +M,,,, see [4]. This

property is used asymptotically when J,J, is

approximately equal to J,,.J,,, .

J(x,,) J(x)+ M, can be singular or badly
conditioned, resulting in a non-descent search
direction, and the iteration fails. Levenberg —
Marquardt method consists on adding a positive
diagonal matrix & whereg>0 is taken big
J(x) I (o) + M, + €l
positive definite. The main difficulty to apply this
technique is to get a way of choosing & not very
large in order to maintain as well as possible the

However,

enough to have

speed of convergence of Gauss — Newton
algorithm.
LEVENBERG - MARQUARDT METHOD

WITH CHOLESKY DECOMPOSITION

Let be matrix B, =J(x,,,) J(x,,) +M,,, . If
B is symmetric and positive-definite, it can be
obtained a Cholesky factorization

B=LL (33)

where L is lower-triangular matrix.

The modified Cholesky factorization is a
numerically stable method to compute € that
produces a positive-definite matrix [4].

The elements of L can be expressed by a
simple recurrence relation:

i—1

by —Zl,.,lk, (34)
l,=—L—
ki lii
for i=1,2,..., k1
and
k-1 5
lkk = bkk _Zlk/ (35)
j=1

In the case when B is not positive definite, it is
proved that one or more diagonal elements are
such that

k+1

by — Zl,f, <0. (36)
j=1

In consequence, /,, obtained in (35) is not a real
number
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Adding to b,, a big enough positive number, a

positive definite matrix B* is then obtained. This
procedure is equivalent to Levenberg — Marquardt
and allows to define very precisely the
perturbation required to get a positive definite
matrix.

ABOUT CONSTRAINED LEAST SQUARE
PROBLEMS

The algorithm that we propose here is based on
FAIPA. Instead of taking B equal to a quasi —
Newton approximation of H(x,A, ), we

construct a matrix that includes a Gauss-Newton
approximation of the objective function.

HEAM = 02,00+ > AT 8,0+ Y (o)

i=1

37).

We employ the same update formula (31), but
taking

Vi = 000 Aars M) = 000, Ay i) (38)

where

Oi(x, A, 1) = Of (x) + Og (x)A + Oh(x) 1 (39)

In unconstrained optimization it is proved that
0 f(x) is positive definite at a local minimum.
When there are constraints, we have that in
general H(x,A, ) is not positive-definite. In

effect, it is only ensured that H(x, A, /) at a local

solution is positive definite in the space tangent to
the active constraints. However, FAIPA requires a
positive definite matrix B.

We employ Levenberg-Marquardt method
with Cholesky decomposition to obtain B
positive definite.

NUMERICAL TESTS

We present some numerical results obtained
with the algorithm for Constrained Least Squares
problems, FAIPA LS presented in this
contribution. These results are compared with a
quasi — Newton version of FAIPA.

We also describe an application to an inverse
problem in solids mechanics.
Problem 25:

Source: Holzmann [10], Himmelblau [11].
Objective Function:

f@ =3 )

r(x) =—-0.0Li + exp(—i(u[ - xz)%j
x

1
u, =25+ (- 501n(0.011))%*
i=1,..,99.
Constraints:
0.1<x, =100
0<x,<256
0<x, <5
Start (feasible):
x, =(100,12.5,3)
f(x,) =32.835

Problem 57:

Source: Betts [12], Gould [13].
Objective Function:

S0 =2 @y

n(x)=b —x - (0~49 | )exp(x2 (ai - 8))
i=1,...,44.
a;, b, rappendix A of [14]
Constraints:
0.49 - xx, —0.0920
04<x
-4<x,
Start (feasible):
x, =(0.42,5)
f(x,) =0.030798602

Problem 70:

Source: Himmelblau [11, 14].
Objective Function:
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flx)= Z(y[,ml = Viow)

0.5
- lle wh® a) L
Vi cal 1 +12x2 3 6.2832 7.685
exp x, —bc,x, + 12x, [(1 -x i |
7.658 1+12x, M,

[ ¥ jo.s [ij,—l exp[ x, —bex, H
6.2832 7.658 7.658x,
b=x;+ (1 —x3)x4
Ci» Viops -appendix A of [14]
Constraints:
0.49 - x,x, —0.0920
0.4 < x
-4<x,
Start (feasible):
x, =(0.42,5)
f(x,) =0.030798602

.

Table 1. Numerical Results on Problems

Hock/Schittkowski and Linear Equality

Constrained Least Square Problem.

Problem 25 (n=3,m=6,p=0)

Update of B cfv ofv iter
FAIPA gN 1.07239x107° 0.0 14
FAIPA LS  3.89665%10° 0.0 13
Problem 57 (n=2,m=3,p=0)
Update of B cfv ofv iter
FAIPA gN 0.0284597 0.0284596 21
FAIPA LS 0.0284598 0.0284596 17
Problem 70 (n=4,m =9, p=0)
Update of B cfv ofv iter
FAIPA gN 0.00749877 0.00749864 72
FAIPA LS 0.00749847 0.00749864 33
Linear Problem (n=4,m=0, p=23)
Update of B cfv ofv iter
FAIPA_gN  3.08149x10™" 0.0 5
FAIPA LS 0.0 0.0 4

We report here our experience with 4 test
problems. Three problems compiled by Hock et.
al. [15] and the last one problem is a linear
equality constrained least square (LSE) problem
described in
(http://www.netlib.org/lapack/lug/node8S. html).
The LSE problem is

minfAx - b| subject to Bx =d

where

|
—
— = = e

The results are summarized in Table 1, where
n is the number of variables, m the number of
inequality constrains, p the number of equality
constrains, iter is the number of iteration; cfv is
the computed objective function value, ofv is the
optimum function value, FAIPA gN is the quasi-
Newton version of FAIPA and FAIPA LS, the
present algorithm. All test problems were solved
with the same value for the parameter @. This was
taken: a = 0.7, as in the general version of
FAIPA. The stop criterion adopted was a
tolerance on the optimal objective function
& = 10°. The initial point, ofv and other
characteristic of the test problems are described in
Hock et. al. [15].

Identification of material parameters:

This example is intended to illustrate the
application of the described optimization
techniques to a class of inverse problems, namely
the identification or estimation of material
parameters in composite laminated plates made of
two different materials. The problem consists of
estimating the elastic properties of the two
materials that make up the plate by fitting a set of
experimentally measured undamped eigenvalues

(Z) to those obtained through a higher order

finite element model (4, ).
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The objective function is a weighted least
squares estimator:

: O YeAl
f(x) =Zw(;”‘)J (40)

where w, D[O,l] expresses the confidence in the

experimental data and, in this example it is taken
as unity. The problem is then formulated as a non
linear constrained minimization problem, where
the design variables are non dimensional
functions of the elastic properties of each material
and the constraints are imposed in order to keep
the constitutive matrix positive definite:

min f(x) =0
s.t. g(x)s() (41)

x'<x<x"

Full details regarding this identification
technique can be found in Aratjo et al. [2,16].

The plate in this example is made of
unidirectional layers of E glass and T300 carbon
fibres in epoxy matrix. The pre-pregs used to
build the plate were Structil 200g/m2 VEE220
R368, for the glass layers and Structil 350g/m2
CTE235 R367, for the carbon layers. The

[9030 ogV]S and the

rectangular plate dimensions and mass are a=191
mm, b=254 mm, h=3.89 mm and m=289.85g.

The initial estimates for the elastic properties
of the glass and carbon layers correspond to the
properties of typical unidirectional layers of these
materials for 50% V¢

stacking sequence is

E glass:°E, = 45GPa ;"E, = 4.5GPa;
°’G,="G,,='G, =3.7GPa ;v,, =0.28.

T300 carbon: 'E, =117.2GPa ;"E, =8.8GPa
°’G,="G,="G, =3.1GPa;"v,, =0.35.

For the finite element discretisation a regular
12x16 mesh was used and the problem was
solved in 17 iterations using the FAIPA (Wolfe
criterion for line search) and the stopping
criterion was the reduction of the penalty function
(less than 1x10). Results are presented in Tables
2 through 4. Residuals the natural

frequencies were

7, on
obtained from measured

(&, =47 J2n) and identified (o, = 7,(x)/27)

natural  frequencies, wusing the following
expression:

w. — .
r. = x 100 (42)

i o~

@

A good agreement is sought between the
identified global properties and their available
strain gauge counterparts and one can conclude
that the identified properties for each material are
reasonably within what one could expect for these
materials, except for the transverse shear modulus
Gi3 and Gys, because the plate is not thick enough
for these shear effects to be noticeable, hence any
results for their identification are not truly reliable
[2, 16]. Also, the different material densities were
not taken into account in this example, which
could in part explain the inability to fit the fifth
natural frequency with sufficient accuracy.

Table 2. Identified global properties and strain
gauge measurements

Identified Strain gauge
E [GPa] 17.0 O
E, [GPa] 76.9 7.5
G, [GPa] 4.0 O
G _[GPa] L1 O
G, [GPa] 3.8 O
v 0.17 0.14-0.20

Table 3. Identified properties per material

E glass  T300 carbon
E,[GPa] 44.6 100.1
E, [GPa] 4.7 7.7
G, [GPa] 3.8 4.0
G,, [GPa] 3.4 3.7
G,, [GPa] 4.0 0.4
v 0.27 0.45

12
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Table 4. Experimental frequencies and residuals
obtained after identification

i @H] r, %]
1 135.75 0.767
2 253.57 -0.036
3 373.81 0.147
4 489.90 0.801
5 567.68 -1.356
6 699.55 0.451
7 787.18 -0.542
8 809.46 -0.267
9 1195.0 -0.578
10 1310.0 0.508
11 1370.0 0.006
CONCLUSIONS

The present is a strong an efficient technique
that extends to constrained problems the
advantages of Gauss-Newton methods. The
numerical results studied here show an
improvement of the computer effort when
compared with the classical quasi — Newton
version of FAIPA.

We note that FAIPA is very robust and
efficient and it was tested with more than 100 test
problems in the literature and was applied in
several  practical  applications [2, 16].
Unfortunately, we didn’t find more Constrained
Least Squares test problems.
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ABSTRACT

This paper presents a new methodology for
regularizing data-based predictive  models.
Traditional modeling using regression can
produce unrepeatable, unstable, or noisy
predictions when the inputs are highly correlated.
Ridge regression is a regularization technique
used to deal with those problems. A drawback of
ridge regression is that it optimizes a single
regularization parameter while the methodology
presented in this paper optimizes several local
regularization parameters that operate
independently on each component. This method
allows components with significant predictive
power to be passed while components with low
predictive power are damped. The optimal
combination of regularization parameters are
computed using an Evolutionary Strategy search
technique with the objective function being a
predictive error estimate. Examples are presented
to demonstrate the advantages of this technique.

NOMENCLATURE

X OR™™M matrix of predictor variables

y response variable

bOR™ vector of regression coefficients
o’ noise variance

U [diag(s;)v"T SVD of X

A ridge parameter

/\i local ridge parameters

INTRODUCTION

In many predictive modeling engineering
applications, the predictor data set is collinear.
For some systems, such as predictive systems

Mark A. Buckner

Engineering Science and Technology Division

Oak Ridge National Laboratory
Oak Ridge, TN USA
buk@ornl.gov

used to monitor process sensor calibrations,
collinear predictors are necessary for building
successful and robust inferential models [1]. Due
to the presence of collinearity, traditional
empirical modeling techniques such as ordinary
least squares, neural network multi-layer
perceptrons, and others that do not employ
regularization produce very unstable and
unrepeatable results [2]. Examples exist in most
research fields.

To deal with instabilities due to collinear
inputs, the method of regularization developed
first by Tikhonov [3] was adopted in the form of
ridge regression [4] or a more general class of
penalized estimators [5]. When applying ordinary
least squares (OLS) to a data set with collinear
inputs, the coefficients are usually very large in
magnitude. These large coefficients are caused by
overfitting the training data and can amplify noise
in the predictors and produce useless predictions.

This problem can be avoided by adding
additional constraints to the usual sum of squared
error objective function. The most common
method, termed ridge regression, adds a term that
also minimizes the magnitude of the regression
coefficients. In his paper, Hoerl [4] proved that
regardless of the conditioning, for finite data sets,
there always exists a ridge estimate that decreases
the mean squared error of the solution. This
means that even if the data matrix is not badly ill-
conditioned, one can still improve prediction
accuracy by exploiting ridge regression rather
than OLS. Adding the constraint will bias the
estimate but reduce its variance making it more
stable so that the probability that the ridge
estimates falls in a certain vicinity of the true
parameter value is higher than that of the OLS
estimate.
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There are two potential problems encountered
when using ridge regression. The first problem is
choosing an optimal ridge parameter and the
second deals with assumptions inherent in the
methodology. We will now briefly describe these
potential problems.

The proper choice of the ridge parameter
greatly affects the performance of ridge
regression. Several methods of choosing a valid
ridge parameter have found their way into
engineering practice. The most common methods
are the Discrepancy Principle (DP) [6]; Mallows’
[7] CL, Generalized Cross Validation (GCV) [8],
and the L-curve method [9]. Unfortunately, every
parameter choice rule has its pitfalls. The high
sensitivity of CL and DP to an underestimation of
the noise level has limited their application to
cases in which the noise level can be estimated
with high fidelity [10]. On the other hand, noise-
estimate-free GCV occasionally fails, presumably
due to the presence of correlated noise [11]. The
L-curve method is widely used; however, this
method is nonconvergent [12]. All these methods
directly or indirectly estimate the mean predictive
error and select the ridge parameter so as to
minimize the estimated mean predictive error.

The second problem deals with inherent
assumptions of ridge regression. When
implementing ridge regression, the components
with associated singular values larger than the
ridge parameter are considered to contain useful
predictive information and are passed while
components with singular values less than the
regularization parameter are considered to contain
noise or other useless information and are
damped. The basic assumption that the
components are arranged in order of predictive
importance may not always hold. The
components are arranged by their amount of
variation and this may, or may not, lead to
components arranged with respect to predictive
ability. In fact, components can have a high
variance with large singular values, but contain
no predictive information. In this case ridge
regression would needlessly pass this component,
which results in degraded predictive performance.
The other case is when a component with low
variance and small singular value is unnecessarily
damped. A more optimal technique would be to
associate a ridge parameter with each component
so that each component could be passed or
damped with respect to its predictive capabilities
rather than its amount of variation. This
technique, called local ridge or generalized ridge

regression [4], has found limited use because a
method of optimizing the vector of local ridge
parameters has not been found to be practical.
This paper presents an Evolutionary
Algorithm method for optimizing the local ridge
parameters to minimize Mallows' CL. CL was
chosen because it has proven to be an unbiased
estimate of prediction error [7]. The methodology
section derives the local ridge solution and
describes the evolutionary programming strategy.
The developed methodology is then applied to the
development of two predictive models. These two
examples show the advantages of local ridge to
pass components with small variance and high
predictive capabilities and to damp components
with high variation and little predictive value.

METHODOLOGY

This section will describe the methodologies
used to implement the local ridge regression
algorithm. It is broken down into two major
sections: a section on evolutionary algorithms,
and a section describing the objective function
selected to be minimized.

Predictive Error Estimator as a Fitness
Function

Consider the following linear regression

problem
y=Xb+e, £~N(0,02|n) 1)
where bOR™ is the vector of regression

coefficients to be determined using observed data
(X\y); € represents noise in the response VY ;

Xy X, are the explanatory variables or

predictors. The OLS solution or maximum
likelihood solution is given by

By =(X X)Xy, )

where b, is the vector of regression coefficient

estimates. The OLS solution is an unbiased
estimate of the true solution, if such a solution
exists. However, when the data matrix X is ill-

conditioned, the OLS solution (Bols) becomes

extremely unstable, i.e. it has a very large
variance. This can be easily seen when the
solution is written in the terms of a singular value
decomposition (SVD) of the data matrix

X =U [diag(s,) V"
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b =V [tliag (si"l)ElUTy = Z:imzlsi"l(uiT y)Dl/i 3)

where u and v are called left and right
eigenvectors of X and s; are the singular values of
the data matrix X.

The ill-conditioned matrix X has near zero last
singular values. These last singular values usually
correspond to the noise (or non-informative)
components in X. When inverted, these near zero
singular  values drastically amplify the
contribution of the noise components to the
solution and destroy its predictive accuracy.
Indeed, the variance-covariance matrix of the
OLS solution is

Cov(ﬁols):az(XTX)_1 =g’V miiag(si‘z)NT, 4)

where o is the noise variance in y. Near zero
singular values result in a large variance of the
solution, making it statistically insignificant.

When dealing with collinear data (ill-
conditioned X), one can use ridge regression [4]
to avoid the problem of instability. The ridge
solution is obtained as

b =(x"x +221,) Xy (5)

where A>0 is the ridge parameter and I, is the
mxm identity matrix. In terms of the SVD of X,
the ridge solution can be written as

“ 2
b, =V miag( 25' 2JEI]JTy
Se+A ©)
m 2 m
Si T
= ui y)O; =y oy
;sfwﬁ('y) : Zl: iOV;
with
2
il )

BT

referred to as the filter factors and p, =uy as

the correlation coefficients. Notice that for A=0,
the ridge solution becomes the OLS solution; for
A>0, the solution is different. The filter factors
determine if the information in the i" component
is incorporated into the solution or damped. If A is
large with respect to a singular value, the filter
factor dampens the corresponding component
while if A is small with respect to a singular
value, its corresponding component is passed.

Therefore, a suitably large A eliminates the
destroying effect of the near zero singular values
and makes the solution stable and statistically
significant. The variance-covariance matrix in this
case is

covlp, )= (X X + 21, ) XX (XX + 21, )
2

=og¥ Riiag((s2 ii/]z )ZJN/T (8

When A - o, the variance of the
corresponding  solution goes to  zero.
Unfortunately, the decreasing variance is not the
only consequence of using ridge regression.
Shrinkage also introduces a bias into the solution
which increases with increasing A. It is shown in
[4] that there always exists some Agy that
optimally balances the bias and variance such that
the mean squared error (MSE) of the solution,
defined as

MSE(1) = E{(bm,e ~b, )T (btrue ~b, )} , )

is less than that of the OLS solution. The only
difficulty in computing such an optimal ridge
parameter is that the MSE of the solution is not
computable unless the true solution is known.
However, one can use the mean predictive error
(MPE) to select A,

MPE(1) = E{(Xbtrue = xb, ) (X - XB, )} (10)

which can be successfully approximated using
available observations. To approximate the MPE
one can use Mallows' [9] CL

cL(A)= MM + %trace(H (), (@11

n

where the hat matrix (H(A)) is defined as
-1
H(/\):X(XTX+A2Im) xT. (12)

In standard ridge regression, (5) and (6), we
use the same value of the ridge parameter for each
component. It may be desirable to have an
individual ridge parameter for each singular value
(or component) and optimize the values of all
these individual parameters in an attempt to
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reduce the MPE further. This can be useful in
situations when intermediate components are not
related to the response, but due to a limited
number of observations and possible random
correlations, they still contribute to the solution,
degrading the prediction accuracy. To eliminate a
particular component from the solution, the
following form of ridge regression with
individual ridge parameters can be used

b, :(xTx +VAi2VT)_1XTy:i zsf Z(UiTy)Eyi (13)
i=1 i i

We refer to this variation of ridge regression
as local ridge regression with A; being the local
ridge parameters. A large A; with respect to its
corresponding singular value prevents the
corresponding component from contributing to
the solution. As before we can chose Aj's to
minimize the MPE approximated by CL in the
form

(Y - Xb,, ); (y - %, ) + %trace(H (), (14)

CL(y)=
where the hat matrix is defined as
H) =X (XX +vavT ) x . (15)

Unlike standard ridge regression in which one
A is optimized, this problem is a multidimensional
optimization with a vector of A;'s being optimized.
The number of possible combinations of even a
moderate number of real-valued ridge parameters
becomes enormous even with a fairly coarse grid
of the ridge parameters values. Orr [13] attempted
to optimize each parameter by itself and repeated
the optimizations until the solution converged.
This method is time consuming and may be
subject to local minima. Evolutionary Algorithm
(EA) optimization is able to choose an optimal
subset of regularization parameters that minimize
CL (14) as the fitness function.

Evolutionary Algorithms to Optimize
Local Ridge

Evolutionary Algorithms (EA) have been
successfully applied to solve complex engineering
optimization problems. Arguably the best know
representatives are Genetic Algorithms (GA) and
Evolutionary Strategies (ES) [14, 15]. Differential
Evolution (DE) [16, 17] is a population-based,

direct-search algorithm for global optimization.
While originally designed to operate on
continuous floating point variables DE has
recently been extended to optimize a mixture of
integer, discrete, and continuous variables as well
as multiple linear and non-linear constraints [18].

DE has proven to be exceptionally simple
(less than 30 lines of C-code) and robust for a
variety of real-world optimization problems [17].
While the structure of DE is similar to other
population based search algorithms, like ES and
GAs, it differs in both its self-referential mutation

scheme and its selection process. Here is the
basic structure of DE.
Initialization. First, we start with an

objective function f(X) to be optimized, where X
is a vector of D parameters, X = (Xy,...,Xp). Our
goal is to find the optimal values of the vector X
that provide a minimum value of f(X). DE
operates on a population, Pg, of candidate
vectors. The size of the population, NP, remains
constant for all generations. Each member of the
population is denoted as Xjg, where i indexes the
population and G is the particular generation, Pg
= {le(;,...,xiyg,...,XNPVG}, i = 1,2,...NP, G =
1,...,.Gnax- The parameters of X are analogous to
the chromosomes of an individual i in a
generation G, Xic = Xjie | = 12,...NP,
j=12,...,D.

For most real-world engineering problems, the
parameters of the objective function will be
constrained by lower and upper boundary
conditions x® and x where j=1,...,D.
Typically the initial population, Pg, is generated
by randomly selecting parameter values between
these lower and upper boundaries.

Mutation and Recombination. While a
predefined probability distribution function drives
mutation for most EAs, DE utilizes a self-
referential mutation scheme based on the
differences of randomly sampled objective
vectors from the current population. The
distribution of the differences is consequently
determined by the distribution of the population
itself. This means that any bias introduced in the
way DE attempts to improve the population of
objective vectors is implicitly driven by the
objective function or problem being optimized.

DE uses both mutation and recombination to
produce a second population of children or trial
vectors. One ““child” vector is created for each
“parent” in a random manner. When crossover
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occurs, a parameter of the ““child” becomes a
linear combination of three randomly chosen
vectors, otherwise that parameter of the “parent”
is passed along to the “child”. Another portion of
the code ensures that each “child” vector differs
from its “parent” in at least one parameter
(chromosome). This is done for every “parent”
vector in the current population. Several user
specified control variables, such as crossover and
mutation rates, affect the convergence properties
and robustness of DE and often depend on the
characteristics of the objective function.
Guidelines for selecting the parameters are
provided in [16, 17] and successful selection of
the parameters can usually be obtained after a few
trial iterations using differing values.

Selection. The selection scheme utilized by
DE is also different from other ES and GAs.
Each successive population, is selected from
either the current ““parent” population, or the
“child” population. Each individual “child” in the
trail population is compared with a single
“parent” in the current population and the
individual with the lower objective function
“survives” and passes on into the next generation.
This means that all the individuals in each
successive generation are at least as good as their
“parent” in the current generation. In contrast to
other EAs, which compare a candidate individual
to all other individuals in the population, DE only
compares the candidate individual to a single
member of the current population.

CASE STUDIES

This section presents two applications of the
local ridge algorithm developed in the previous
section. The first example is a predictive model
using automobile data that shows unimportant,
high variance components can be correctly
damped with local ridge. The second example is
a predictive model that estimates the value of a
process parameter in a fossil power plant that
demonstrates important, low variance components
can be passed.

Automobile Example

The first example uses automobile data that
can be found at the University of California
Irvine, Repository of Machine Learning Database
[18]. The dataset was first used in the 1983
American Statistical Association Exposition and
later used by Quinlan [19] to predict automobile
gas mileage. The data set has information from

392 automobiles with seven variables of interest
provided in Table 1. In this example we will use
the first six variables to predict the seventh
variable: the car's acceleration.

Table 1. Automobile Data Set

Variable Type
1 | MPG continuous
2 | Cylinders multi-valued discrete
3 | Displacement continuous
4 | Horsepower continuous
5 | Weight continuous
6 | Year multi-valued discrete
7 | Acceleration continuous

Performing a Principal Components Analysis
(PCA) on the standardized data results in the
following amounts of variation incorporated in
each the six Principal Components (PC). The
singular values are also listed.

Table 2. Principal Component Analysis

PC Singular Value | % Variation
1 42.17 77.6
2 18.34 14.4
3 9.03 3.5
4 7.86 2.6
5 5.41 1.2
6 3.74 0.6

An analysis of the principal components show:

PC#1 is a weighted average of cylinders,
displacement, power, and weight and negatively
with MPG.

PC#2 is weighted towards the year.

PC#3 is weighted towards MPG.

PC#4 is a measure of the difference between the
two variables cylinders and power.

PC#5 is weighted towards weight.

PC#6 is likely due to noise.

The condition number of XX, which is the
matrix that is inverted when calculating the OLS
solution, is slightly ill-conditioned with a
condition number of 130.

Table 3 presents the results of a correlation
analysis of the principal components and the
response variable: acceleration. In this table we
see that the first component is highly correlated
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with acceleration and that components 3, 4, and 5
have slight correlations with acceleration. This is
to be expected since component two is year, and
there were old and new cars with high and low
accelerations. We may expect that ridge
regression will pass the first five components and
that by passing component two, the predictive
performance will be slightly degraded.

Table 3. Correlation Analysis

Principal Absolute Correlation
Component

1 0.5510

2 0.0013

3 0.3625

4 0.3006

5 0.3014

6 0.0598

We will now evaluate various models using
Mallow's CL as an estimator of the predictive
error (eq. 12). Specifically, we will evaluate
models using OLS, Principal Component
Regression (PCR) with all and various
combinations of PCs, and Ridge regression with
the regularization component optimized to be
0.8286. This regularization parameter is optimal
in the sense that it gives the minimum CL value.

The results in Table 4 show that the model
with the minimum CL value (other than Local
Ridge) is PCR with components 1, 3, 4, and 5.
This agrees with the results expected from the
correlation analysis, which expect components 2
and 6 to be removed.

Table 4. Prediction Results

Method Estimate of
Prediction Error
OLS 2.9746
AllPCs[123456] 2.9746
One PC [1] 5.3138
[13] 4.3329
[135] 3.6546
[1L345] 2.9729
Ridge (alpha 0.8286) 2.9739
Local Ridge 2.9578

Similar results occur when these predictive
models are used with a validation set. In that
case, the odd observations are used for training
and the even observations are used for calculating

the validation error.  The predictive error
corresponds to the estimates given by CL.

Note that the regularization coefficient of
0.8286 is significantly smaller than each of the
singular values, and will therefore pass all of the
components. This regularization parameter
reduces the condition number from 130 to 120.

Table 5 lists the local ridge parameters
obtained through the evolutionary algorithm
optimization and their corresponding filter
factors. We see that the 2" component (Year) is
properly damped out, and that the last component
is partially damped.

Table 5. Principal Component Analysis

PC | Singular | Local Local
Values Ridge Ridge
Parameters | Filter
Factors
1 42.67 2.416 0.9968
2 18.40 8899.3 0.0000
3 9.03 0.779 0.9926
4 7.86 0.819 0.9893
5 5.41 0.562 0.9893
6 3.75 2.286 0.7286

Figure 1 is a plot of ridge filter factors, local
ridge filter factors, and correlation coefficients.
Note the very low correlation of the 2™
component (year) with the response variable.
Standard ridge regression allows that component
to pass (filter factor near 1) while local ridge
effectively damps it out of the solution (filter
factor near 0).

Filter Factors and Correlation Coefficients
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Referring to Table 4, we see that the local
ridge solution gives the best CL value, which is
an estimate of predictive error. Therefore, the
local ridge outperformed all other linear
prediction models for the automobile example.

Process Sensor Estimation

The second example we want to discuss deals
with the prediction of sensor values in power
plants. The safe and economical operation of
Fossil and Nuclear Power Plants (NPP) requires
knowledge of the state of the plant, which is
obtained by measuring critical plant parameters
with sensors and their instrument chains.
Traditional approaches used to validate that the
sensors are operating correctly involve the use of
redundant sensors coupled with periodic
instrument calibration. Since few of the sensors
are actually out of calibration, the end result is
that many instruments are unnecessarily
maintained. An alternative condition based
technique is desirable.

When  implementing  condition  based
calibration methods, the instruments are
calibrated only when they are determined to be
out of calibration. On-line, real-time sensor
calibration monitoring identifies faulty sensors
which permits reduced maintenance efforts and
increases component reliability.

Inferential sensing is the prediction of a sensor
value through the use of correlated plant
variables. Most calibration monitoring systems
produce an inferred value and compare it to the
sensor value to determine the sensor status. There
are a number of techniques, which were proposed
for on-line inferential sensing during recent years
[20].

All of these methods use related sensors as
inputs to estimate a model (sets of weights),
which is subsequently used to infer the sensor's
value based on the input values. A peculiar
feature of any on-line sensor validation system is
that this system should not only accurately infer
the sensor's value but it should also be robust to
moderate changes in input values. This means
that the sensor validation system should resolve a
subtle compromise between accuracy and
robustness. Recently, the role of regularization in
this process was realized [1, 2]. Although
traditional regularization techniques perform well
for these types of problems, sensor value
prediction accuracy can be improved using
multiple (local) regularization parameters. To

demonstrate this, we used eighty-two variables,
recorded at a TVA plant, arranged in a data
matrix X (1000 x 82), as predictor variables to
infer the value of a response variable Y, which is
the sensor under surveillance. One thousand
initial samples were used as training data and two
thousand were left as a test set. The prediction
accuracy was estimated for four techniques:
ordinary least squares solution, regular ridge
regression with regularization parameter selected
to optimize CL, truncated singular value
decomposition (TSVD) with an optimized
truncation parameter and local ridge regression
with local ridge parameters selected with DE
optimization of CL as the cost function. The
prediction MSEs for test data set are shown in
Table 6.

Table 6 MSE for Different Techniques

oLS Ridge: TSVD Local
A=0.0273| k=20 Ridge
MSE | 0.586 0.579 0.415 | 0.292

As we can see, the prediction MSE is the lowest
for local ridge regression with regularization
parameters selected by DE. We should point out
that DE is a stochastic optimization technique and
is subject to random fluctuations. Several DE runs
were performed on the same training data set and
the result with smallest CL was selected to
perform local ridge. The filter factors for regular
and local ridge, along with correlation
coefficients between response variable and
components are shown in Fig. 2.
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It can be seen from Fig.2 that the DE optimized
filter factors completely removed components
starting from number 45. They also passed the
first 10 principal components. However, in
contrast to regular ridge regression or TSVD, it
passed and damped middle range components
selectively. It is important to notice that local
ridge filters out components with small
correlation coefficients and passes components
with relatively significant correlation coefficient.
In this case, it is also interesting to notice that
local ridge filter factors either completely pass or
completely dampen a component, thus
performing “selective” TSVD.

CONCLUSION

This paper presented a methodology for
implementing local ridge regression through
optimizing Mallows' CL with Differential
Evolution. Two example implementations of the
algorithm on actual data show that this method
provides better values of CL and better predictive
performance than OLS or standard Ridge
Regression. The use of Differential Evolution to

optimize  high  dimensional local ridge
optimization problems is both useful and
practical.
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ABSTRACT

The purpose of the paper is to present a
methodology which is useful in the derivation
of approximate models with simpler geometry
of some inverse problems. First we formulate
a direct problem (being the boundary hemi-
variational inequality) which is given in a do-
main with a complicated geometry (e.g. per-
forated domains, layered structures). For such
direct problem we consider the inverse one and
we provide result on the existence of solutions.
Next we establish the homogenization result for
the direct problem. It turns out that in the
homogenized inequality the complex boundary
condition is replaced by a much simpler one.
Finally, we study the asymptotic behavior of
the set of solutions of the inverse problem. The
main result shows that the solutions to the in-
verse problem for homogenized hemivariational
inequality can be considered as reasonable ap-
proximations of the solutions of the original in-
verse problem.

NOMENCLATURE
a.e.  almost every (everywhere)
D gradient operator
div  divergence operator
E closure of a set F
inf, sup infimum, supremum operations
j° the Clarke directional derivative

K,; set of admissible parameters
m(Y) the Lebesgue measure of a set YV
n unit normal

N the set of natural numbers

R the set of real numbers

Se(a) solution set corresponding to a
92X subsets of a space X

X characteristic function

r boundary of a domain

aj generalized gradient of j
o0 boundary of a domain 2

INTRODUCTION

In this paper we present a continuation
of our efforts on the development of models
for mechanical structures in which it is neces-
sary to deal with multivalued and nonmono-
tone laws. It is well known (see [1], [2] and
[3]) that there is a large class of mechani-
cal problems with nonconvex energy functions
which are generally nonsmooth. They lead to
nonmonotone, possibly multivalued constitu-
tive laws or/and boundary conditions which
can not be derived from convex superpoten-
tials via the differentiation. Such mechanical
problems can be successfully described by a
type of variational expressions called hemivari-
ational inequalities which were introduced by
P.D. Panagiotopoulos, cf. [1] and [2]. For exam-
ple, considering the contact between an elastic
structure and a granular medium (or a compos-
ite material) we arrive to multivalued bound-
ary conditions of the subdifferential type. In
hemivariational inequalities the aformentioned
laws are formulated via the notion of the gen-
eralized Clarke gradient [4].

On the other hand studying the problems of
estimation of material parameters in mechan-
ical systems we meet structures with complex
geometry. The goal of this paper is to study the
problem of identification of a discontinuous co-
efficient in a domain with a complicated geom-
etry of boundary. On the corresponding parts
of the boundary the mixed boundary condi-
tions are assumed: the Dirichlet-Neumann con-
ditions and a condition of the subdifferential
type. Our purpose is not to present an efficient
computational algorithm but rather to describe
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a technique which can be useful for dealing
with inverse problems for structures with a
complicated boundary. This technique can be
applied before passing to the numerical issues.
We show that the inverse problem obtained by
the boundary homogenization procedure for a
hemivariational inequality can be considered as
a reasonable approximation of the initial com-
plicated inverse problem.

We consider the elliptic boundary hemivari-
ational inequality of the form: find u € V such
that

—div(a(z)Du) +u=f in Q
u=0 on Iy

0

B, »
0 .

— ;E:) € 9j(z,u(x)) a.e.on Iz,

where Q is a bounded domain in RV, V is a
closed subspace of H'(f2) such that HJ(f) C
V, Ou/on, = Zfil a(x)D;un; denotes the
conormal derivative of u associated to a, n is
the outward normal to 09, 9j is the Clarke
subdifferential of a locally Lipschitz function
jR—) R and 00 = I'yully Urg with I’y ;é @
The inverse problem for the above hemivari-
ational inequality system consists in finding a
coefficient a in a set K, 4 which solves

L min F
i min (u(a)),

where u = u(a) is a weak solution of (1) cor-
responding to the coefficient a and F is a pre-
scribed cost criterion.

We give a rigorous mathematical result on
the asymptotic behavior of the direct problem
when the small parameter describing the ge-
ometrical structure of the boundary tends to
zero. The previous results in this direction were
obtained by Damlamian and Li Ta-tsien [5] for
elliptic differential equations and by Migorski
and Ochal [6] for elliptic hemivariational in-
equalities. We mention also that the method
of interior homogenization (i.e. when the coef-
ficients are of the form a.(z) = a(z/e) with a
being a periodic function and £ — 0) can not
be used here since the highly oscillating coeffi-
cients are not uniformly bounded variation (see

the choice of the set of admissible parameters
K,q below and [6]).

The reader is referred to [7], [8], [9], [10] for
the corresponding optimal control problems for
hemivariational inequalities and to [11], [12],
[13], [14] for the stability of inverse and pa-
rameter identification problems.

HEMIVARIATIONAL
DEL

We recall some definitions which are use-
ful in the next sections. We will denote by
a bounded open subset of RV with Lipschitz
continuous boundary 9. Given f € L'(Q) the
variation of f is defined by (cf. Giusti [15])

INEQUALITY MO-

[ D1 =sup( [ 1 divgds : g € CHOLRY),
Q Q

lg(z)| <1 for z € Q}.

If [, |Df| < +oo that is the variation of f is fi-
nite, we say that f has bounded variation. The
space of functions f € L'(Q) with bounded
variation is denoted by BV (Q2). Equipped with

the norm ||| = [|f||: +/ \Df|, BV(Q) be-
Q

comes a Banach space.
In this note we consider the set of admissi-
ble parameters of the form:

Kad:{aeAad :/|Da|50}, @)
Q

where Agg = {a € LT(Q) : 0 < ¢q < afz) <
ca, a.e.in Q} and C > 0.

Concerning these two sets we recall their
properties which are needed in the sequel.

Remark 1 (a) The topologies of L*(Q) and
L?(Q) coincide on the set A,q, i.e. for all a €
A,q, we have

llal|r: < const|lal|rz and ||a||z2 < e2l|al|L:.

(b) The set Koq is compact in L'(Q) for every
constant C' > 0. This is a consequence of the
fact that the set of functions uniformly bounded
in the BV (Q) norm is relatively compact in
LY(Q).

For the properties (a) and (b) we refer
to Gutman [16] and to Giusti [15] (Theorem
1.19), respectively.
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We recall the definitions of the generalized
directional derivative and the generalized gra-
dient of Clarke for locally Lipschitz function
¢: X — R, where X is a Banach space (see
Clarke [4], Chapter 2). The generalized direc-
tional derivative of ¢ at z € X in the direction
v € X, denoted by ¢%(x;v), is defined by

O (2;0) = limsup ply + ) — oY)
y—z Al0 A

The generalized gradient of ¢ at z, denoted by
Op(x), is a subset of a dual space X* given by

dp(x) = {C € X : ((,v)x-xx < ¢°(a;0)

for all v e X}.

Recall also that given a Banach space
X equipped with a topology 7 and sets
{Mp}nen C 2% | the sequential Kuratowski up-
per limit is defined by

Kyey(—X) limsup M,, =
={zeX:3{n.},zn, € Mp,, 20, > T
in 7-X, as v =+ +o0}.

The space X with the weak topology is denoted
by w-X.

Now we assume that the boundary of €2 con-
sists of three disjoint open subsets such that

N =010U%AURN, 50 #0.

We consider the following problem: find a func-
tion u: 2 — R such that

—div(a(z)Du) +u=f in Q

uaz 0 on 0:Q
6;; =g on 0-)1) (3)
_ Ou(a)

. € 0j(z,u(x)) on 050

u
= a(x)Du - n denotes the conormal

where

derivative of u associated to a.

In order to give the variational formulation
of the above problem let V = {v € H}(Q) :
v =0 on 0;Q}. This space is a closed subspace
of H'(Q) provided V is equipped with the
topology induced by H'(f). It is well known

that |[v|| = [|Dv|[p2@qrn~) is an equivalent
norm on V.

Let v € V. Multiplying the equation in Q by
v, integrating over @ and applying the Green
theorem, we have

/ (a(z)Du Dv + uv) dx —
Q

ou
o0 8na

Uda(;v):/gfvdx.

Next taking into account the boundary condi-
tions on 95N and 9512, we obtain the following
variational form of (3): find u € V such that

au,v) +/(9 . Cudo(z) ={l,v)

forallveV
((z) € Oj(z,u(z)) a.e.on I3

where

a(u,v) = /Q (a(z)Du Dv + wv) dz and

(l,v)=/9f11d$+/62ggvda(m).

Using the definition of the Clarke subdifferen-
tial, the latter formulation reduces to the form
of hemivariational inequality: find v € V such
that

a(u,v—u)+/a Qjo(av,u(ac);v(a:)—u(x))da(x)

>{l,v—u) forall veV.

We show that the problem admits a solution
under mild hypotheses on the data. Namely we
make the following assumptions:

M: ac Aad-
(Ho): feL(Q), ge H'?(0:9).
H(j) :

J:03Q x R — R is such that j(-,§) is
measurable, j(z, -) is locally Lipschitz, j(z,0) €
L1(63Q)7

|07 (x, &) < c3(1+¢]) ae. z € 830N
and for all £ € R with ¢3 > 0,

7%z, & —€) < ca(1+(€]) ae. z € 950
and for all £ € R with ¢4 > 0.
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Lemma 2 Under hypotheses H(a), (Hp) and
H(j), the problem (4) admits a solution. Fur-
thermore, there is a positive constant c such
that

lullv < e (1 +[1£llz2() + llgllz-12(800)) -

Proof. Let us define the functional

J:I12(8:9) = R by
J() = /8 (0@ do(o).

The conditions H(j) imply that J is locally
Lipschitz on L?(850). Recall also that the trace
operator v — v|ag is a linear continuous oper-
ator from V to H'/2(9Q) and that the embed-
ding of HY/?(99) to L*(0Q) is compact (see
e.g. Zeidler [17]). Therefore we may apply The-
orem 4.26 (with [, j%(x,u;v — u)dz replaced
by [5,03° (@, u;v —u) do(x)) of Naniewicz and
Panagiotopoulos [3] and deduce that the hemi-
variational inequality (4) has at least one so-
lution. From the hypothesis H(a) we have
a(u,u) > ci||u||?. So using H(j), from (4) we
get

e ful” S/ 3% (z,u; —u) do(z)+
8592

+/ fudw—}—/ gudo(z) <
Q 80

< allullze + [[flle2llullz> + cllglla-1z|lull <

<& (L+(Ifllze + llgllz=12) llul]

with suitable positive constants ¢;, ¢ and ¢3.
This completes the proof. ]

Remark 3 Lemma 2 still holds if the sign con-
dition j(x,&—€) < ca(1+ |€]) in H(j) is re-
placed by a weaker one

3%(2,&—€) < )1+ [€]°)

where 0 < s < 2, f € L*>/?9(8;0), B > 0.
This follows from the fact that then the bilinear
form a is V -coercive; see also Section 4.3 of [3].

Remark 4 Given 8 € LjS.(R), we denote by
B:R — 2% o multifunction obtained from 8 by

“filling in the gaps” at its discontinuity points,

i.e. B(€) = [B(€),B(€)], where

B(€) = lim essinf 3(t),

60+ [t—£|<d

A(¢) = lim iS_S;I;I;B(t)

and [-,-] denotes the interval. Here essinf and
esssup stand for the essential infimum and
supremum, respectively, over the interval [§ —
0,&+ 0. It is well known (see Chang [18]) that
a locally Lipschitz function j:R — R can be de-
terminated up to an additive constant by the re-
lation j(£) = fog B(s)ds and that 85(€) C B(€).
Moreover, if 8(£1+0) exist for every £ € R, then
9j(&) = E(.f) We refer to [19] for additional
hypothesis on the function B under which the
solution of the hemivariational inequality (4) is
unique. In this case the inverse problems (IP),
and (IP) considered below reduce to the usual
minimization ones.

STATEMENT OF INVERSE PROBLEM

The aim of this section is to give an exis-
tence result for the inverse problem under con-
sideration.

Let the boundary T' of Q consist of three
parts, i.e. 90 =T =T UL UT3, I's has a
positive measure and for every € > 0 let 'y be
divided into two subsets I'{ and I';. We con-
sider the following inverse problem: given data
f, g and a cost functional F' defined on H'(Q),
find a coefficient a € K4, K,q being the set of
admissible parameters defined by (2) such that

i i F = IP).
aIEnIl(rid u(agrélél (a) (u(a)) s ( )

where S.(a) is the set of solutions to the prob-
lem:

( —div(a(z)Du)+u=f in Q
U 1>
Ong =9 (fi T
§ u=0 onT% (DP).
0 :
- gr(j) € J0j(z,u(x)) a.e. only
\ =0 onTj.

The hypotheses are the following.
(Hoi: feIL*Q), ge H '2(TY).
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H(F): F:HYQ) — R is weakly lower semi-
continuous.
H(j);: j:Ta xR — R is such that j(-, &)

is
measurable, j(z, -) is locally Lipschitz, j(z,0) €
LI(FQ)a
|07 (x,7)| < cs(1+|r]) a.e. x € Ty
and for all r € R with ¢35 > 0,
7Oz, r;—r) < ca(1+|r|) ae. z € 939
and for all » € R with ¢4 > 0.

Theorem 5 If hypotheses H(j)1, H(F) and
(Ho)1 hold, then the inverse problem (IP).
possesses a solution for every fixred e > 0 and
every admissible set Kqq of the form (2).

Proof. We apply the direct method of the cal-
culus of variations. Let {(ax,ur)}r be a mini-
mizing sequence for the inverse problem (IP),
with ar, € Kuq and up = u(ag) € Sc(ag) (re-
call that by Lemma 2 for every a € A,q the set
Se(a) is nonempty). In what follows since ¢ is
assumed to be fixed we omit the dependence
of u(a) on e. From Remark 1(b) we know that
K,q is compact. Denoting subsequences with
the same index as original sequences, we can
find a subsequence of {a;} such that

ar = @o in L'(Q), as k = oo
and by Remark 1(a), we have
ar = a in L*(Q), as k = oo (5)

with ag € Kgyq. Since ug € Sc(ax) we have (cf.

(4))

/ (ag(z)DugDv + ugv) de + | &vdo(x) =
Q

s

:/vadav+/r1 guvdo(x) (6)

forallv € V., V. = {v € HY(Q)
Fg} and

:UzOOnﬁU

&(z) € 0j(z,u(z)) ae.zeTly.  (7)

It follows from Lemma 2 that the sequence
{ur} is bounded in V. independently of k.
Also note that from H(j)1 we have | (z)| <
c3(1+ |ux(x)|) a.e. on T's. Hence

1€kl z2(rs) < €1+ lukllrz(rs)) < €1 (1+[Jukllv.)

with ¢, ¢ > 0 independent of k. Therefore
the sequence {&;} remains in a bounded set
in L?([y). Using again the compactness of the
trace operator and passing to a subsequence, if
necessary, we may assume that

up — ug weakly in H'(Q),
in L?(Ty) and a.e. in Ty (8)

& — & weakly in L2(Ty)

with ug € V;, & € L?(T'). Then, going back to
(6) and using convergences (5) and (8), in the
limit, as k& — oo, we get

/ (ao(x)DuogDv + ugv) dz + | &udo(x) =
Q

s

:/vada:%-/rlgvdo(m)

for all v € V.. In order to infer that ug € Sc(ag)
we have to prove that

éo(x) € 0j(x,up(x)) a.e.z €l (9)

Indeed, since the values of 3j are nonempty,
compact and convex subsets of R and
9j(z,-): R = 2R has a sequentially closed graph
(cf. Clarke [4]), we deduce (cf. e.g. Denkowski
et al. [19]) that dj(z,-) is also upper semicon-
tinuous. This property together with (8) allows
to apply Convergence Theorem (see Chapter
1.4 of Aubin and Cellina [20]) and from (7) we
obtain (9). Hence it follows that ug = u(ag) €
S(ag) and so the pair (ag,up) is admissible for
(IP)c. Finally note that from H (F') and (8) we
have
F(up) < liminf F(ug) =m
k—o0

and hence ag € K,q4 is the desired optimal pa-
rameter. ]

BOUNDARY HOMOGENIZATION

The goal is to study the asymptotic behav-
ior of the sets of solutions to the direct prob-
lem (DP). as € — 0. We will find the form of
the limit problem (D P) which is obtained from
(DP)c. It turns out that the limit problem does
not depend on the function g appearing in the
Neumann boundary condition on I'j.

Let us denote by x. the characteristic func-
tion of I'f on I'1, ie. xe =1lonI'§ and x. =0



4th International Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazil, 2002

on I']. The crucial hypothesis on the geometri-
cal structure of the partition of I'y is as follows.

(Hp) : for any weak-x convergent subse-
quence of {x.} in L*(I';) its limit function is
different from zero almost everywhere on I';.

Theorem 6 If the hypotheses H(j)1, (Ho)1
and (Hp) hold, u: € Sc(ae), ue — u weakly
in HY(Q), a., a € Ayq and a. — a in L*(Q),
then u € S(a), where S(a) denotes the solution
set to the following limit problem:

—div(a(z)Du) +u=f in Q
u=0 onT';UT3
Bu( )

ana

(DP)
€ 0j(z,u(z)) a.e. on Is.

Proof. Let u. € V. C H'(Q) be a solution
to (DP)., where V. = {v € H'(Q) : v =
0 onI's UTs}. So we have

/ (ac(x)Du:Dv + uew) dx + | Evdo(z) =
Q

s

:/vad;zc+/r1 gvdo(z) (10)

for every v € V, and
&(z) € 0j(z,ucs(x)) a.e. z €Dy, (11)

Assume also that u. — u weakly in H(Q).
From the hypothesis H(j); we know that {&}
is bounded in L?(T3). So we may assume that

& — €& weakly in L*(T';) (12)

with £ € L?(T3). On the other hand, by the
compactness of the trace mapping H'(Q2) —
L%(T), we obtain

usll"l _>U|F1 in L2(F1)a (13)

ue|r, = ulr, in L*(Ty), (14)

as € = 0. From hypothesis (H,) we have that
there exists x € L*(T'1), x # 0 a.e. on T'; such
that

Xe = x weakly x in L*®(T). (15)

Next we observe that uc|r, xe = 0 a.e. on I'y.
Thus from (13) and (15) we have u|r, x = 0
which implies u|r, = 0. It is easy to see that the

condition ue|r, = 0 gives u|r, = 0. Hence u €
V,withV ={ve H'(Q) : v =00n T'; UT3}.
Of course we have V C V; and (10) implies

/ (ac(z)Du:Dv + ucv) dx+
)

/fvdm

forallv e V. Usmg the convergences a. — a in
L?(Q), u. — u weakly in H1(Q) and (12) we
pass to the limit in the above inequality and
obtain

5511 do(z

/ (a(z)DuDv + uv) dz+
Q

Evdo(z
s

/fvdx YveV.

Finally, a straightforward application of Con-
vergence Theorem (see Aubin and Cellina [20])
to the inclusion (11) implies

&(z) € 9j(z,u(x)) a.e. x €Ty

(the passage to the limit is possible due to (12)

and (14)). Then clearly u € V solves (DP)
which completes the proof. ]

O o 0o al
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O o oo dd ¥
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O oo oo, Yr Y1
OO o 0O O e 0 I
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1. The e-homothetic structure

Remark 7 The assumption (Hp) imposes a
restriction on the geometrical structure of ﬁ,
as € = 0 and it implies that there exists a pos-
itive constant m such that for each € > 0 the
measure of I'; in I'1 is not less than m. In par-
ticular, (Hp) is easily verified in the following
two cases as depicted in Figure 1 and Figure
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2. In Figure 1, the boundary Ty C R? is e-
homothetic, periodic set obtained from the rep-
resentative cell Y = [0,11) x [0,12). The part
I'§ consists of the ”holes” on the surface I'y
while ﬁ is the complement of T5, Y* =Y \ D
and 0 = m(Y™*)/m(Y). Figure 2 represents the
boundary Ty which has the layered structure.
The hypothesis (Hp) is satisfied in both of these
cases: the whole sequence x. converges weakly-*
in L*(Ty) to 8. The result is the same for both
structures, only the proportions of each parti-
tion count.

¥
Oe T
+ €
n ¥
(1-0)e
T N
/
> N
- rs
I§ - 1
N

2. The layered structure

We are now in a position to formulate the
inverse problem for the homogenized hemivari-
ational inequality: find ¢ € K, 4 which solves
the following minimization problem

F(u(a)),  (IP)

min min
a€Kaa u(a)€S(a)
where S(a) denotes the solution set of (DP).
First we state a result analogous to Theo-
rem 5.

Theorem 8 If the hypotheses H(j);, H(F)
hold and f € L%(R)), then the inverse problem

(IP) admits a solution on every admissible set
K,q of the form (2).

For each positive ¢, let us define the sets NV
and N of solutions to (IP). and (IP), respec-
tively, i.e.

N: = {(a*,u(a*)) € Kga X Se(a*) :
F(u(a*)) < F(u(a)) for all a € Koq}

and similarily for AV.
The main result is the following.

Theorem 9 Under hypotheses H(j)1, H(F),
(Ho)1 and (Hp), we have

Kyeq(LA(Q) x (w-H(R))) limsup N C .

e—0

Proof. Let (a*,u(a*)) € limsupN.. So
e—0

(a*,u(a*)) € Kuq x H'(Q) and by defini-
tion of the upper limit there is a sequence
{(a%,u?)}e>0 such that (a’,u’) € N: for every
e >0and a’ —a* in L?(),

uf = u* weakly in H'(Q),

where u* € H'(Q) and u’ = u(a?). Hence
ur € Sc(a?) and F(ul) < F(u(a)) for all
a € K,3. From Theorem 6 we obtain u* €
S(a*) and u* = wu(a*). By hypothesis H(F)
we have F(u*) < limsinf F(u?) < F(u(a)), for

all a € K,q4, which means that (a*,u(a*)) € N.
L]

We conclude this paper by pointed out that
result analogous to Theorem 9 can be proved
when the direct problem has the following form

( —div(a(z)Du)+u=f in Q
Ou(x _ .
- Béa) Gflj(a:,u(x)) a.e. on I']
y u=0 onTI¥ (16)
Ou _ onT
on, 4 2

\ u=0 onTj.

In this case the boundary homogenization re-
sult for (16) reads as follows. By M.(a) we de-
note the solution set of (16).

Theorem 10 If the hypotheses H(j)1, (Hp)
hold, f € L*(Q), p € HY*('), u. € M.(a.),
ue — u weakly in H'(Q), ac., a € Ay and
a: = a in L*(Q), then u € M(a), where M(a)
is the set of solution to the homogenized prob-
lem:

—div(a(z)Du) +u=f in Q

uaz 0 onTUTs 17)
= on Fg.

ong

We underline that the limit problem for
(16) is not a hemivariational inequality but the
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boundary value problem for elliptic equation.
The problem (17) does not depend on the func-
tion j appearing in the boundary condition on
rs.
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ABSTRACT

Cardiovascular diseases are the largest cause
of deah in industrialised countries; hence, ealy
diagnostic of bad conditions in patients can
dramaticdly increase their chance of survival.
One way of performing such an ealy detedion is
based on alaser system that is introduced into the
patient's coronary so as to excite its inner walls,
and an opticd caheter that caries the resulting
radiation to a Raman spedrometer at its other
end. With the spedra obtained it is then possble
to automaticdly diagnose the wndition of the
coronary. Here we report on an algorithm to
perform such an automatic diagnosing. The
approach relies on a quantisation of the intensity
levels of the Raman spedra, and on a genetic
algorithm, coupled to an artificial neural network,
that is meant to lean to discriminate between
three onditions of human coronaries: normal,
atheromatous and cdcified. While the neurd
network is the adua diagnosing system, the
evolutionary agorithm is used to seled the
frequencies of the spedra that the neural network
should acount for. The best networks obtained
have achieved 100% success rate, a remarkable
result that rivals al its forerunners found in the
literature, while preserving a simple solution
scheme.

INTRODUCTION

The largest cause of mortality in industrialised
countries are cadiovascular diseases,
arteriosclerosis being the worst of them, as it
aff ects important arteries that conducts blood to
the heat (the coronaries, in this case) or to the
brain. Hedthy arteries are flexible and their cross
sedion area ae sufficient to alow circulation of
the required amounts of blood to those organs.
However, smoking, stress colestherol, ageing,
etc, favour lipidic deposition onto the ateries
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inner walls. At a cetain paint in this process the
so-cdled atheroma (or atheromatous tisaue) is
said to have been formed, charaderising a
preliminary stage of an unhealthy artery. This
situation may beame even worse, as calcification
of the ateries become more likely, making them
stiffer, with consequent lossof their elaticity. As
a onsequence of bath conditions, arteriosclerosis
has come aout, what dramatically hinders the
amount of blood that can circulate through the
arteries.

The traditional procedure for diagnosing the
hedth stage of an artery — normal, atheromatous
or cdcified —would involve histologicd analyses.
More recently, technologicd advances gave rise
to a new, faster and less invasive method that
dlows the diagnostic to be made in vivo, by
introducing an opticd caheter into the patient’s
artery ([1]), linked to some spedroscopy
technique, so that the diagnostic is obtained out of
the wlleded spedra. In the cae of when Raman
spedroscopy ([2]) is used, the tissue is irradiated
by an 830m (infrared) laser beam and, as a
result of the laser-tissue interadion, elastic and
inelastic radiation is sattered. Optic sensors then
cgpture the radiation (through other fiber optics),
which is then processd, filtering out the dastic
radiation (fluorescence) and noise, learsing only
the signa component due to the inelastic
scadtering, which is the so-cdled Raman
radiation. This sgnal provides information about
the substances that constitute the target tissues.

This approach relies on a database of spedra
(of the intensities of the Raman radiation at
various frequencies or wavelengths), creaed out
of an ensemble of coronaries, distributed in the
three onditions mentioned above. With a subset
of the samples classfied by a human expert, one
can use them as a reference for the aitomatic
clasgficaion of the others. In the present work,
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the latter consists of learning to identify the
coronary conditions of the classified spectra by
means of artificial neural networks ([3]), together
with using an evolutionary computation approach
([4]) to search for the set of frequencies in the
spectra that, for their relevance, should be taken
into account during the learning and hence, the
diagnostic processes. Our method extends the one
in [5], improving it in various ways, thus
achieving a significant more accurate automatic
classification of human coronaries.

In the next section the method employed is
described in detail, first by presenting the neural
network architecture and general characteristics,
and then, by presenting the genetic agorithm
parameterisation.  Subsequently, the results
obtained are reported and discussed, and the last
section provides concluding remarks.

THE METHOD

Preprocessing

Each Raman spectrum is defined by a
distribution of intensity levels of radiation for
various frequencies (or wavelengths); see Figure
2 for some examples. Before presenting these data
to the neural network, each spectrum is first
normalised in respect to the largest intensity value
present in it. Then, the intensity values of the
spectra are quantised; in the present work a
guantisation level of 0.25 was used, meaning that
the quantised spectra would have only five
possible intensity values, from 0 to 1. Such a
guantisation ams at facilitating the neural
network learning, as it dramatically decreases the
amount of data variation the network has to cope
with during learning, even though the amount of
data itself does not change. Naturaly, the
guantisation level has to be defined so as to
change the general shape of the spectra, while still
preserving their identity.

In addition to the latter preprocessing of the
intensity values of the spectra, some
preprocessing in the frequency range also takes
place. Firstly, athough the raw freguencies
produced by the Raman spectrometer vary
between 600 to 1800 cm*, only 754 frequencies
are used for the sake of classification; this number
derives from selecting the frequency window of
interest, together with a frequency calibration
procedure ([6]). Naturally, such a size would not
be convenient neither viable to be used for
training the neural network; hence, a frequency
selection is required for rendering training

feasible, which reduces the number of frequencies
used to a value N<754. This is precisely the role
of the genetic algorithm that is associated with
our approach, aswill be clear below.

A Neural Network

Neural networks have been used in most
diverse areas of technology, with emphasis on
pattern classification. Feedforward networks ([3])
display an appealing general aspect, with asimple
architecture and well-known training algorithms,
such as the backpropagation algorithm, where a
strong (supervised) learning scheme is employed,
in that input patterns are presented to the network,
together with their correct, corresponding output
patterns. Tolerance to data errors, example-based
learning, and ability for data classification are the
main characteristics that make neura networks a

good candidate for pattern classification
problems.

InpUt Hidden Output

Layer Layer Laver

Figure 1: The neura network architecture.

The neural network architecture used in this
work is shown in Figure 1. It is a feedforward,
completely connected network, with one hidden
layer.

The input layer size depends on the amount of
variables selected by the method utilised to
reduce to complexity of the problem; in the
current case the network has to process N input
data points, that is, the intensity val ues associated
with each of the N selected frequencies that form
a spectrum. The notation X = (Xg, X5 ... Xn.1, Xn)
is, therefore, the data vector representing a subset
of a spectrum, which is applied to all N nodes of
the input layer.

The output layer possesses three nodes that
classify the spectrum presented to the neural
network in: Normal, Atheromatous and Calcified.
S, Sa and e are the three nodes of the output
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layer, representing those three
conditions, respectively.

A convention was established for the output
values of the output nodes, as given by Table 1.
Notice that each condition is defined by +1 in the

corresponding output node, and -1 in the others.

coronary

Table 1: Expected values for the outputs.

Sa Sn < Tissue

-1 +1 -1 Normal

+1 -1 -1 Atheromatous
-1 -1 +1 Cadlcified

Configuration. The identification of the
network configuration followed [5], and was
divided in three stages:

- Selection of the appropriate neural paradigm for
the aplication: feedforward network, as a standard
choice, that would allow trying standard
variations of the backpropagation algorithm.

- Determination of the network topology to be
used: a network with one hidden layer, with the
same number of nodes as the input layer has
yielded good performance and was preserved.
The actual number (N) of input nodes is made fix
during a run; however, various N-values have
been tested.

- Determination of the parameters for the training
algorithm and activation functions. This stage
yields a great impact on the performance of the
resulting system. The chosen activation function
for al the network nodes, differently from [5],
was tansig — the hyperbolic tangent sigmoid
transfer function - which is a faster
implementation of the hyperbolic tangent. This
function came up as a natural choice for the
output nodes, considering the concepts they
should represent are in the range [-1, +1], the
same one for the limit values of the function; also,
the network was verified to provide superior
performance when this function was also used in
the hidden nodes.

Notice that, instead of using three output
nodes for representing the three artery conditions
of interest, only two nodes might have been
sufficient. However, within the convention of
Table 1, a mistaken measurement or a very noisy
one, which should not be classified in any of the
three artery conditions, leaves five aternatives for
error, while there would be only one in the two-
node alternative. Hence, the current choice can be

seen as a safety measure in the diagnosis, as
compared to the other alternative.

Training. A sample of 35 Raman spectra of
human coronaries from real subjects was used,
with the following characteristic distribution: 22
healthy, 5 atheromatous and 8 calcified; for the
sake of ssimplifying the explanation of the training
process, let us assume that all these spectra have
aready undergone the required preprocessing,
including frequency selection (which, by the way,
has not yet been described).

Initialisation of the weights in the network is
randomly made. At this point the network can be
trained; three training algorithms were tried out:
standard and resilient backpropagation, and
Levenberg-Marquardt. The steepest-descent of
the standard backpropagation was too slow and
could not converge; on its part, the Levenberg-
Marquardt algorithm, usually considered quicker,
demanded an excessive large amount of memory,
thus hindering its use. The algorithm that
presented more advantages was resilient
backpropagation, which featured a reasonable
trade-off between memory requirements and
speed of convergence.

Every neura network was trained with the
target of achieving 10® of mean square error
between the outputs and the expected values, or
until reaching 600 epochs of training (where each
epoch is defined by the entire training set).
Defining an acceptable error level at training is
crucial for the network to be able to perform
correctly when under test; it was observed that,
for the present problem, a network with an error
of 10° does have, in general, a very poor test
performance.

Testing. The next step was testing the
network, so as to determine the network
performance with a data set not previoudy
subjected to the network. For such, an ensemble
of new 42 Raman spectra of human coronaries
from real subjects was used, with the following
characteristic  distribution: 26  hedthy, 6
atheromatous and 10 cacified. For best
performance during the test, the intensity levels of
these spectra were also quantised.

In order to measure the test error of a network,
a quadratic error measure was used, as follows.
Let us assume each test spectrum to be
represented by T;. When testing the i-th spectrum,
its output vector in the network is [0,(a) o;(n)
0i(c)], where the indexes a, n and c, refer to the
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output nodes Sa, Sh and <c, respedively, and the
three o's are the rounded values of the acdua
network outputs. On the other hand, the crred
output would be [O;(@) Oi(n) Oi(c)]. The eror
asciated with spedrum T; can then be defined
as e1; = [&(a) €i(n) &(c)], which can be rewritten
aser = [(0(a)-0(8))” (ai(n)-0i(n))? (0(0)-0i(c))?-
Finaly, the total error of the entire ensemble of
test spedra beaomes € = 3 (g(a) + &i(n) + &(c)),
i=1, 2...,42.
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Figure 2: Three @ronary spedra — C: cdcified;

N: normal; A: atheromatous — together with the

respedive 50 frequencies sleded by the genetic
algorithm.

The Genetic Algorithm

Jointly with neural networks, evolutionary
computation techniques — and genetic dgorithms,
in particular — have dso been uilised in virtually
any area ([4]). Their robustness and conceptual
simplicity are gpeding feaures for being wsed a
as apowerful search process Even in situationsin
which a mathematicd model is not available, or
in which the asociated search surfages are very
complex for traditional optimisers, evolutionary
algorithms gill display good chances of finding
the global maximum.

As mentioned ealier, the role of the genetic
algorithm hereisto seled the set of frequenciesin
the spedra that should be mnsidered relevant for
the neural network to rely on, so that they lean

the patterns that charaderise the three @ronary
conditions of interest.

Coding. When wsing a genetic dgorithm,
there is the neacesdty of coding a candidate
solution (a diromosome) for ead element of the
population that will undergo the evolutionary
process In the present case, every chromosome
represents one possble set of frequencies.
Considering the ding has to represent N
seleded frequencies (out of the possble 754)
every chromosome is represented as a 754-bit
long string, with N postions st to ht 1,
corresponding to ead seleded frequency; all the
other bits in the drromosome ae set to 0. The
chromosome @n then be regarded as a mask that
is used onto a spedrum, so as to select the N
frequencies (in fad, their corresponding
intensities) that will be used to train or test a
neural network. In Figure 2, only the listed
frequencies would have the 1-bit in the
corresponding positions of the asciated mask,
entailing that only the rresponding spedrum
intensities would be used by a neural network.

The initial population is randomly generated,
only imposing that each chromosome has to
contain N 1-bits. Subsequent populations are
produced through the usual genetic operators of
mutation, crosover and eliti sm.

Elitism. At ead generation, €litism is
employed, that is, some of the best chromosomes
are diredly transferred to the next generation,
without ateration. The use of elitism ensures a
constant growth of the best fitness in the
population, along the generations. However, as
the network is initialised with random weights at
eat new generation, a chromosome with a good
performance that is copied to the next generation
may be evaluated in a different way, since the
neural network would have a new, randomly
generated corfiguration. Consequently, the
original high fitness of a chromosome may not be
preserved in the subsequent generation. The way
this problem is circumvented is to preserve the
neuradl networks assciated with the best
chromosomes, that is, the chromosomes are kept,
in the next generation, together with their
respedive networks, with their weights after
training.

Using such akind of elitism, with 10% of the
chromosomes, the best results were obtained.



4™ | nternational Conference on Inverse Problemsin Engineering

Rio de Janeiro, Brazil, 2002

Crossover. In order to peform the
crosover, the mating pairs are seleded by a
standard fithesspropartional scheme (roulette-
whed selection). The mating pairs are then
subjeded to crossover at 60% rate. If crosover is
performed, the offspring are transferred to the
new population; otherwise, the mating pair is
simply copied to the new population.

Notice that, with the current representation
scheme of the dromosomes, if a standard
crosover is performed (by simply swapping parts
between two parents), very likely the offspring
would have a number of 1-bits different of N,
which would impair the predefined mask size
asciated with the seach. In order to prevent
that, a speda crosover operator was devised
which ensures that all offspring have the same
mask sizeastheir parents.

Mutation. The standard mutation rate was
10% of the population, and implemented through
one pairwise random swap of bit postions in the
mask.

It should also be remarked that the dite does
not participate in crosover nor is it subjeded to
mutation.

Fitness Function. Each chromosome is
evaluated acmrding to the outcome of a neural
network, when it is tested in the set of non
classfied sample spedra; naturally, different
chomosomes yield dstinct fitness evaluations, as
they represent different sets of frequencies that
the neura network should consider during
training and testing The fitness of eah
chromosome is given simply by 1/e, where € is
the network’s quadratic eror measure, as defined
in the previous sdion (naturally, preventing
€=0). As a mnsequence in the begining of the
seach the population is roughly uniform in
performance and seledive presaure is very low,
allowing the exploration of the seach space as
evolution goes on, the aedion of better
chromosomes increases <ledive presare more
and more, allowing the best individuals to better
exploit their regions of the search space

Notice that the evaluation scheme used entail s
a discretisation of the fitness values. This derives
from the fitness always being the result of sums
of inversions of multiples of 4 (remember, for
instance, that if the network output differsin only
one the three @mponents of the expeded output
vedor, for one single test spedrum, then
£=0+0+2%=4, thus lealing fitness to 0.25).

RESULTS

The dgorithm was executed for various neural
network configurations, and variants of genetic
operations. In general, the agorithm is
computationally intensive, but yields sgnificant
performance

Table 2 synthesises the results obtained. The
first column refers to the use or not of
quantisation in the input data; N is the mask size
that is, the number of frequencies the genetic
algorithm has to seled; the third column refers to
the number of generations the genetic dgorithm
was alowed to run; the next column refers to the
use or not of elitism; and the last column presents
the overall succesrate over the 42 test spedra.

Table 2: Clasdfication results obtained, with 30
chromosomes in the population. When used,
quantisation level is0.25 and €litismrate is 10%.

Quantisation N #Gens. Elitism Success

No 50 — No 73%
No 50 300 No 80%
Yes 50 300 Yes 100%
Yes 100 100 Yes 100%

The first row corresponds to the situation of
randomly choosing the frequencies and presenting
them diredly to the neural network, without
applying the oncept of  evolutionary
computation.

In the second row, the genetic dgorithm is
introduced, using crossover and mutation only,
and with no quantisation of the spedra intensities;
as a nsequence the results improve. The
algorithm configuration used here is a dlightly
improved version over the goproachin [5].

The third row extends the second case, now
applying €litism and quantising the intensity
levels for ead frequency; as a @nsequence,
clasdficaion of the samples improves, as does
network convergence, thus yielding the excdent
results represented by 100% success rate. The
last row just shows a variation over the latter, in
that the number of frequencies sleded by the
genetic dgorithm was increased, but allowing the
algorithm to run for fewer generations, this
combination preserved the excedent performance
arealy achieved.

A comparison between the results down in
the seaond and third rows of Table 2 is made
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more evident in Figure 4, where it becomes clear
the best evolution achieved by the current
method, over its closest predecessor, represented

by [5].
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Figure 4: Fitness variation for 300 generations,
as a comparison of the algorithm configurations
shown in the second and third rows of Table 2.

Notice that the 73% success rate in the first
results shown in Table 2 is surprisingly high.
However, this does not mean that the problem at
issue is too simple. First, remember that a neural
network — a classifier per se — is underlying even
the process that yielded those first results.
Second, that supposedly high success rate is not
sufficient in a medical situation like the one the
current problem is related with, where the only
acceptable possibility is close to 100% success
rate. Third, one of the great challenges in the
diagnosis of coronary injuries — even for a human
expert — is the ability to discriminate between
normal and atheromatous tissue spectra, since
both possess overall similar aspects (see Figure
2); so, the tricky part of the diagnosis are really
the subtleties in a spectrum that should provide
the clues to discriminate between those two
conditions.

Notice also that thereis clear evidence that the
spectrum quantisation is important for neural
network training. So, by using the spectra without
guantisation, the results get considerably worse,

as the success rate fall from 100% down to about
80%.

Quantisation is also important for training in
that it speeds up the network reaching a minimum
error. For instance, at 0.25 quantisation level the
network reaches the required training error within
approximately 10 times faster than without
quantisation; in other words, while the former
situation requires about 70 epochs, for reaching a
mean squared error of 10°®, in the latter, not even
600 epochs are sufficient. Additionally, at 0.5
quantisation level the network requires 35 epochs.

Increasing the number of selected frequencies
does not necessarily entail fitness build up, as the
100-bit mask size results showed (bottom row of
Table 2). Also, because no significant fitness
variation was perceived by changing mask size in
the range from 30 to 100 hits, this shows that, in
this range, a certain degree of robustness is
exhibited by the classification procedure.
However, as mask size decreases, a problem
becomes more and more noticeable: the mean
squared error of the neural network ceases to
decrease; in extreme cases, such as with a 10-bit
mask, no network manages to achieve the
imposed 10 training error.

CONCLUDING REMARKS

An algorithm like the one discussed herein is
meant to be the software core of a new, rea-time
system for diagnosing arteriosclerosis. This type
of system would be extremely useful in the
analysis of biological signals, as they require
outstanding reliability of the detection algorithm.

This article did not try to cover al the
possibilities offered by the problem, but only to
consider a new, general and reliable solution.
Alternative solutions can be found in the
literature, similar or not to ours, based upon
neural  networks, evolutionary  agorithms,
wavelets, discriminant networks, and principal
component analysis ([5], [6], [7], [8], [9] and
[10]). While the present approach shares various
features with those works — including the usage of
the same data sets — and, to some extent, is a
follow up of them, our results seem more
promising than those obtained by our
predecessors.

A considerable advance of the present
approach was demonstrated by the success in the
identification of al spectra of unknown
classification. But recently, a similar performance
has been reported ([9] and [10]). A key distinction
between the two is their sophisticated wavelet
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preprocessing of the input data, a contrast with
our much simpler preprocessing due to the
spectrum quantisation; also, our approach uses a
more  effective  evolutionary ~ computation
algorithm, epitomised by the role of elitism, as
well as a more natural and uniform neural
network architecture.

In fact, the mgjor thrust of the approach we
presented is accuracy of classification, together
with conceptual simplicity. The work extends the
approach in [5], mainly by introducing the
guantisation scheme of the spectra, by using
glitism in the genetic agorithm, and by
uniformising the neural network architecture
through the same activation function in al the
nodes.

Although the success of our method was
demonstrated with spectra from rea coronary
samples, the spectra utilised were obtained with
an exposure time of the samples to the Raman
spectrometer, of around 0.5 sec. This success is
certainly remarkable in its own sake, and practical
from the medical standpoint; nonetheless, some
medical situations may require about a tenth of
this exposure time, what would produce noisier
spectra. The performance of the current method in
these noisier conditions is yet to be properly
evaluated, as it is yet to be with the competing
approaches.

We believe that quantisation can provide a
simple and effective way to minimise the effect of
noise; after all, a quantised noisy spectrum could
even be identica to its noisefree version.
However, in conditions with higher amounts of
noise, quantisation has to be well supervised,
since a high quantisation level (i.e, various
intensity values) causes the neural network to
learn too dowly; on the other hand, a small
guantisation level causes loss of information from
the spectrum.

No doubt, the winning approach will be the
one with more robustness to handle noisier
spectra, obtained with smaller exposure times.
Lately, our method and the one in [10] have been
probed under those stricter conditions, by
subjecting the agorithms to noise-corrupted
spectra, obtained out of the artificial injection of
noise, at various levels, into the origina spectra
we used. Comparing their resulting discrimination
ability, it is already clear to us the superiority of
the approach described herein. However, these
results are still informa and go beyond present
purposes; details of such a new step in comparing
the approaches will be published elsewhere.

The use of artificial neural networks for
learning to correlate Raman spectra with some
human trait abounds in the literature. Typically,
the networks involved undergo a supervised
training procedure not directly with the original
Raman spectra obtained, but with a reduced input
space, obtained out of principal components
analysis; the resulting set of smaller feature
vectors are then used in the supervised training
process of the networks. For instance, [11]
describes how multilayer perceptrons learn to
correlate glucose concentration of the blood, with
Raman spectra of the aqueous humor of the eye,
so as to learn the Bayesian probabilities that
glucose concentration lies in one of 3 ranges of
physiological interest (hypoglycemic, normal or
hyperglycemic). Similarly, in [12], multilayer
perceptrons are trained for performing
classification of skin lesionsin 5 different classes,
out of Raman spectra obtained directly from the
lesions. Furthermore, in [13] multilayer
perceptrons are trained with the reduced
dimensionality Raman spectra of a group of
clinical bacterial isolates (the spectra obtained
from the actua whole-organisms!) associated
with urinary tract infection, and manage to
classify unseen samples in one of 5 possible
classes, with dightly more than 80% success rate.
In contrast with [11] and [12] — but, in tune with
the work we report herein — in [13] multilayer
perceptrons and radial-basis function networks
are also used with the full Raman spectra;
however, the results are worse than those with the
reduced spectra. This contrast precisely clarifies
the role of the genetic algorithm in the present
approach: it reduces the dimensionality of the
original spectra, not by transforming it, as
multivariate methods do, but simply by filtering
out those frequency components that should better
not be accounted for in the classification process.

Finaly, athough one can think of non-
invasive systems related to the consequences of
arteriosclerosis — like the one in [14], used for
hypertension detection — invasive systems like the
one described here are, as far as we are aware of,
still (and unfortunatelly) required, as a way of
detecting the actual presence of arteriosclerotic
lesions.
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ABSRACT

The method of numerical solution of nonlinear
inverse problems of the synthesis theory of
radiating systems according to the given
directivity pattern (DP) by power is stated. A
variational statement of the problem, in which the
mean square deviation of the prescribed and
synthesized DP and restrictions on the norm of
excitation sources is considered. The existence
theorem of quasi-solutions is proved, the Euler
equation for their finding is obtained. The
conditions are determined and convergence of the
used iterative processes is proved at numerical
solution of the problem. On the basis of methods
of branching theory of the nonlinear equations
solutions it is shown, that for the nonlinear
synthesis problem the bifurcation of solutions is
characteristic. The equations for finding the
bifurcation points are obtained. The quantity and
characteristic properties in the space of real
continuous functions, are determined. The
numerical example of synthesis is given.

INTRODUCTION

One of the practically important classes of the
problems originating on a design stage of audio
and electrodynamics emanating systems, are the
inverse  problems (problem of synthesis),
permitting to discover constructive optimal
solutions [1-5]. The joining beginning of the
inverse problems of acoustics and
electrodynamics is the adequacy of mathematical
models circumscribing various wave processes.
Abstracting from a concrete type of radiating
system on the operator level the inverse problem
of finding the optimal distribution of external
sources generating the field satisfying the given
requirements to the characteristic of radiation

power directivity pattern, is considered. Such
problems are nonlinear and essentially ill-posed
one. They are characterized by the nonuniqueness
of solutions. The least investigated in the given
class of the problems are the problems of an
amount of existing solutions and their qualitative
characteristics. The variational problems on
search of quasi-solutions with usage of the
smoothing functionals providing the best mean
square approximation of DP synthesized to the
given one are stated. The existence theorems of
quasi-solutions are proved. Further, the problem
of search of solutions is reduced to numerical
solution and research of the Euler equation being
a nonlinear equation with the operator of
Hammerstein type. The appropriate iterative
processes are constructed. The conditions are
defined and their convergence is proved. By
example of a linear antenna and linear antenna
array it is shown, that for the given class of the
problems bifurcation of solutions is characteristic.
Their main properties are defined depending on
the value of the parameter of regularization and
properties of the prescribed power directivity
pattern. It allows to localize existing solutions and
in appropriate way to select initial approximation
for obtaining solution of that or other type. The
offered algorithms can be used in the process of
solving the synthesis problem of various types of
antennas and antenna arrays, including the mutual
influence of sources.

STATEMENT OF INVERSE PROBLEM,
THE EXISTENCE OF QUASI-SOLUTIONS

It is known [6], that the problem of
electromagnetic field excitation in the unbounded
homogeneous isotropic space (with dielectric
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permeability € and magnetic permeability () by
external sources of electromagnetic oscillations,
which are localized in some area V 0O R?® and vary

in time according to the law gt (« is the
oscillation frequency), is reduced to the system of
Maxwell equations with respect to E, H which
are the vectors of complex amplitudes of voltages
of electrical and magnetic fields. Asymptotic of
solutions of this system for r — co in a spherical
coordinate system has the following form:
) e—ikr
E(r,9,¢) = —m)u—{o, f5(9.0) fy (e,q)},

—ikr

——{0,1(0.0)f5 5.0},
where f3(8,¢), fo (3,¢) are the components of

H(r,9,¢) =

vector diagram of directness f = fgis + fy iy Of
radiating system by field. The functions fg, fg,

as a rule, are the integrated characteristics of the
currents (fields) passing in the aperture of
radiating system; their form and properties
depend on the type and geometry of radiating
system. The value

2
N(9.0)=|F(8.0)° =|fs (9.0)" + |fs (9.0) @
characterizes the angular distribution of density of
power flow and it is called the directivity pattern
of radiating system by power.
Abstracting from the concrete type of
radiating system, we present the function f(3,¢)

with the help of the linear operator A = {As: A¢}:
f = Al (f,=A1, v=9,0), ©)

which operates from some functional complex

space H,, to which functions of external currents

(or fields), belong, into a functional complex
space C[fZ] to which a set of realized DP belongs.

We consider the synthesis problem of the
prescribed DP Ny(9,0) by power. In the

elementary aspect it may be formulated as the
problem of solutions determination of the first
kind nonlinear operational equation

2
|A||2 E|A9||2+"AYI>|‘ =Ny, )
where Ng(9,4) is a real nonnegative function

continuous on the compact Q OR? (or Q ORY)
(thus  max Ng(8,¢) =1) which cannot belong
(9.¢)0Q

to the set of values of the nonlinear operator

|AI|2. It is known [7, 8], that the problem (4) is

essentially ill-posed. Thus problem of finding the
quasi-solutions of the equation (4) in variational
statement, is considered.

Let's introduce into consideration the Gilbert

space H, = LZ[\T] O LZ[\T] O LZ[\T] which is a
complex space of square integrable vector-valued
functions defined on the compact V , and
C[fz] =C[§]D C[ﬁ] which is a complex space of
vector-valued continuous functions on Q for real
arguments, equipped with a scalar product.

In the space C[Z] alongside with the

Chebyshev norm | f. = max | £(9,0)] , where
(9.6)00

12
|1(9.0)|= Ufs 9.0)° |f¢ 9, <|>| ) , we shall

introduce the mean square metric, generated by a
scalar product and norm:

(o= P )

= J{fgﬂ (9,0) f§2> ©0)+ 1. 12, ¢)} sin9dddo’

Q
Iflega =5, 0/2= 110l + ] 2
Per (f1. 1) =|f - f2||clf21 :

It is supposed, that the set of zeros of operator A
consists only of zero element, i.e. N(A): 0 The

problem about the best mean square
approximation of nonnegative real function

No(3,¢) , continuous on area Q, by function
119.0)° (f(9.0)=AIOR(A),
| ={IX, ly, IZ}DH| ) is stated. We formulate it as

the minimization problem of a smoothing
functional

ap(l) = HNO —|AI|2‘

2 2
C(fz) + B" I ||H| =

_ 2|12 2
= [No -1, #0NE,
f

on the space H,, where >0 is a real weight

parameter.
Theorem 1. Let the linear operator

A:H, - C[fz] be quite continuous, Ng(3,¢) is
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given nonnegative function continuous on Q , and
[No(®.9)]c =1.

Then there exists at least one point of absolute
minimum of functional og(l) in H, and every

minimizing sequence contains a subsequence that
weakly converges to one of the points of absolute
minimum.

Since H, is a reflexive Banach space, to

prove the theorem it is enough to show [9] the
fulfilling of the following conditions:
Q) og(l) is a weakly lower semicontinuous

functional,
(i) lim  og(l) =+,
[t~
NUMERICAL SOLUTION OF THE
PROBLEM

To find numerically the points of minimum
and research of their qualitative characteristics we
use the Euler equation

_B(1) =2 (N A 2 A2
I—B(I)—BA(NODM) BA(|AI| I]Alj (6)

in the space H,. The equation (6) is the

nonlinear equation containing in the right part
(except for linear) the nonlinear Hammerstein
type operator.

Applying operator A to both sides of the
equation (6) and taking into account, that
N(A)=6, we obtain an equation for the

synthesized DP in space C[fz] that is equivalent to
(6):

_ _2 , .* 2 kg2
f=D(f)= M (Ng Df)—EAA (|f| ij. )

Corollary 1. Since the functional og is
Gateaux differentiable on H,, has at least one
valley and posses the m — property (valley is an
interior point of some convex set, belonging to
H, ), the equation (6) in the space H, and
equation (7) in the space C[fz] have, at least, one

solution each.
Lemma 1. Under the conditions of theorem 1,
for limited values of parameter B (0 <3 < +c0)

_2 * _E * 2
D(f) = Aa (N OF) 2 (|f| Df) ®)

is a completely continuous operator in the space
ctal,

From lemma 1 it follows, that for limited
values of parameter B the operator D(f) maps

each limited set into relatively compact set in the
space CE:Z]. Since for elements of the relatively

compact subset of the normalized space, the

strong convergence and weak one coincide [10],

from the theorem 1 and lemma 1 follows
Corollary 2. If {I n} is a minimizing sequence

of functional og(l) which weakly converges to a

point of minimum I then

{f, = a1} ocld

sequence

converges uniformly to

fD: AIDin C[fz]

At the beginning we consider an iterative
process that calculates the solutions of equation
(6) for the function of excitation sources

distribution  10H, =.2[|02f]o2]. The
equation (6) we rewrite as

2 x 2 x 2
E-ZAN AI=——A(AI DM), 9)

( B ] p (A
where E:H,; - H, is an identity operator. If

B> ZHA*NOA”, there exists an inverse operator

-1
[11] (E —%A*NOAJ . Using this operator the

equation (9) takes the form

-1
I =B(l)= —%[E —%A*NOAJ A*(|A||2 DL\lj . (10)

Let us show, that the solution of equation (10)
may be obtained as a limit of successive
approximations of the following iterative process
[12]

Ihe =01y +(1-9)B(ly)
(n=012,.), (11)
where 3 O (0,1).
Since the Gilbert space H, is the Banach

strictly convex space, then to prove the
convergence of iterative process (11) it is enough

to show [12], that §(I) is quite continuous and
non-expanding operator satisfying the condition
§(Sr) OS,, where

1/2

_[1oeoq
A’

S =il :||I|||_2 sr} T



4™ International Conference on Inverse Problems in Engineering

Rio de Janeiro, Brazil, 2002

(H=2/B). (12)
The proof of the named properties of the operator
§(I) follows from the lemmas given below.

Lemma 2. Let A:H, — C(Q) is a linear

completely continuous operator, B>2“A*N0A”.

Then §(I) is a non-expanding operator on
Sy OH,y, ie. for any Iq,1,08S, the inequality

”Es'(ll)—EE(lz)HL2 <[ty = 15, holds.
Lemma 3. Let A:H, - C(Q) is a linear

completely continuous operator, B>2HA*N0A”.

Then §(I):H, -H, is a completely
continuous operator satisfying the condition
B(S,;)OS;.

We notice, that the successive approximations
(11), depending on the choice of initial

approximation, may converge to various solutions
of the equation (10).

RESEARCH OF SOLUTIONS STRUCTURE

Nonlinear operational equations (6), (7) have
nonunique solution. Let's consider the structure of
the solution of the equation (7) by an example of
the linear radiator synthesis problem. It is known
[6], that DP of linear radiator of length 2a,
directed along an axis OZ and placed in
unbounded isotropic and homogeneous space
with exactness to constant multiplier is described
by the formula

1
f(s) = Al s\/% [12)e'az, (13)
-1

where s=sind'/sina is generalized angular
coordinate, ¢ =kasina is the real dimensionless
parameter describing the electrical length of
radiator, k =21/A is the wave number in
vacuum, A is length of a wave, 2a is the corner,
in which it is necessary to direct the maximal
portion of irradiating power. It is assumed, that
A >>a, and the corners §', a are counted from a

plane XOY . The DP by power is determined by
the expression N(s) =|AI|2 E|f(s)|2.

The formula (13) is considered also as
mapping from the complex space of square
integrable functions H, =L2[—1,1] into the

complex space C[—l,l] of continuous functions

for real argument, which is carried out by the
linear completely continuous integrated operator
A.

The conjugate operator A” we find from
equality (f,AI)=(ADf,I):

1
ATt = L [f(s)e7ds
-1

Taking into account the form of operators A, A",
we get the developed form of equations (6), (7) in
corresponding spaces:

2 ¢t Cc
I(Z)ZE\/;_{ No(8) =
1

x J'I (z’)eicz'sdz'}e'iczsds , (14)
a

2

X

1
J‘l(Z,)elcz’st,
-1

1
f(s) E;_J;K(s,t, C)No(t) f (t)dt -

1
—[25 [Ketof® fmd,  (@15)
A
where
K(Stc)_ilj-eicz(s—t)dz SINC(s=Y 44
T _Zn_l Com(s-t)

The equation (15) is easier, than the equation
(14), since while its determination it is possible to
lead integration (16) in an obvious form.
Therefore its solutions are investigated.

Let's consider the solutions structure of the
equation (15), depending on value of parameter
[3. For this purpose, we replace the equation (15)
by equivalent system, using the equality
f(s) =u(s) +iv(s):

51
u(s) = By(u,v) =3 [K(s.t.c)No(Du(t)dt -

-1

2 1
5 j K(s,t,c)[uz(t) +v2(t)]u(t)dt,
-+ (17)

1
v(s) = B,(u,v) s% jK(s,t,c)NO(t)v(t)dt -
-1

2 1
5 j K(s,t,c)[uz(t) +v2(t)]v(t)dt.
-1

We show the two important properties of
system solutions (17), which are directly checked:
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1° If uD(s), vD(s) is the solution of system,

then ues) = c_osy TNV urfs) is also
v(s) siny cosy) {v(s)
its solution, where y is any real constant, i.e. the

system (12) has one-parametrical families of
solutions.

2°. When the prescribed function Ng(s) is
even one, the integrated operators By, B, of the
system (17), map the even functions u(s), v(s) to
even ones. This property allows to determine
invariant sets in space C[— 1,1] and thus to locate

the existing solutions.
It is obvious, that at any 3>0 one of the

solutions of system (17) is the trivial solution:
u(s)=0, v(s)=0.

At the beginning, the system (17) is
considered for Ng(s)=1 in real space. In this
case it transforms to one equation of a form

1 1

u(s) = [K(s,t,out)dt - [K(s,t,cyud(tdt, (18)
-1 -1

where p=2/B. The problem on determination

parameter  p, =2/,

(n=01.2,...) and all continuous, different from

trivial solutions w, (s) , satisfying the condition

ax s)) - 0 when =u-U, - 0,
SD_M]Iwn()I N=H-Hy

such values of

is considered. According to [13] the values of

spectral parameter A, =1 B (h=012,..),
Hp 2

which are eigenvalues of linear homogeneous

equation

2= [CDomu o)
5 s ’

can be the branch points of equation (18).

The eigenfunctions of equation (19) are the
extended spheroidal wave functions
®n(s)=Son(c,s) (n=012..) of zero order
[14]. They form the complete orthogonal system
in an interval [-1,]. Since the kernel K(s,t,c) is
the symmetric and positive one, the eigenvalues
A, of equation (19) are real and positive. They
monotonously decrease with the growth of n:
Ag>A1>A,>... A sequence of values of
parameter [, =2A,, as possible bifurcation
points of equation (18), also forms the sequence,

monotonously decreasing and aspiring to zero:
Bo>PB1>By>....

The regular case, when [i does not coincide
with one of characteristic values of equation (19),
is considered. It is shown, that in this case the
nonlinear equation (18) has only trivial solution.

When p, is the characteristic values of
equation (19) (multipleness of characteristic value
is equal to unit), the case of one-dimensional
branching of solutions take place. Assuming
M =My, +n, and using the methods of branching
theory of nonlinear equations solutions we obtain,
that in points B, =2A,=2/W, (M=012,..)
under condition n >0 the two real solutions of

equation (18), branch off from trivial one, which
in the first approximation have the form:

u{ (s) = £,/2/Bn Son (€. $)NM' 2 +0(n?) .(20)
Since the functions Sg,(c,s) are even when n is

even and they are odd when n is odd, the
branched off solutions possess (at the first
approximation) the same property.

The function Sgg(c,s) has the maximal
concentration of power in an interval of visibility
and it is the least jet function in a class W, [6]. In

particular, Sgg(c,s) is the least jet total DP, and
odd function Sy, (c,s) is the difference DP. From

this follows, that while synthesizing DP close to
total one the parameter B in functional (5) should

be chosen from the condition B =0y =2Ay, and
while synthesizing the difference DP this
condition has a form B=[; =2A;.

Since the system (17) is symmetric with
respect to unknown functions u, v, the similar
results are obtained for function v(s) in class of
only imaginary functions.

Let's consider the case, when the given DP
Ng(s)#1. The problem of determining the

bifurcation points of solutions is reduced to
solving of linear equation

1
b(s) =H J.No(t)K(S,t,C)d)(t)dt . (21)
-1

It is shown that eigenvalues of equation are real
and positive, and they form a monotonously
decreasing sequence, and eigenfunctions are
orthogonal. They are defined by a numerical way,
using both the mechanical quadrature and the
Danylevsky method [15].
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It is shown, that the solutions of nonlinear
equation

1 1
u(s) =p [No(®K(s.t,c)ut)dt 1 [K(st,c)u*(t)dt (22)
-1 -1
in the bifurcation points have a form (at the first
approximation) analogous to (20).
For even functions Ng(s) eigenfunctions

$,(s) of the equation (21) are even when n is

even and they are odd when n is odd. Hence, the
characteristic properties of the branching off
nontrivial solutions in the points (3, =2A,, are

analogous to above mentioned ones for
No(S) =1.

The general structure of the real solutions for
any even DP can be schematically represented by
solutions "tree” (fig. 1). Its "trunk™ corresponds to
the trivial solution, and branches correspond to
branching off solutions. From figure it is seen

LD,
)

Fig. 1. A tree of the solutions
of the equation (22)
(horizontal straight line 1), that for a choice of
parameter B in functional og(l) it is expedient

to find eigenvalues of the equation (21) and to put
B =2Ag. In this case the solution of the nonlinear

equation (22) includes the first eigenfunctions of
the corresponding to it linear equation (21), which
have the least jet factor. For small values [

(horizontal straight line 2) the solution of the
nonlinear equation (22) can be presented only
through eigenfunctions ¢, (s) with a high index,

which are quickly oscillation ones.

The analogous results are received for the
synthesis problem of the linear equidistant
antenna array, DP of which is the Fourier discrete
transformation.

Consider a numerical example of two lobe DP

synthesis  Ng(s) =sin(rs)|.  The prescribed
amplitude pattern and synthesized DP adequate to
the solutions with various types of functions
parity of u(s), v(s) are shown in fig. 2.
The current amplitude distributions, creating these
DP are given in fig. 3. Let's pay attention to the
solution with number 1. From a fig. 3 it is seen,
that the amplitude distribution of a current is
nonsymmetrical with respect to the antenna
center. However, corresponding to it DP by
power is symmetrical.

If|2dB
00 r---- -

400 |-t fF---\f
200 |----

30,0 [---

40,0 A
2 41 0 1 2

Fig. 2. Given and synthesized DP
for Ny (s) =sinTs| , corresponding to various

types of the solutions

TR o |

1,0

0,5

Fig. 3. Optimum currents creating DP,
shown in fig. 2.
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CONCLUSION

The supposed method of numerical solution of the
synthesis problems is also applicable to the
solving of the synthesis problems of various types
of radiating systems. For this purpose it is
necessary to determine a form of the operator A
for concrete type of radiating system and, using

the equality (Al, f)= (I,ADf) , to find the form

of conjugated operator A,
It is simply to be convinced that the operators

AAT for many types of radiating systems, having
a symmetrical radiating aperture posses the
property preservation of parity for the even
prescribed DP N . This property allows to locate

the solutions and to choose by corresponding way
the initial approximation to obtain the solution of
this or that type.

The stated technique can be also used for
synthesis of antenna arrays using various by
exactness mathematical models for the solving the
direct problem. In this case currents | on the
radiators are connected with stimulating them
external voltages U by system of the linear
equations ZI =U , where Z is a matrix or
matrix-integral operator. If there exists a stable
solution of this system, then having put

I=z7'U and having presented DP of arrays as

f=Az"'U, analogously to stated above it is

possible to solve the problems of constructive
synthesis.
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